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Determining and Approaching Achievable Rates of
Binary Intersymbol Interference Channels Using

Multistage Decoding
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Abstract—By examining the achievable rates of a multistage
decoding system on stationary ergodic channels, we derive lower
bounds on the mutual information rate corresponding to indepen-
dent and uniformly distributed (i.u.d.) inputs, also referred to as
the i.u.d. information rate. For binary intersymbol interference
(ISI) channels, we show that these bounds become tight as the
number of decoding stages increases. Our analysis, which focuses
on the marginal conditional output densities at each stage of de-
coding, provides an information rate corresponding to each stage.
These rates underlie the design of multilevel coding schemes,
based upon low-density parity-check (LDPC) codes and message
passing, that in combination with multistage decoding approach
the i.u.d. information rate for binary ISI channels. We give ex-
ample constructions for channel models that have been commonly
used in magnetic recording. These examples demonstrate that the
technique is very effective even for a small number of decoding
stages.

Index Terms—Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm,
coset codes, density evolution, finite-state channels, information
rates, intersymbol interference (ISI) channels, low-density parity-
check (LDPC) codes, magnetic recording, multilevel coding,
multistage decoding.

I. INTRODUCTION

ONE of the classic problems in digital communication is to
reliably transmit information over the binary-input inter-

symbol interference channel (binary ISI channel, for short). For
this channel, if is a binary input sequence, then each
channel output is expressible as

(1)
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where is modeled as additive white Gaussian noise
(AWGN) with zero mean and a known variance and

is the known impulse response of the channel. This
channel has been used as a simplified model for digital com-
munication and data storage systems [1]. This channel is also a
widely used example of a finite-state channel, since the output

depends only on the current input and the channel state
. Unlike general finite-state channels,

however, the channel state here is completely determined by a
finite set of past inputs.

Recently, tight bounds on the capacity of binary ISI channels
have been determined through the use of simulation-based esti-
mation of achievable information rates [2]–[5]. In addition, dra-
matic performance improvements on coded binary ISI channels
have been achieved by application of turbo-equalization tech-
niques [6]. This paper presents bounds and constructions that
complement both of these developments.

We begin by considering a multilevel code (MLC) design and
a corresponding multistage decoding (MSD) algorithm for bi-
nary ISI channels. This system closely resembles the scheme
proposed by Imai and Hirakawa [7]. The MLC design inter-
leaves several independent codewords which are then succes-
sively decoded, with each decoded interleave being used toward
the decoding of subsequent interleaves. By analyzing the condi-
tional output densities at each stage of the multistage decoder,
under the assumption of independent and uniformly distributed
(i.u.d.) binary inputs, we determine lower bounds on the mutual
information rate of the channel, which we refer to as the i.u.d.
information rate, or . These lower bounds become tight as
the number of stages increases to infinity. Moreover, our method
of determining achievable rates focuses on marginal densities.
After applying the well-known design technique for low-den-
sity parity-check (LDPC) codes given in [8] to such densities,
we are able to construct explicit coding systems that closely ap-
proach .

A. Review of Achievable Rates on Binary ISI Channels

Given a stationary and ergodic input process and the
corresponding channel output process , the mutual infor-
mation rate for the channel, defined as

(2)

determines the rate (in bits per channel use) at which informa-
tion can be reliably transmitted [9], [10]. The capacity of the
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channel is the supremum of over all input distributions,
and when is i.u.d., we refer to the corresponding
as .

No solutions currently exist which permit an exact calcu-
lation of the mutual information rate for binary ISI channels.
Early work by Hirt [11] focused on the numerical evaluation of

, and Shamai et al. [12] later bounded these results with
expressions that were significantly easier to evaluate. More
recently, Arnold and Loeliger [2], [5], Pfister, Soriaga, and
Siegel [3], and Sharma and Singh [4] independently devised a
simple Monte Carlo technique for estimating improved lower
bounds on capacity, based on the Shannon–McMillan–Breiman
theorem [9], [10] in combination with the Bahl–Cocke–Je-
linek–Raviv (BCJR) algorithm [13]. Kavc̆ić [14] later built
upon these results with an elegant input optimization procedure.
Additionally, improved upper bounds using related simula-
tion-based methods were presented by Vontobel and Arnold
[15], and Yang, et al. [16]. These results suggest that the best
lower bounds originally presented in [2]–[4] are almost equal
to capacity in some cases.

Although we are ultimately concerned with achieving
capacity, in this paper we focus exclusively on . One
important reason is that coset codes can achieve [17,
p. 206], and so we seek to realize this potential by using
LDPC codes with message-passing and an MLC/MSD system.
Another more practical reason is that, based on the results in
[2], [3], [14], the gap between and the best known lower
bound on capacity is small when exceeds . Such
operating regions are of prime interest to magnetic recording,
and may also be of interest in optical fiber communication and
optical storage.

