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(Extended Summary)

1 Introduction

Suppose C is a [n, k, d] code over Fq, t < n is a positive integer. For any received vector
y = (y1, · · · , yn) ∈ Fn

q , we refer to any code word c in C satisfying d(c,y) ≤ t as a t-
consistent code word. A decoding problem is in fact the problem of finding an effective (or
efficient) algorithm which can find t-consistent code words, and we call such an algorithm
a decoding algorithm that can correct t errors.

The classical decodings (or call unique decodings) only consider the algorithms which can
correct τ = �d−1

2 � or fewer errors. It is clear that in any Hamming sphere in Fn
q of radius

≤ τ , there exist at most one code word of a [n, k, d] code. We call τ the error correction
bound of the code. On the other hand, if the number of errors t ≥ τ then there may exist
several different consistent code words. A list decoding is a decoding algorithm which tries
to construct a list of all consistent code words. Thus, a list decoding algorithm makes it
is possible to recover the information from errors beyond the traditional error correction
bound.

The list decoding problem was first defined by Elias [2]. In [11], Sudan proposed a
list decoding algorithm for generalized Reed-Solomon codes. Shokrollahi and Wasserman
generalized Sudan’s algorithm and derived a list decoding scheme for algebraic geometric
codes [10]. However, for codes of higher rates, these algorithms do not improve the classical
decoding algorithms, i.e., these algorithms are effective only for low rate codes.

In a very recent paper [4], Guruswami and Sudan proposed an improved polynomial-
time algorithm for Reed-Solomon and algebraic geometric codes. The algorithm has a
better error-correction rate than well-known algorithms for every choice of the code rates.

∗This work was supported in part by Grant No. NCR-9612802 from the National Science Foundation
(NSF) and by a research grant from the National Storage Industry Consortium (NSIC).
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However, Guruswami and Sudan’s algorithm is rather complicated, especially for algebraic
geometric codes. In their paper [8], Roth and Ruckenstein improved Sudan’s previous work
in [11], and presented a fast list decoding algorithm for Reed-Solomon codes.

In this paper, motivated by Roth and Ruckenstein’s work, we derive a fast list decoding
algorithm for algebraic geometric codes. Both Shokrollahi and Wasserman’s algorithm and
Guruswami and Sudan’s algorithm are based on the factorization algorithm (or root-finding
algorithm) of polynomials in K[T ], where K is the function field of some algebraic curve,
and T is a formal variable. Shokrollahi and Wasserman [10] proposed a polynomial time
algorithm for the factorization, but it is rather arduous. Our improved decoding scheme is
based on an efficient algorithm of finding roots of polynomials over function fields that we
will propose in Section 3, and does not need the factorization algorithm. The new algorithm
achieves a lower complexity.

2 Algebraic Geometric Codes and List Decodings

Let X ⊆ PFm
q be a nonsingular, irreducible curve in m-dimensional projective space, of

genus g, defined by the following projective equation

F (X) = F (X1,X1, · · · ,Xm+1) = 0.

Suppose {P1, P2, · · · , Pn} is a set of rational points of X . Let D = P1 + · · · + Pn, and G
be another divisor on X satisfying sup(D)∩ sup(G) = ∅. An algebraic geometric code (AG
code) CL(D,G) is defined as

CL(D,G) = {(f(P1), f(P2), · · · , f(Pn)) | f ∈ L(G)},

where L(G) = {f is in the function field K of X | f = 0 or (f) + G ≥ 0}. Suppose
ρ = degG < n, then CL(D,G) has length n, dimension ≥ ρ− g + 1, and minimum distance
≥ n− ρ.

