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Abstract—In shingled magnetic recording (SMR), the multi-
head multitrack (MHMT) detector can better combat the effect
of intertrack interference (ITI) than the single-head single-track
(SHST) detector. Such a detector, however, has prohibitive im-
plementation complexity. In this paper we propose to use the
reduced-state sequence estimation (RSSE) algorithm to signifi-
cantly reduce the complexity, and render MHMT practical. A
commonly used symmetric two-head two-track (2H2T) channel
model is considered in this work. Well-structured reduced-state
trellises are constructed by evaluating the effective symbol pair
distances and designing proper set partitioning principles. Differ-
ent trellis configurations are obtained based on the desired per-
formance/complexity tradeoff. Simulation results show that the
MHMT detector can achieve near maximum-likelihood (ML) per-
formance with a small fraction of the original number of trellis
states.

Index Terms—Shingled Magnetic Recording, Intersymbol In-
terference, Intertrack Interference, Viterbi Algorithm.

I. INTRODUCTION

Intertrack interference (ITI) is one of the more severe im-
pairments in shingled magnetic recording (SMR). This im-
pairment is best handled using a multihead array and jointly
processing multiple tracks [1]. The associated detector com-
plexity is, however, drastically increased.

Consider a symmetric two-head two-track (2H2T) system
described by[

ra(D)
rb(D)

]
=

[
1 ε
ε 1

] [
xa(D)h(D)
xb(D)h(D)

]
+

[
na(D)
nb(D)

]
, (1)

where xa(D), xb(D) are the data sequences indepen-
dently recorded on two adjacent tracks a and b, with
xi(D) = ΣNk=0 x

i
kD

k and xik ∈ {−1,+1} for i ∈ {a, b}.
Each single track is equalized to the same target h(D) =
h0 + h1D + · · · + hνD

ν , and the ITI effect is characterized
by a parameter ε. The received sequences from two heads,
ra(D) and rb(D), are added with the electronic noise, na(D)
and nb(D). We assume na(D) and nb(D) are uncorrelated
and i.i.d, with nak, n

b
k ∼ N (0, σ2).

The maximum-likelihood (ML) 2H2T detector simultane-
ously decodes two tracks by searching a joint trellis [1] [2]
[3]. Let xk = (xak, x

b
k) denote one input symbol of the 2H2T

system. The possible input symbols form a two dimensional 4-
symbol constellation. This extended input set causes exponen-
tial increase in the computation complexity. For a channel with
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memory ν, the ML trellis has 4ν states, each with 4 incoming
and outgoing edges. Compared to the traditional single-head
single-track (SHST) detector with complexity O(2v), the ML
2H2T detector operates at O(4ν). For ν > 3, which is typ-
ical in practical recording channels, the ML 2H2T detector
becomes impractical. In the following discussion we use the
number of trellis states as a measure of the operational com-
plexity of a detector.

In this work we consider the design of detectors that
use fewer trellis states while retaining good performance.
Reduced-State Sequence Estimation (RSSE) was proposed in
[4] to reduce the detection complexity when the system has
a large input signal set and/or a long channel response. The
algorithm was designed primarily for transmitting complex
symbols, drawn from the quadrature amplitude modulation
(QAM) constellation, through a partial response channel.
In this work we will show that the RSSE algorithm can be
modified and applied to the 2H2T system to significantly re-
duce the detection complexity. Our simulation results show
that, with fewer than half the number of the states of the full
MLSE, RSSE can achieve near-ML performance on many
channels. Moreover, the evaluation of RSSE performance is
tractable through use of error events analysis. (Due to space
limitations, this analysis will be presented in a subsequent
paper.)

The paper is organized as follows. In Section II we first
briefly review the traditional RSSE algorithm for the QAM
system. Next we show how to construct reduced-state trel-
lises for the 2H2T channel by redefining the distance measure
in the input constellation and designing proper set partition-
ing rules. In Section III we construct different trellis config-
urations based on the performance/complexity tradeoff, and
simulate the RSSE detector on several channels with different
channel polynomials.

II. 2H2T DETECTOR WITH RSSE

A. Review of RSSE

The traditional RSSE is designed for transmitting QAM
symbols through an ISI channel with channel memory ν. Re-
call that in the ML detector, the trellis state is represented as
a length ν vector,

pn = [xn−1,xn−2, . . . ,xn−ν ], (2)

where each symbol xn−k is complex-valued, and selected
from a two-dimensional signal set C whose size is M . In
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. . . . . .

pn = [xn−1, . . . ,xn−ν ]

p′n = [x′n−1, . . . ,x
′
n−ν ]

n n+ 1n− 1n− 2

(a) ML trellis

. . . . . .
sn = [an−1(1), . . . , an−ν (ν)]

n n+ 1n− 1n− 2

(b) Subset trellis

Fig. 1. Comparison between the decoding paths on (a) ML trellis and (b)
subset trellis. If at time n two paths ending at ML states pn and p′n satisfy
xn−k ∈ an−k(k) and x′n−k ∈ an−k(k) for all k = 1, . . . , ν, then they
will merge early at subset state sn in the subset trellis.