B. Previous Coding Techniques for ISI Channels

We note that many coding systems for ISI channels have al-
ready been shown to operate reliably near . Simulation
results for systems using turbo-like coding architectures were
given by Doulliard et al. [6], Ryan et al. [18], Souvignier et al.
[19], and Öberg and Siegel [20], while Fan et al. [21] investi-
gated architectures that incorporate LDPC codes. In these sys-
tems, the discrete-time filter in (1) is viewed as an inner code for
an AWGN channel, and in a process that has come to be known
as turbo-equalization, soft decisions are iteratively passed be-
tween the inner decoder (i.e., channel detector) and outer de-
coder. The asymptotic performance of turbo-equalization has
been studied by several authors, including Tüchler et al. [22],
Narayanan [23], Doan and Narayanan [24], and Thangaraj et al.
[25]. Their methods are related to the EXIT chart analysis intro-
duced by ten Brink [26], and, like the latter, they were also used
as a guide in system design. Meanwhile, Kavc̆ić et al. [27] and
Varnica and Kavc̆ić [28], [29] considered the asymptotic perfor-
mance of LDPC codes by extending the analysis of Richardson
et al. [30], [8]. In each of these cases, the threshold of turbo-
equalized systems was found to be close to . Such studies
on the asymptotic performance of iterative decoding have pre-
dicted thresholds that are close to , but do not achieve it.

Several authors have proposed the application of MLC/MSD
to binary ISI channels. For instance, Filho et al. [31] considered
an MLC/MSD architecture which uses Viterbi detection, and

they designed a signal-set partitioning to increase intra-subset
distances at the cost of lower rate. Kuznetsov [32] provided
an alternative structured set-partitioning, and considered var-
ious other detection methods in MSD, including the soft-output
Viterbi algorithm (SOVA), list-Viterbi algorithm, and the a pos-
teriori probability (APP) detector. Miller and Wolf [33] exam-
ined the set of error events at each stage (for precoded chan-
nels), and accordingly designed Reed–Solomon codes at each
level, while Ma et al. [34] combined an inner trellis code with
an outer MLC/MSD system that uses LDPC component codes.

In view of this past research, the novel contribution of this
paper is its information-theoretic analysis of achievable rates
of MLC/MSD systems and its complementary design of LDPC
codes that approach these rates arbitrarily closely. Our approach
provides an alternative method for calculating the i.u.d. infor-
mation rate as well as a new, practical design methodology for
coding systems that closely approach this rate at any signal-to-
noise ratio (SNR). The flexibility and efficiency of our coding
scheme is matched only by that proposed in [28].

This paper can be viewed as a comprehensive exposition of
the work reported in [3], [35], including many unpublished de-
tails and results. We note that, after the appearance of [3], [35],
Narayanan and Nangare [36] revisited the MLC/MSD architec-
ture, showing that the system complexity can be reduced, with
a loss in overall rate, if pilot symbols are incorporated. Most
recently, Li and Collins [37], [38] proposed natural generaliza-
tions of the successive decoding approach to a larger class of
channels with memory.

The MLC/MSD scheme presented here does not use iteration
between the channel detector and the component (LDPC) code
at each individual level. Thus, the achievable rate for the first
level of our system is similar to the “BCJR-Once Rate” intro-
duced independently by Kavc̆ić et al. [27], and our analysis of
achievable rates for subsequent levels can be thought of as an
extension of that earlier work. On the other hand, Ma et al. [34]
proposed an MLC/MSD architecture that incorporates iterative
decoding at each level, as part of their so-called matched infor-
mation rate coding scheme.

Finally, we note that several authors have proposed spectrally
efficient communication schemes for memoryless AWGN chan-
nels based upon MLC/MSD architectures with optimized com-
ponent LDPC and higher order signal alphabets; see, for ex-
ample, Wachsmann et al. [39] and Hou et al. [40]. However,
these schemes and their analyses do not readily extend to chan-
nels with memory.

C. Overview

In Section II, we formalize MLC and MSD, along with the
concept of window-APP detection (see also [27]) which simpli-
fies the analysis of our MLC/MSD system. Section III deals with
the determination of achievable information rates of MLC/MSD
schemes on general stationary ergodic channels, beginning with
the concept of equivalent subchannels. We develop achievable
rate expressions based on the marginal conditional output den-
sities at each stage in Section III-A, and then present in Sec-
tion III-B a Monte Carlo method for easy numerical evaluation
of these rates. The achievability results in this section make use
of a coding theorem for “mismatched” decoders, presented in
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Appendix I. In Section III-C, we prove that, for binary ISI chan-
nels, the overall system rate converges to as the number
of levels/stages .

These analytical results serve as the basis for a code design
methodology, described in Section IV, that uses marginal output
densities to find optimal degree distributions for irregular LDPC
codes that can approach the achievable rate at each stage. The
code optimization involves the application of density evolution
techniques [30], [8], suitably adapted for the equivalent sub-
channels induced by MLC/MSD on binary ISI channels. Jus-
tification of the method is provided by an appropriate extension
of the concentration theorem [30] and the verification of sym-
metry properties of conditional output densities for equivalent
subchannels.