Consider the algebraic geometric codes CL(D,G) with D = P1 + · · · + Pn and G = ρP ,
where ρ is an integer and {P1, · · · , Pn, P} is the set of all rational points of X . It is clear that
these algebraic geometric codes achieve the longest code length, thus, they are of special
interest in practical applications. Let ρ be a nonnegative integer. If there exists a rational
function ϕ ∈ K, such that ϕ has pole only at P and the order of pole of ϕ at P is ρ, i.e.,
ordP (ϕ) = −ρ, then we call ρ a nongap of P . Let {ρ1, ρ2, ρ3, · · ·} be the set of all nongaps
of P and ρ1 < ρ2 < ρ3 < · · ·. Then, it is well known that

0 = ρ1 < ρ2 < · · · < ρg < ρg+1 = 2g,

and ρi = i + g − 1 when i ≥ g + 1.
Let ϕ1, ϕ2, ϕ3, · · · be a sequence of rational functions, such that ϕi has pole only at P

and ordP (ϕi) = −ρi. Then it is easy to check that {ϕ1, ϕ2, · · · , ϕi} is a basis of L(ρiP ).
For the purpose of completeness, we restate Guruswami and Sudan’s decoding algorithm

by the classical notation of algebraic geometric codes as following.

List Decoding Algorithm for AG Codes
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Implicit Parameters: n;P,P1, · · · , Pn ∈ X ; k; g.

Assumptions: Assume that we know a basis {ϕj1 | j1 = 1, · · · , l − g + 1} of L(lP ); and
for every Pi, a sequence of rational functions {ψj3,Pi | j3 = 1, · · · , l− g + 1}, such that
ordPi(ψj3,Pi) ≥ j3 − 1. And assume we know a set of coefficients {αPi,j1,j3 ∈ Fq | i =
1, · · · , n; j1, j3 = 1, · · · , l − g + 1} such that for every i, j1

ϕj1 =
l−g+1∑
j3=1

αPi,j1,j3ψj3,Pi .

Step 0: Compute parameters r, l such that

rt > l and
(l − g)(l − g + 1)

2ρ
> n

(
r + 1

2

)
,

where ρ := k + g − 1.

Step 1: Find a nonzero polynomial H(T ) ∈ K[T ] of the form

H(T ) = H(X;T ) =
s∑

j2=0

hj2(X)T j2 ,

where s := � l−g
ρ �, hj2(X) ∈ L((l − j2ρ)P ), and hj2(X) =

l−j2ρ−g+1∑
j1=1

hj1j2ϕj1(X), such

that for i = 1, · · · , n; j3 ≥ 1, j4 ≥ 0, and j3 + j4 ≤ r,

h
(i)
j3,j4

:=
s∑

j2=j4

l−j2ρ−g+1∑
j1=1

(
j2
j4

)
yj2−j4

i hj1,j2αPi,j1,j3 = 0.

Step 2: Using the algorithm of factorization (or root-finding), find all roots f ∈ L((k +
g − 1)P ) = L(ρP ) of the polynomial H(T ). For each such f , check if f(Pi) = yi for
at least t values of i ∈ {1, · · · , n}, and if so, include f in output list.

For the complexity of the above algorithm, by Proposition 22 in [4], all the αPi,j1,j3’s can
be found in O(nl2) operations over K. Also, the nonzero polynomial H(T ) can be found
by Gaussian eliminations in O(l6/ρ3) operations (over Fq). So the complexity is mainly
based on the factorization algorithm (Step 2). According to Shokrollahi and Wasserman
[10], there is a factorization algorithm that runs in time polynomial in the representation
of the field. However, it is not still clear if these representations are of size that is bounded
by some polynomial in the length of the codes.

3 Fast Algorithm of Finding Roots of H(T )

In this section, we will derive an efficient algorithm to find the T -roots of H(X;T ) = 0 in
L(G), which does not need factorization of H(X;T ).
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In our case, G = ρP , and H(X;T ) = h0(X) + h1(X)T + · · · + hs(X)T s, where

hj(X) ∈ L((l − jρ)P ), j = 0, 1, · · · , s,

where L(lP ) ⊇ L((l − ρ)P ) ⊇ L((l − 2ρ)P ) ⊇ · · · ⊇ L((l − sρ)P ). Suppose f(X) ∈ L(G) =
L(ρP ) such that H(X; f(X)) = 0. Let {ϕ1, ϕ2, · · · , ϕk} be a basis of L(G), we can assume

f(X) = f1ϕ1(X) + f2ϕ2(X) + · · · + fkϕk(X),

where f1, f2, · · · , fk ∈ Fq. We now can find fk, fk−1, · · ·, f1, by the following k steps.