RSSE, to reduce the number of trellis states, several ML
states are grouped into a subset state. To do this, for the
kth element xn−k in pn, a set partition Ω(k) of C is de-
fined, and xn−k is represented by its subset index an−k(k)
in Ω(k). Notice that Ω(k) can be different for k = 1, · · · , ν.
Let Jk = |Ω(k)| be the number of subsets in partition Ω(k),
1 6 Jk 6 M . Then the subset index an−k(k) can take its
value from 0, 1, · · · , Jk − 1. The corresponding subset state
of pn is denoted by

sn = [ an−1(1), an−2(2), . . . , an−ν(ν) ]. (3)

The trellis constructed from all possible sn is called the subset
trellis. To obtain a well-defined trellis structure, the partition
Ω(k) is restricted to be a further partition of the subsets in
Ω(k + 1), for 1 6 k 6 ν − 1. This condition guarantees that
for a given state sn and current input xn, the next subset state
is uniquely determined and represented as

sn+1 = [ an(1), an−1(2), . . . , an−ν+1(ν) ], (4)

where an(1) is the subset index of xn in Ω(1), an−1(2) is
the index of xn−1 in Ω(2), and so on. The number of states
in the subset trellis is

∏ν
k=1 Jk. The complexity of a RSSE

trellis can be controlled by specifying ν parameters, Jk for
1 6 k 6 ν. We define the configuration of a subset trel-
lis to be a vector J = [J1, J2, . . . , Jν ]. A valid configuration
satisfies J1 > J2 > . . . > Jν .

To apply the Viterbi algorithm (VA) on a subset trellis, a
decision feedback scheme is introduced to calculate the branch
metric, since the subset state sn does not uniquely specify
the most recent ν symbols. During the detection process, a
modified path history is used to store the surviving symbol
x̂n−1 that leads to state sn. The actual surviving ML state
p̂n is obtained by tracing back ν steps in the path history.
Error propagation may occur in this process, but its effect is
negligible [4] [5].

The underlying idea of RSSE is to drop less likely paths
early in the detection process. Since each subset state contains
multiple ML states, certain paths will merge earlier in the sub-
set trellis than in the ML trellis, as shown in Fig. 1. If Jk = M
for 1 6 k 6 ν, RSSE becomes MLSE. Otherwise it is subop-
timal. To minimize the performance loss, proper set partitions
Ω(k) should be selected carefully to guarantee that enough
distance differences have been accumulated to reliably distin-
guish between merging paths. For the M -QAM system, it is

r̂k

r+k

r−k

rk
r̂Tk = ΛUrTk

Λ =

 1
1+ε

0

0 1
1−ε


xk zk

z+k

z−k

h(D)

h(D)

zTk = UxTk

U =
[
1 1
1 −1

] n+
k

1/(1 + ε)

1/(1 − ε)
n−k

nak + nbk

nak − n
b
k

Fig. 2. A schematic of the WSSJD model. Coordinate transformations are
applied in the input space (zT

k = UxT
k ) and the output space (r̂T

k = ΛUrT
k ).

They decompose the original 2H2T system into the sum channel (upper
branch) and the subtract channel (lower branch).

suggested that good performance can generally be obtained by
maximizing the minimum intrasubset Euclidean distance for
each partition Ω(k), k = 1, · · · , ν [4]. The Ungerboeck set
partition tree [6] is shown to have this property and is adopted
to make the selection of Ω(k). For more details about the sub-
set trellis construction for the M -QAM system, the reader is
referred to [4].

The use of the Ungerboeck set partition tree is key to ob-
taining good performance of the RSSE algorithm on the QAM
system. However, such a set partition tree cannot be directly
applied to the 2H2T system because of the ITI. In the next
subsection we will show that a simple transformation can de-
compose the original 2H2T system into two independent chan-
nels, resulting in a QAM-like structure. Then, instead of using
the Euclidean distance, we define a new distance measure be-
tween the input symbols, based on which we construct a more
suitable set partition tree for the 2H2T system.