In Section V, we consider as specific examples the dicode
and EPR4 channels, historically used as channel models in mag-
netic recording, with impulse responses

and , respectively. We
observe that with just levels on the dicode channel and

levels on the EPR4 channel, operation within 0.1–0.2 dB
of is theoretically possible. For component codeword
block lengths of , we construct a two-level system for the
dicode channel that exhibits a gap to of less than 0.3 dB
at a bit-error rate (BER) of , as well as a three-level system
for the EPR4 channel that leaves a gap of less than 0.2 dB.

D. Notation

Random variables are denoted with upper case letters and
their realizations with lower case. Vectors are represented in
bold text, e.g., , and may be further in-
dexed explicitly, e.g., . We refer to inter-
leaved subsequences of with the notation

The th vector in a set of length- vectors is denoted by
.

We use the notation to abbreviate the probability
, and likewise for conditional and joint probabilities

of both scalar and vector random variables, e.g.,

Moreover, we will use when denoting both proba-
bility mass functions and probability density functions. For
instance, if takes values in a continuous alphabet, we
write for the probability density function . The
meaning should be easily deduced from context, although
more explicit notation will sometimes be provided for clarity.
Regarding entropy, we use the general definition

, remembering that the function was im-
plicitly defined to be . We use this form as it can
be meaningfully interpreted for both discrete and continuous
random variables. Mutual information is similarly expressed as

.

II. MULTILEVEL ENCODING AND MULTISTAGE DECODING

In this section, we formulate the basic structure of MLC/MSD
considered in this paper, detailing the multilevel encoder, the

Fig. 1. Multilevel encoder.

stage-by-stage operation for decoding, and the APP detector
used at each of these stages. Similar to Kavc̆ić et al. [27], we
use the concept of a window-APP detector to simplify analysis.
Our system essentially resembles that of Imai and Hirakawa
[7], except that here we directly transmit each binary -tuple
from the -level coding system rather than map it to a higher
order constellation, and here we employ at each decoding stage
a window-APP detector which operates on overlapping blocks
of symbols, in order to account for channel memory.

A. Multilevel Encoder

For an -level encoder (see Fig. 1), a block of data bits is
partitioned into subblocks of varying size, and each of these
information blocks is separately mapped to a codeword of length

. For the th code of rate , its codeword is denoted by
. All of these codewords are then inter-

leaved into

(3)
which is transmitted through the channel. This interleaving can
also be written element-wise with , or more

concisely with . Sometimes we use to
compactly denote , whenever the values of and

are understood.
This -level encoder can be viewed as a single encoder for

an binary block code,
with an overall rate . The structure of
each component code is discussed in Section IV.

B. Multistage Decoder for Binary ISI Channels

Given a received vector , the interleaved codewords
are recovered with MSD (Fig. 2) as follows, proceeding from
stage to :

1) Channel block-APP detection. At stage , the channel de-
tector determines the vector of log-APP ratios , where
each element and

...

is the APP calculated assuming the are i.u.d. Each
is a codeword decision from the previous interleaved

level . (For the first stage, the conditioning on is absent
from the APP expression.) The log-APP ratios for all

can be calculated using the BCJR algorithm
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Fig. 2. Multistage decoder.

[13] on the entire received sequence , keeping only
every th estimate starting from time .

2) Codeword recovery. The th component decoder deter-
mines from .

To lower the computational complexity, the channel detector
and component decoder at each stage are separated, and they
do not iteratively exchange information.

C. Window-APP Detection

We now describe the window-APP detector used in our anal-
ysis of MLC/MSD.

Definition 1: For MSD on binary ISI channels, the
window-APP at time index is the APP based on a fixed
window of observations with side length . Formally, at stage

we calculate for each

...

(4)

where we let for each previous interleave
. (Again, the conditioning on is absent from the APP ex-

pression for the first stage.) The log-APP ratios are accordingly
defined as . Any index such that

is referred to as an interior point,
and at these indices the detector has a full window of
observations.

According to the definition, if the input is independent and
identically distributed, then the output log-APP ratios are
identically distributed for all interior points . In (4), the def-
initions of the upper and lower indices of the observations in
the window reflect the truncation effect at the edge points. For a
fixed , the fraction of edge points asymptotically goes to zero
as the block length , so our analysis concentrates on the
detector behavior at interior points.

The MSD simulations in Section IV all use block-APP detec-
tion, which is computationally more efficient than window-APP
detection. For large enough and , the window-APP and
block-APP detector differ negligibly in performance. In fact,

even the suboptimal window-based message-passing detector
investigated by Kurkoski et al.[41] achieved the performance
of the block-APP detector for large enough . (For certain par-
tial-response channels, the window-based message-passing de-
tector in [41] produced an error floor, caused by the existence
of ambiguous input sequences, i.e., bi-infinite, nonzero input
sequences which have zero output energy. However, the error
floor could be made arbitrarily low by sufficiently enlarging the
window size, or it could be eliminated completely with an ap-
propriately chosen precoder.) A more detailed discussion of the
asymptotic equivalence of window-APP and block-APP detec-
tion, based on the exponential forgetting arguments of Le Gland
and Mevel [42], [43] (see also [44]), can be found in [45].