STEP 1 (to find fk). Set G1(X;T ) = H1(X;T ) = H(X;T ) and Ĝ1(X;T ) = G1(X;ϕkT ).
Then,

Ĝ1(X;T ) = h0 + (h1ϕk)T + · · · + (hjϕ
j
k)T j + · · · + (hsϕ

s
k)T s.

Since hj ∈ L((l − jρ)P ) and ϕk ∈ L(ρP ), we have

hjϕ
j
k ∈ L(lP ), j = 0, 1, · · · , s,

i.e., ordP (hjϕ
j
k) ≥ −l. Let

−ρr1 = min{ordP (hjϕ
j
k) | j = 0, 1, · · · , s}.

Suppose ϕr1 is a rational function and ordP (ϕr1) = −ρr1. Divide Ĝ1(X;T ) by ϕr1 , and let

G̃1(X;T ) =
1
ϕr1

Ĝ1(X;T ) =
h0

ϕr1

+
(
h1ϕk

ϕr1

)
T + · · · +

(
hsϕ

s
k

ϕr1

)
T s.

Then, by the definition of ϕr1 ,(
h0

ϕr1

(P ),
(
h1ϕk

ϕr1

)
(P ), · · · ,

(
hsϕ

s
k

ϕr1

)
(P )

)
∈ Fs+1

q − {0}. (3.1)

This means that G̃1(P ;T ) is a nonzero polynimial in Fq[T ].
On the other hand, by H(X; f(X)) =0, we have

Ĝ1(X;
f(X)
ϕk(X)

) = 0, (3.2)

and
G̃1(X;

f(X)
ϕk(X)

) = 0. (3.3)

Since ordP

(
ϕj

ϕk

)
= ρk − ρj > 0, for j = 1, · · · , k − 1, we have ϕj

ϕk
(P ) = 0. Thus,

f

ϕk
(P ) = f1

ϕ1

ϕk
(P ) + · · · + fk−1

ϕk−1

ϕk
(P ) + fk = fk.

By (3.3), we have

G̃1(P ; fk) = G̃1(P ;
f

ϕk
(P )) = G̃1(X;

f(X)
ϕk(X)

)(P ) = 0. (3.4)

4



It follows that fk is a root of the nonzero polynomial equation G̃1(P ;T ) = 0 over Fq.

Suppose we have executed STEP 1, · · ·, STEP i, and in STEP i, we have a polynomial

G̃i(X;T ) = G̃
(0)
i (X) + G̃

(1)
i (X)T + · · · + G̃

(s)
i (X)T s,

such that

G̃i(X;
f (i)(X)

ϕk−i+1(X)
) = 0, (3.5)

and G̃i(P ;T ) is a nonzero polynomial in Fq[T ], and fk−i+1 is a solution of G̃i(P ;T ) = 0.
We now enter STEP i+1.

STEP i+1 (to find fk−i). Set Gi+1(X;T ) = G̃i(X;T + fk−i+1) and Ĝi+1(X;T ) =
Gi+1(X; ϕk−i

ϕk−i+1
T ). Suppose

Gi+1(X;T ) = G
(0)
i+1(X) + G

(1)
i+1(X)T + · · · + G

(s)
i+1(X)T s,

and
Ĝi+1(X;T ) = Ĝ

(0)
i+1(X) + Ĝ

(1)
i+1(X)T + · · · + Ĝ

(s)
i+1(X)T s.

It is easy to prove that G
(j)
i+1(P ), Ĝ(j)

i+1(P ) ∈ Fq, for j = 0, 1, · · · , s, and ordP (Ĝ(j)
i+1(X)) > 0

for j = 1, 2, · · · , s. Let

ρri+1 = min{ordP (Ĝ(j)
i+1(X)) | j = 0, 1, · · · , s}.