B. Set Partition Tree for 2H2T System

In [7] we show that the 2H2T channel described by equa-
tion (1) is equivalent to

r+(D) = z+(D)h(D) + n+(D)

r−(D) = z−(D)h(D) + n−(D), (5)

where [
z+
k

z−k

]
=

[
1 1
1 −1

] [
xak
xbk

]
(6)[

r+
k

r−k

]
=

[ 1
1+ε 0

0 1
1−ε

] [
1 1
1 −1

] [
rak
rbk

]
(7)[

n+
k

n−k

]
=

[ 1
1+ε 0

0 1
1−ε

] [
1 1
1 −1

] [
nak
nbk

]
. (8)

Let xk = (xak, x
b
k) and rk = (rak , r

b
k) be the input

and received symbols of the original system (1) and let
zk = (z+

k , z
−
k ) and r̂k = (r+

k , r
−
k ) denote the input and

received symbols of the transformed system (5). Their equiv-
alence is visually indicated in Fig. 2. The noise components
of the transformed system, n+

k and n−k , are indepen-
dent, but with different noise power, n+

k ∼ N (0, σ2

(1+ε)2 ),

n−k ∼ N (0, σ2

(1−ε)2 ).
The ML trellis of the transformed system is formed by all

possible pn = [zn−1, . . . ,zn−ν ]. ML detection on this new
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(+2, 0)(−2, 0)

(0,+2)

(0,−2)

z+

z− (zk, z̃k) d(zk, z̃k)

((+2, 0), (−2, 0)) ∆2
1 = 8(1 + ε)2

((0,+2), (0,−2)) ∆2
2 = 8(1− ε)2

((+2, 0), (0,+2))
((+2, 0), (0,−2)) ∆2

3 = 4(1 + ε2)
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((−2, 0), (0,−2))

Fig. 3. The input constellation (left) and the ESPDs (right).
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Fig. 4. ESPDs as functions of ε

channel model is called weighted sum subtract joint detec-
tion (WSSJD), summarized as follows:

1) Calculate r+(D) and r−(D) using equation (7).
2) To apply VA on the WSSJD trellis, weight the branch

metrics

m(pn,pn+1)

= (1 + ε)2(r+
n − y+

n )2 + (1− ε)2(r−n − y−n )2, (9)

where y+
n =

∑ν
i=0 hiz

+
n−i and y−n =

∑ν
i=0 hiz

−
n−i are

the noiseless ISI channel outputs. Choose the path with
the smallest metric and decode to the estimates ẑ+(D)
and ẑ−(D).

3) Calculate x̂a(D) and x̂b(D) using equation (6).
WSSJD is shown to have the same performance as the ML

detector. Therefore, in the simulation we use WSSJD as a
MLSE substitute for the 2H2T system, and the subset trellis is
also constructed by considering the WSSJD inputs/outputs. As
we will see, the coordinate transformations in WSSJD make it
easier to measure the distances between symbols, which plays
an important role in designing the set partition tree. However,
the applicability of RSSE to the standard 2H2T ML detector
holds. With a little abuse of notation, when we mention the
“ML trellis,” we refer to the full “WSSJD trellis.” For more
information, the reader is referred to [7].

The transformations in WSSJD decompose the original
2H2T system into two parallel channels. The sum channel and
the subtract channel correspond to transmitting z+(D) and
z−(D) through h(D), respectively. Recall that in the QAM
system, the real and imaginary components of a complex
symbol are also transmitted through the channel indepen-
dently. Therefore, z+

k and z−k can be treated as the real and
imaginary components of a complex symbol zk. The only
difference from the QAM system is that the sum and the sub-
tract channels have different signal-to-noise ratios (SNRs).
The sum channel is less noisy, which results in more reliable
early merge than the subtract channel. Considering this di-

0 1

0 1 2

0 3 1 2

L1,min{∆2
2,∆

2
3}

L2, ∆2
2

L3, ∆2
1

L4

Fig. 5. The modified set partition tree. This tree contains 4 levels,
{L1, L2, L3, L4}, each of which is a set partition of the WSSJD input con-
stellation. The minimum ESPD on each level is specified on the right side.
The number associated with each branch is the index of the subset in the
corresponding set partition.
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Fig. 6. Subset trellis with configuration [4,2] on memory-2 channel.

mensional asymmetry, instead of using a Euclidean distance
we define the effective symbol pair distance (ESPD)

d2(zk, z̃k)

=
(1 + ε)2

2
(z+
k − z̃

+
k )2 +

(1− ε)2

2
(z−k − z̃

−
k )2. (10)

The input constellation and the ESPDs between different
pairs of symbols are shown in Fig. 3. Notice that ESPDs can
change with respect to ε, as shown in Fig. 4. Therefore even
with the same subset trellis configuration, the RSSE performs
differently at different ITI levels.