III. STAGE-WISE ANALYSIS OF ACHIEVABLE RATES

FOR MLC/MSD

Given an -level system, we can determine achievable infor-
mation rates by separately examining each level/stage assuming
previous decoding stages were successful. This is justified by
the observation that, if is the set of all MSD error events
and is the set of events in which stage fails, then

(5)

Additionally, we assume that the inputs from previous stages
are i.u.d., thus reflecting the average performance when each of
the component codes is taken from the Shannon ensemble (i.e.,
each is a codebook randomly generated from an i.u.d. source).
Under these two assumptions, we refer to the resulting behavior
at each level/stage as an equivalent subchannel.

Definition 2: The th equivalent subchannel in an MLC/MSD
system represents the transfer characteristics from the th inter-
leaved input to the output of a window-APP detector (of side
length ) that is given perfect decisions for all previous inter-
leaves. For uses of the channel, the inputs are ; the outputs
are , as given in Definition 1 except that is replaced with

to reflect perfect a priori information; and all code bits
from other levels are assumed to be i.u.d.

This definition is illustrated in Fig. 3. Note that the concept of
equivalent subchannels in an MLC/MSD system is not limited to
binary ISI channels. Therefore, for the larger class of stationary
ergodic channels, we present below a closed-form expression
for the achievable information rate on each equivalent sub-
channel based on marginal conditional output densities. We re-
mark that the rate is shown to be achievable in the sense
that, in the limit of infinite codeword block length, a zero prob-
ability of decoding error can be ensured for all rates below
even if the decoder assumes the equivalent subchannel is mem-
oryless. It is then shown in Section III-C how these rate expres-
sions can be simplified in the case of binary ISI channels, and the
resulting formulas allow us to prove that the overall MLC/MSD
system rate converges to as . In Section IV, we
consider designing an MLC/MSD system with LDPC compo-
nent codes to approach these rates. For completeness, the gen-
eral idea of coding based on partial information of the channel
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Fig. 3. Equivalent subchannel for level/stage i. Decisions from previous stages are assumed to be perfectly known, and i.u.d.

law (e.g., marginal densities), or possibly even mismatched in-
formation, is elaborated upon in Appendix I.

The proofs throughout this section rely on the following ele-
mentary proposition.

Proposition 1: If and are random variables, with
and independent, then .

Proof: Using the chain rule for mutual information, [9, p.
22], , since

.

A. Achievable Rates of Equivalent Subchannels

By examining equivalent subchannels, we obtain the fol-
lowing analytical results for achievable rates.

Theorem 1: Let be an i.u.d. binary-input sequence and
let be the corresponding output from a stationary ergodic
channel. Consider an MLC/MSD system with levels and
window-APP detector side length . On the first equivalent
subchannel, the rate

(6)

is an achievable information rate. For the th equivalent sub-
channel, , the rate

...

(7)

is achievable. Moreover, for any interior point

and so is achievable even with knowledge of only the
marginal density .

The rightmost expression in (6) is the mutual information
between an input bit and the output values considered by the
window-APP detector. The last statement of the theorem mo-
tivates the design of component LDPC codes with message-
passing decoders using the marginal density . (See

Section IV.) The rate is independent of the number of levels
because no prior decisions were given. For this reason, the

notation is sometimes used. This rate is also equivalent to
the “BCJR-Once Rate” independently reported by Kavc̆ić [27].

Proof (Theorem 1): To prove that is achievable, even
with a decoding rule based on marginal densities, we need only
show that

a.s. (8)

Having established (8), we can use the mismatched coding the-
orem in Appendix I to demonstrate that a typical-set decoder can
be constructed to achieve the rate using some code from the
Shannon ensemble.

We begin with the stage . Let be any interior point.
Recall that describes the mapping
from the index in the th interleaved codeword to its time
index in the transmitted sequence. From Definition 1 of
the window log-APP ratio, it is obvious that is a suffi-

cient statistic for when determining .

Thus, [9, p. 37]. But, by
stationarity

For any , all but a constant number of summands (i.e., those
corresponding to interior points) in (8) are identically distributed
and have the expectation . Therefore, as a
consequence of the ergodic theorem [46], one finds that the limit
in (8) is almost surely .

Extending this proof to cases is straightforward.
Here, when determining for any interior point , the

log-APP ratio can be used as a sufficient statistic for both

the output window and the set of input windows,

, from previous inter-
leaves. Furthermore, we have

...