Suppose ϕri+1 be a rational function such that ordP (ϕri+1) = ρri+1 . Divide Ĝi+1(X;T ) by
ϕri+1 ,

G̃i+1(X;T ) =
1

ϕri+1

Ĝi+1(X;T )

Then, G̃i+1(P ;T ) is a nonzero polynomial in Fq[T ].
Let f (i+1)(X) = f (i)(X) − fk−i+1ϕk−i+1(X) = f1ϕ1(X) + · · · + fk−iϕk−i(X), we have

Ĝi+1(X;
f (i+1)(X)
ϕk−i(X)

) = Gi+1(X;
f (i+1)(X)
ϕk−i+1(X)

) = G̃i(X;
f (i)(X)

ϕk−i+1(X)
) = 0.

Thus,

G̃i+1(X;
f (i+1)(X)
ϕk−i(X)

) = 0. (3.6)

Since f(i+1)(P )
ϕk−i(P ) = fk−i, we have

G̃i+1(P ; fk−i) = 0.

So, fk−i is a solution of the nonzero polynomial equation G̃i+1(P ;T ) = 0.

In the above discussion, we in fact obtain an iterative algorithm to find the roots f(X)
of H(T ) by finding the coefficients of f(X) step by step.
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Lemma 3.1 Suppose fk−i+1 is a solution of multiplicity h of the nonzero equation G̃i(P ;T ) =
0 in STEP i, and G̃i+1(P ;T ) = 0 is the nonzero equation in STEP i+1. Then, degT G̃i+1(P ;T )
≤ h.

Theorem 3.1 Let f(X) = f1ϕ1(X)+· · ·+fkϕk(X) ∈ L(G) and H(X; f(X)) = 0. Then we
can get the coefficients of f(X) by solving polynomial equations of degree s and with coeffi-
cients in Fq step by step. Moreover, we have at most sk possible solutions for (f1, f2, · · · , fk).

Lemma 3.2 ([6]) The roots in Fq of a polynomial of degree s can be found in time com-
plexity O((s2log2s)logq).

Theorem 3.2 Given a nonzero polynomial H(T ) over K[T ] of degree s returned in Step 1
of the List Decoding Algorithm. Then the roots of H(T ) in L(G) = L((k + g − 1)P ) can be
found in O(k(s2log2s)logq) operations over Fq and O(ks2) operations over K.

Replacing the factorization algorithm (Step 2 in Guruswami and Sudan’s algorithm) by
the above algorithm, we obtain a fast list decoding algorithm of algebraic geometric codes.

References

[1] I. Blake, C. Heegard, T. Hφholdt, and V. Wei, “Algebraic -geometry codes”, IEEE Trans. on
Inform. Theory, Vol.44, No.6, 1998, pp. 2596-2618.

[2] P. Elias, “List decoding for noisy channel”, Tech. Rep. 335, Res. Lab. Electron., MIT, Cam-
bridge, MA, 1957.

[3] P. Elias, “Error-correcting codes for list decoding”, IEEE Trans. on Inform. Theory, Vol.37,
No.6, 1991, pp. 5-12.

[4] V. Guruswami, M. Sudan, “Improved Decoding of Reed-Solomon and Algebraic-Geometry
Codes”, IEEE Trans. on Inform. Theory, Vol.45, No.6, 1999, pp. 1757-1767.

[5] T. Hφholdt, R. Pellikaan, “On the decoding of algebraic-geometric codes”, IEEE Trans. on
Inform. Theory, Vol.41, No.6, 1995, pp. 1589-1614.

[6] R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Massachusetts, 1983.

[7] M.O. Rabin, “Probabilistic algorithms in finite fields”, SIAM J. Compute., 9, 1980, pp.273-280.

[8] R. Roth, G. Ruckenstein, “Efficient decoding of Reed-Solomon codes beyond half the minimum
distance”, preprint, 1998.

[9] M. Shokrollahi, H. Wasserman, “Decoding algebraic-geometric codes”, in Proc. IEEE Work-
shop Inform. Theory 1998, Killarney, Ireland.

[10] M. Shokrollahi, H. Wasserman, “List decoding of algebraic-geometric codes”, IEEE Trans. on
Inform. Theory, Vol.45, No.2, 1999, pp. 432-437.

[11] M. Sudan, “Decoding of Reed Solomon codes beyond the error-correction bound”, Journal of
Complexity, 13, 1997, pp. 180-193.

6