The set partition tree designed for 2H2T is constructed
by maximizing the minimum intrasubset ESPD on each
level, which results in an unbalanced tree shown in Fig. 5.
Compared to the Ungerboeck set partition tree, the addi-
tional level L3 comes from the asymmetric distance measure
in the z+ and z− dimensions, and it provides more flex-
ibility in choosing set partitions, which leads to a better
performance/complexity tradeoff.

To construct the subset trellis, Ω(k) should be chosen from
the set partition tree for k = 1, · · · , ν. As an example, Fig. 6
shows an eight-state subset trellis for a memory-2 channel with
configuration [4, 2], i.e., Ω(1) is chosen to be L4, and Ω(2) is
chosen to be L2. In this case, the incoming symbols start to
merge at the second stage. For a configuration with J1 < 4,
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(a) ε = 0.1
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(b) ε = 0.3

Fig. 7. Performance comparison between RSSE and ML detector on EPR4
channel at different ITI levels. The legend shows the RSSE subset trellis con-
figuration and the corresponding number of trellis states.

two different input symbols zn and z̃n can belong to the same
subset an(1). The resulting subset trellis will contain parallel
branches. The early merge happens at every step, when RSSE
needs to select the survivor symbol between parallel branches.
The performance of RSSE algorithm on different subset trel-
lises is shown in the next section.

III. SIMULATION RESULTS

We examine the RSSE performance on two types of chan-
nels at different ITI levels. The SNR is defined as

SNR(dB) = 10 log
‖h(D)‖2

2σ2
(11)

A. EPR4 channel

For the EPR4 channel h(D) = 1 + D − D2 − D3, we
apply RSSE to several subset trellises with different complex-
ities. The resulting bit error rate (BER) vs. SNR performance
at different ITI levels is plotted in Fig. 7. The comparison
between Figs. 7(a) and Figs. 7(b) shows that even using the
same subset trellis, RSSE performs differently under differ-
ent ITI levels, and its performance correlates with the mini-
mum intrasubset ESPDs of the set partitions configured in the
subset trellis. At a low ITI level (ε = 0.1), the performance
of RSSE on subset trellis [4, 4, 2] coincides with that of the
ML detector. The BER curves of [4, 3, 3] and [4, 3, 2] overlap,
and are both within 0.1dB away from the ML curve. Sub-
set trellis [4, 2, 2] further reduces the number of states to 16,
but incurs a 0.3dB loss. When the ITI level becomes higher
(ε = 0.3), the subset trellis [4, 4, 2] cannot provide reliable
early path merging because the minimum intrasubset ESPD
∆2

2 in Ω(3) = L2 is substantially reduced. However, a less
aggressive construction using configuration [4, 4, 3] achieves
near-ML performance. The decrease in ∆2

2 at this ITI level
also degrades the performance of RSSE[4, 2, 2] and [4, 3, 2].
Their BER curves overlap in Figs. 7(b). In contrast, the in-
crease of ∆2

1 brings [4, 3, 3] closer to the ML performance,
compared to the case ε = 0.1.

Similarly, for the PR2 channel h(D) = 1+2D+D2, simula-
tion results show that the BER curve of RSSE[4, 2] essentially
overlaps with that of the ML detector at ε = 0.1. For ε = 0.3,
RSSE[4, 3] essentially achieves ML performance.
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ML (64 st)
rsse[4,3,2] (24 st)
rsse[4,2,2] (16 st)
rsse[4,3,1] (12 st)
rsse[4,2,1] (8 st)

Fig. 8. Performance comparison between RSSE and ML detector on mini-
mum phase channel h(D) = 1 + 1.6D + 1.1D2 + 0.4D3, at ε = 0.1.

B. Minimum phase channels

Minimum phase channels can better model the real chan-
nel on a disk drive. Using the whitened matched filter [8],
we derive a memory-3 minimum phase channel polynomial
h(D) = 1+1.6D+1.1D2 +0.4D3. Since the minimum phase
condition implies that most of the channel energy is distributed
over the most recent samples, the early merge in RSSE can
be more reliable compared to the linear phase channel. As
shown in Fig. 8, ML, RSSE[4, 3, 2], and RSSE[4, 2, 2] have
essentially identical performance. In particular, RSSE[4, 2, 2]
performs much better on the minimum phase channel than on
the EPR4 channel, allowing RSSE to achieve near-ML perfor-
mance with only 16 states. Other more aggressive configura-
tions are also shown in Fig. 8. As can be seen, RSSE with
only 8 states can achieve performance that is within 0.3dB of
ML detection.
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