[9, p. 37], which in turn equals

...

by Proposition 1, because the input bits are independent and
identically distributed. By stationarity, we have

. Since is identically distributed for all interior points
, we conclude that, for any , all but a constant number of

summands in (8) are identically distributed with mean . Ap-
plying the ergodic theorem again, we conclude that (8) holds for

.
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B. Monte Carlo Method for Calculation of Achievable Rates

The closed-form expressions of Theorem 1 represent a mul-
tidimensional integral which may be too complex to evaluate
easily. On the other hand, in the proof for Theorem 1 we find
an almost sure convergence property which suggests that
might also be evaluated through Monte Carlo simulation. For in-
stance, if one can simulate the equivalent subchannel to obtain a
set of observed input and output sequences, then the estimated
density (i.e., from a histogram) can be used to ap-

proximate the mutual information .
There is of course a looseness to this approximation due to

the finite precision of the histogram. Fortunately, we can take
another Monte Carlo approach, embodied in Theorem 2 below,
which does not suffer from such inaccuracy. This method again
involves equivalent subchannel simulation, but uses a simple
function evaluation for each input–output pair to

form a sample average. The sample average converges to
almost surely as . It should be noted that, for the case

, this method of calculating is equivalent to the calcu-
lation of the “BCJR-Once Rate” in [47], though our formulation
is slightly different and more readily implementable.

Theorem 2: For the th equivalent subchannel of any
MLC/MSD system, if is a sequence of i.u.d. inputs with
corresponding output sequence , then

a.s. (9)

where and is defined as in
Theorem 1.

Remark 1: The function is identical to that used in [48]
for the capacity expression of binary output-symmetric memo-
ryless channels followed by a log-likelihood-ratio detector.

Proof (Theorem 2): Assume is any interior point. To
prove the theorem, we need only show that

, because the a.s. convergence in (9) will then follow from
the same reasoning used to verify (8) in the proof of Theorem 1.

First let us consider and define

. The window log-APP ratio is given by

, from which we conclude
that

and, similarly, . Together,
these imply

Therefore, ,
which completes the proof for the case.

As in the proof of Theorem 1, the argument for the case
extends easily to the cases where .

C. Convergence to

The expressions for the achievable rates in Theorem 1 are
applicable to arbitrary stationary ergodic channels. In the case
of binary ISI channels, we can further show that the overall
MLC/MSD system rate converges to as .
Our analysis will rely upon the following lemma.

Lemma 1: Consider an ISI channel with input process
and output process , and let the state of the channel at time

be . Then, .
Proof: By applying the chain rule for mutual information

[9, p. 22]

(10)

When , the state of the channel at time
is known, and we have

which equals

by the chain rule. From the underlying Markov dependence,
is independent of any terms in the future (i.e., )

once it is conditioned on , implying that the second term
above is . Similarly, and are independent of
the past when conditioned on , so the first term reduces
to

This last expression equals by stationarity (shift
backward by ), and after substituting this into (10) and
ignoring the first summands, we get

(11)

Notice that the sequence is monotonically nonde-
creasing in and bounded from above by . Therefore, its limit

exists and equals the limit of the Cesáro
mean (e.g., [9, p. 64]) in (11). This proves the lemma.

Now, we observe that for , perfect decisions accumu-
late to yield perfect state knowledge periodically throughout the
block. Such state information results in component rates
which actually exceed . This property can be used to prove
convergence of the system rate to .

Theorem 3: If exceeds the channel memory , and the
window side length satisfies , then on the th
equivalent subchannel

(12)
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(Recall that the channel states are given by and
.) Consequently, the achievable

system rate of MLC/MSD converges to as

Proof: When and , the channel
inputs upon which the mutual information in (7) is conditioned,
include , as well as . More
specifically, these inputs determine states and , so
(7) reduces to

because any inputs or outputs that come before or after these
two states are conditionally independent of . By stationarity,
this is equal to the mutual information in (12).

Now consider the following inequality:

We can combine this with the fact that

which holds because and are independent
(Proposition 1). For all , the right-hand
side can be reduced to
because of the underlying Markov dependence, and this in
turn equals . Hence, for all sufficiently large , we have

, which by Lemma 1 proves (12).
Finally, (12) allows us to bound the gap in rate

By the data processing inequality, this difference can never be
negative, and so the proof is complete.

We remark that an interesting property arises when
. Here, the th stage can cancel all of the ISI, and thus the
th equivalent subchannel is reduced to a binary-input AWGN

channel.

Corollary 1: When , the th equivalent subchannel
(with window side length ) can be reduced to a binary-
input AWGN channel with SNR . Hence, is
equal to the capacity of this channel.

Proof: See Appendix II.

IV. APPROACHING ACHIEVABLE RATES OF MLC/MSD WITH

LDPC CODES

For binary-input memoryless channels that are symmetric,
it is well known from Richardson et al. [30], [8], that LDPC
codes can be designed to closely approach the channel capacity.
Their method relies on applying an analysis technique, referred
to as density evolution, to the conditional output density of the

channel. Here, we show that if the techniques in [30], [8] are ap-
plied to the marginal conditional output densities at each level/
stage of MLC/MSD, then component LDPC codes (with an ad-
ditional coset selector) can be designed to approach the rate
defined in Section III. Ultimately, then, MLC/MSD systems can
be constructed to approach for binary ISI channels.

A. LDPC Codes and Their Cosets

Recall that a rate binary linear code is a linear sub-
space of , consisting of vectors, where is the
binary field. The code can be described in terms of a
generator matrix as the set , or, equiva-
lently, in terms of an parity-check matrix as
the set .

A coset of a linear code (coset code, for short) is the trans-
lated set of vectors, , where , with “ ” being
the addition operation. The vector is referred to as the coset
selector.

Coset codes can readily be incorporated into an MLC/MSD
system. Each code bit is modulated into the value prior
to transmission. For each level , the partitioned data block

is encoded into , where
the matrix defines the th component linear code and
defines the coset. At the th stage of MSD, we adjust the sign of
the log-APP ratio prior to the decoder for the th linear code,
as prescribed by the coset vector . That is, we determine

, where

if

otherwise

and is the output log-APP ratio from the detector.
The ensemble of irregular LDPC codes we consider is

the well-known ensemble introduced in [30, p. 601]. Here,
the bipartite graph representation of the parity-check matrix
is characterized by a block length , a fraction (respec-
tively, ) of edges connected to bit (respectively, check)
nodes of degree , and a distribution of bit and check de-
grees and ,
respectively.

B. Concentration, Density Evolution, and Code Design

A key result in the analysis of LDPC codes under message-
passing decoding is the concentration theorem [30, p. 613],
which shows that the performance of randomly chosen graphs
from is tightly concentrated around that of a cycle-free
local decoding graph for sufficiently large block lengths. The
application of code design techniques from [30], [8] to our case
requires an extension of the concentration theorem.

This extension can be derived using results in [27] and [49],
[40]. First, Kavc̆ić et al. [27] develop a generalization of the
concentration theorem for the case of message passing on the
joint LDPC-channel graph. Their results can be readily modified
to address each decoding stage of MLC/MSD. Second, Hou et
al. [49], [40], extend the concentration theorem to MLC/MSD
with component LDPC codes on an AWGN channel. Building
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upon these earlier works, and taking into account the fact that the
equivalent subchannels in our system are not memoryless, we
can prove the following concentration theorem for MLC/MSD
systems on binary ISI channels.

Theorem 4: Let be the -iteration local decoding neigh-
borhood for a bit-to-check edge , as defined in [30, p. 602].
This neighborhood is said to be tree-like if all bit and check
nodes in are distinct, and bit nodes receive messages from
the channel which are independent when conditioned upon the
input sequence.

For a graph chosen from the random ensemble
, a randomly chosen coset selector , and

a realization of the th equivalent subchannel with an all-zero
codeword input, let be the number of incorrect bit-to-check
messages at the th iteration of message-passing decoding, and
let be the expected fraction of incorrect messages passed
along an edge with a tree-like neighborhood at the th
iteration. For any and

(13)

where and .

For the sake of brevity and because the modifications to
[27], [40] are straightforward, we do not prove this theorem
here. A detailed proof can be found in [45]. It should be noted
that we have modified the definition of tree-like neighborhoods
slightly in view of the fact that the equivalent subchannel has
memory. However, the output log-APP ratios are conditionally
independent if they are sufficiently separated in time. This
follows from the channel definition in (1) and the properties of
the window-APP detector. We also note that (13) is an average
over all possible coset selectors, which implies that the theorem
also holds for codewords other than the all-zero codeword.
Hence, as , there is a vanishing probability of simulta-
neously choosing a code graph, coset selector, codeword, and
noise realization such that the fraction of erroneous messages
(among all edges) deviates from by more than . If we
denote by the value for the th randomized equivalent
subchannel, then the overall performance across all equivalent
subchannels for this MLC/MSD system after iterations should
approach as .

Finally, Lemma 2 below shows that the conditional output
densities of equivalent subchannels satisfy two symmetry
properties. These properties are also shared by the binary-input
memoryless channels considered in [8], and more importantly,
allow for direct application of density evolution and the stability
criterion of [8].

Lemma 2: For the th equivalent subchannel and any interior
point , the conditional output density

satisfies output-symmetry, i.e., , and
exponential-symmetry, i.e., .

The proof is straightforward once one notes that for binary
ISI channels, , and when
is i.u.d., this leads to . Full
details can be found in [45].

V. DESIGN EXAMPLES AND SIMULATION RESULTS

We now demonstrate this design methodology on some bi-
nary ISI channel models relevant to magnetic recording. For
reference, and capacity lower bounds are computed using
techniques from [2], [3], and all information rates and simula-
tion results are plotted versus the SNR, . As
discussed earlier, in all simulations we employ a block-APP de-
tector for efficiency, rather than the window-APP detector used
in our analysis. For the component code design, the ensembles

were optimized using approximate linear program-
ming methods such as [48], [50].

Example 1: Dicode channel, .
The first step of MLC/MSD system design is to determine

the number of levels to be used. Following Section III-B, we
calculate the achievable rates for various -level systems and
plot them in Fig. 4(a). (Unless otherwise specified, each point
in the curve is based on a Monte Carlo simulation of sam-
ples.) Immediately, we see that can be closely approached
with small . For example, the figure insert shows that, at an
overall system rate of 0.9 bit/channel-use, -level, -level, and

-level coding schemes with MSD can operate within 0.79, 0.16,
and 0.01 dB of , respectively. Similarly, Table I shows
that comes within 0.01-bit/channel use of for
as small as (for this table, the Monte Carlo simulation used

samples). Therefore, we can use levels with negli-
gible performance loss. In Fig. 4(b), we illustrate the distribu-
tion of coding among the two levels by plotting the component
achievable rates. Notice that , in accordance with
Theorem 3.

Next, we design component LDPC codes for a two-level
system using the methods in Section IV. That is, at a given
SNR we first simulate each equivalent subchannel to estimate
the marginal output conditional densities observed at each
level/stage of decoding. For each of these densities, we then
optimize an LDPC degree sequence for maximal rate under the
constraint that iterative decoding converges. The results of these
optimizations (for a maximum left-degree of ) are shown in
Fig. 5, and an example degree sequence at rate is presented
in Table II. For most SNRs, the iterative-decoding threshold is
within 0.2 dB of . In Fig. 6, we plot simulation results
for codes constructed from the degree sequences in Table II,
subject to the constraint of no length- cycles in the bipartite
graph representation. A -level system with component block
length achieves a BER within 0.1 dB of
the iterative-decoding threshold, and within 0.3 dB of .
Naturally, one might expect to reduce this gap by going to

-level systems with larger values of , and presumably as in
[51] by considering code ensembles with larger maximum left
degrees.

Note that for this particular case of a two-level system on
the dicode channel, the design of the second code is simplified
slightly since the second equivalent subchannel is a binary-input
Gaussian channel with (Corollary 1). This
is also apparent in Fig. 4(b), where equals the capacity of
a binary-input AWGN channel.

Example 2: EPR4 channel, .
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Fig. 4. (a) Achievable rates for the overall MLC/MSD system on the dicode channel with m = 1; 2; and 5 levels. (b) Achievable rates of component codes for a
2-level system on the dicode channel. Notice that, in accordance with Corollary 1, R equals the binary-input AWGN channel capacity. (c) Achievable rates for
the overall MLC/MSD system on the EPR4 channel with m = 1; 3; and 7 levels. The curves for R and I are almost identical in this plot. (d) Achievable
rates of component codes for a 7-level system on the EPR4 channel.

TABLE I
OVERALL ACHIEVABLE MLC/MSD SYSTEM RATES ON THE DICODE AND EPR4 CHANNELS, FOR VARIOUS m

In Fig. 4(c), we show achievable rates for various -level
systems on the EPR4 channel. In this case, we find that using

-levels is sufficient for closely approaching (also ap-
parent in Table I). This is especially interesting since is
shorter than the channel impulse response length. For the
achievable rates of a -level system in Fig. 4(d), the component
rate equals the capacity of a binary-input AWGN channel,
and for . These observations are both

consistent with the analysis in Section III. We also notice that
are all very close to .

We then choose and proceed to design component
LDPC codes. Fig. 7 shows the iterative-decoding thresholds for
various -level systems with optimized LDPC code ensembles,
and a rate– degree sequence is given in Table II. The cor-
responding simulation results for codes chosen from this en-
semble are shown in Fig. 6, where we find that with a component
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Fig. 5. Iterative-decoding thresholds for 2-level MLC/MSD systems with component LDPC codes on the dicode channel. The maximum left degree for the LDPC
codes is 30. For each point, the percentage within I and the decibel gap from the I threshold are shown, and in parenthesis are the percentage within
R and the decibel gap from theR threshold. The capacity lower bound is the mutual information rate for an optimized 8-state binary Markov input process
[2], [3], and the upper bound corresponds to the Gaussian-input water-filling capacity [9, p. 256].

TABLE II
OPTIMIZED 2-LEVEL SYSTEM FOR THE DICODE CHANNEL AND 3-LEVEL SYSTEM FOR THE EPR4 CHANNEL

block length of , a BER is achieved within
0.1 dB of the iterative-decoding threshold, and within 0.2 dB of

.

VI. CONCLUSION

By focusing on the marginal conditional output densities at
each stage of MSD, we are able to determine achievable rates
for binary ISI channels. We then design and construct LDPC
codes which allow MLC/MSD systems to approach these rates.
The derivation of the achievable rates, along with a Monte Carlo

method for computing them, is applicable to general stationary
ergodic channels. In the case of binary ISI channels, we fur-
ther show that these achievable rates for MLC/MSD converge
to the i.u.d. information rate as the number of coding levels and
decoding stages increases. For the design of LDPC codes, we
show that the application of [30], [8] to the marginal conditional
output densities can be used to design LDPC codes which allow
MLC/MSD to approach the aforementioned achievable rates.
This follows from a straightforward extension of the concen-
tration theorem in [30], [8].
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Fig. 6. Performance of optimized rate–0:9 MLC/MSD systems: (left) 2-level system for the dicode channel; (right) 3-level system for the EPR4 channel. The
degree sequences for the codes are shown in Table II. Simulation reflects the BER of the all-zero codeword averaged over randomly chosen coset vectors and noise
realizations.

Fig. 7. Iterative-decoding thresholds for 3-level MLC/MSD systems with component LDPC codes on the EPR4 channel. The maximum left degree for the LDPC
codes is 30. For each point, the percentage within I and the decibel gap from the I threshold are shown, and in parenthesis are the percentage within
R and the decibel gap from the R threshold. The capacity lower bound is the mutual information rate for an optimized 8-state binary Markov input process
[2], [3], and the upper bound corresponds to the Gaussian-input water-filling capacity [9, p. 256].

For the dicode and EPR4 channels, which arise in the context
of magnetic recording, our achievable rate analysis shows that
MLC/MSD operation within 0.2 dB of can be obtained

with as few as two and three levels, respectively. Furthermore,
we demonstrate a -level system on the dicode channel with
optimized component LDPC codes for which the iterative-de-
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coding threshold is within 0.2 dB of , and for which simu-
lations at a component code block length of achieve a
BER within 0.3 dB of . For a similarly optimized

-level system on the EPR4 channel, we observe an iterative-de-
coding threshold within 0.1 dB of , and a BER
within 0.2 dB of .

We note that, although not all of the analysis here was
extended to general finite-state or stationary ergodic channels,
these methods have still been found to be effective in cases
other than the binary ISI channel. Such examples include
MLC/MSD systems on two-dimensional binary ISI channels
[52], which lead to lower bounds and thresholds very close to
the i.u.d. information rate (e.g., [53]), as well as concatenated
coding with inner trellis codes and an outer MLC/MSD system,
which can be used to approach the channel capacity of binary
ISI channels [54], [55]. (Details can be found in [45].) General-
izations for channels where the channel state is not necessarily
determined by the inputs can be found in [37], [38].

APPENDIX I
CODING THEOREM WITH MISMATCHED DECODERS

When proving Theorem 1 in Section III-A, we mentioned
that one could prove achievability once the limit in (8) is es-
tablished. We now give details to confirm this. Incidentally, this
achievability result was also proven by Ganti et al. [56], but here
we provide an alternative proof both for completeness and also
because interestingly our approach demonstrates how the typ-
ical-set decoding analysis of [9] is powerful enough to be ex-
tended to mismatched decoders.

Theorem 5: Let and be the input and output
processes, respectively, of a channel with a finite input al-
phabet and continuous output alphabet . Let

be a sequence of well-defined conditional probability
functions on these inputs and outputs, i.e., for each ,
i) for all possible and , and
ii) for all possible . Lastly, assume
that

(a.s.) (14)

where . (We call the mismatch rate.)
Then, any rate can be achieved with decoders based

only on the conditional densities, .
Proof: First, for any , let us define the set

(15)

Using the concept of typical-set decoding [9], we can define a
decoder to take the received sequence and return all code
vectors for which the pair . Then, the
achievability of using this decoder is possible if it can be
shown that, as , the probability of an atypical (or un-

decodable) event satisfies
and also the probability of a miscorrection satisfies

where is defined to have the same distribution as but
is independent of both and . This is because the av-
erage probability of decoding error over the Shannon ensemble
with code rate equals , which goes to zero when-
ever .

The first condition, , follows im-
mediately from the assumption in (14). To show that the second
property holds, we define the subset for each

as

We can then deduce that

(16)

because, by assumption, is independent of , and
. From (15) we have

for all . Therefore, we can bound

(assuming the density exists). We can substitute the pre-
ceding bound into (16), yielding

and then exchange the order of summation and integration be-
cause the sum is finite, resulting in

To apply this theorem specifically to the th equivalent sub-
channel of Theorem 1, set



1428 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 4, APRIL 2007

Traditionally, for the case of mismatched decoders like these
where the decoder uses only the marginal channel density,
achievability is usually proved by interleaving many codes so
that each code effectively sees a memoryless channel. Here,
the theorem allows us to include a larger class of mismatched
decoders.

APPENDIX II
PROOF OF COROLLARY 1

Proof: Recall from the multistage decoding structure that
the th stage has decisions for all previous interleaves.
So, if is any interior point on the th equivalent subchannel,
then from Definition 1 we know that the APP detector has per-
fect information for all previous and all sub-
sequent channel inputs when detecting . More importantly,
if , we can use this information to completely subtract
the ISI from , leaving independent observations
of corrupted by AWGN terms; i.e.,

for

The classic optimal detector for this problem is the maximal
ratio combiner [57, p. 779], which forms the sufficient statistic

where , and . Notice that this
describes a binary-input AWGN channel with SNR .
In fact, the th equivalent subchannel reduces to this channel
because

Here we see that corresponds to the output of a normalized
binary-input Gaussian channel with the same capacity [48].
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