
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 6, JUNE 2004 1327

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd
ed. Baltimore, MD: John Hopkins Univ. Press, 1996, p. 599.

[10] B.M. Hochwald and T. L.Marzetta, “Unitary space-timemodulation for
multiple-antenna communications in Rayleigh flat fading,” IEEE Trans.
Inform. Theory, vol. 46, pp. 543–564, Mar. 2000.

[11] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens, and
R. Urbanke, “Systematic design of unitary space-time constellations,”
IEEE Trans. Inform. Theory, vol. 46, pp. 1962–1973, Sept. 2000.

[12] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. In-
form. Theory, vol. 46, pp. 2567–2578, Nov. 2000.

[13] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-an-
tenna communication link in Rayleigh flat fading,” IEEE Trans. Inform.
Theory, vol. 45, pp. 139–157, Jan. 1999.

[14] M. L. McCloud, M. Brehler, and M. K. Varanasi, “Signal design and
convolutional coding for noncoherent space-time communication on the
block-Rayleigh-fading channel,” IEEE Trans. Inform. Theory, vol. 48,
pp. 1186–1194, May 2002.

[15] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block
codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45,
pp. 1456–1467, July 1999.

[16] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: Performance criterion and code
construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar.
1998.

[17] V. Tarokh and M. Kim, “Existence and construction of noncoherent
unitary space-time codes,” IEEE Trans. Inform. Theory, vol. 48, pp.
3112–3117, Dec. 2002.

[18] İ. E. Telatar, “Capacity of multi-antenna gaussian channels,” Europ.
Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[19] O. Tirkkonen and A. Hottinen, “Complex space-time block codes for
four tx antennas,” in Proc. IEEEGLOBECOM, San Francisco, CA, Nov.
2000, pp. 1005–1009.

[20] L. Zheng and D. N. C. Tse, “Communicating on the grassmann
manifold: A geometric approach to the noncoherent multiple antenna
channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 359–383, Feb. 2002.

Sliding-Block Decodable Encoders Between
Runlength-Limited Constraints of Equal Capacity

Navin Kashyap, Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—We determine the pairs of ()-constrained systems,
() and (^ ^), of equal capacity, for which there exists a rate 1:1

sliding-block-decodable encoder from () to (^ ^). In all cases
where there exists such an encoder, we explicitly describe the encoder and
its corresponding sliding-block decoder.

Index Terms—()-constrained systems, finite-state encoders, sliding-
block decoders.

I. INTRODUCTION

Given nonnegative integers d; k, with d < k, we say that a binary
sequence is (d; k)-constrained if every run of zeros has length at most

Manuscript received August 20, 2003; revised January 21, 2004. This work
was supported by Applied Micro Circuits Corporation and by the Center for
Magnetic Recording Research at the University of California, San Diego, and
was performedwhile N. Kashyapwas at the University of California, SanDiego.

N. Kashyap is with the Department of Mathematics and Statistics, Queen’s
University, Kingston, ON K7L 3N6, Canada (e-mail: nkashyap@mast.queensu.
ca).

P. H. Siegel is with the Department of Electrical and Computer Engineering,
University of California, San Diego, La Jolla, CA 92093-0407 USA (e-mail:
psiegel@ece.ucsd.edu).

Communicated by Ø. Ytrehus, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2004.828145

Fig. 1. Graph, Gd;k , generating the (d; k)-constrained system S(d; k) for
finite k.

Fig. 2. Graph, Gd;1, generating the (d;1)-constrained system S(d;1).

k and any two successive ones are separated by a run of zeros of length
at least d. A (d; k)-constrained system is defined to be the set of all fi-
nite-length (d; k)-constrained binary sequences. The above definition
can be extended to the case k = 1 by not imposing an upper bound
on the lengths of zero runs. In other words, a binary sequence is said
to be (d;1)-constrained if any two successive ones are separated by
at least d zeros, and a (d;1)-constrained system is defined to be the
set of all finite-length (d;1)-constrained binary sequences. From now
on, when we refer to (d; k)-constrained systems, we shall also allow k

to be1. Note that the above definition allows finite-length (d; k)-con-
strained sequences to begin or end with a run of fewer than d zeros.
Binary sequences satisfying some (d; k) constraint are commonly

used to encode information in digital and optical recording systems
[1]. The parameter k is imposed to guarantee sufficient sign changes in
the recorded waveform which are required to prevent clock drift during
readback. The parameter d is needed to prevent intersymbol interfer-
ence.
It is possible to give a convenient graphical description of (d; k)-con-

strained systems as follows (cf. [1], [2, Chs. 2, 3]). We define a labeled
graph, G = (V; E ;L), to be a finite directed graph with vertex set V ,
edge set E � V �V , and edge labeling L : E ! �, where� is a finite
alphabet. A labeled graph can be used to generate sequences of symbols
from� by reading off the labels along paths in the graph. A constrained
system, S or S(G), is the set of all finite-length1 sequences obtained by
reading off the labels along paths in a labeled graph G. Any (d; k)-con-
strained system, S(d; k), can be generated from an appropriate labeled
graph: for finite k, S(d; k) is the constrained system generated by the
labeled graph Gd;k given in Fig. 1, while S(d;1) is generated by the
labeled graph Gd;1 shown in Fig. 2. Note that the edge labels for both
these graphs come from the binary alphabet f0; 1g.
Before proceeding further, we would like to make a remark con-

cerning the notation we shall use in this correspondence.While S(d; k)
will be primarily used to denote the (d; k)-constrained system of finite
sequences, we shall also occasionally use the same notation for the one-
sided shift of infinite (d; k)-constrained sequences, or the shift space
of bi-infinite (d; k)-constrained sequences. In such cases, it should be
clear from the context which constrained system we mean to consider.

1Sometimes, we shall also find it necessary to consider the constrained system
of infinite sequences s0s1s2 . . ., si 2 �, of edge labels, or the constrained
system of bi-infinite sequences . . . s

�2s�1s0s1s2 . . ., si 2 �. In the ter-
minology of symbolic dynamics (cf. [2]), a constrained system of bi-infinite
sequences is called a shift space, and a constrained system of infinite sequences
is called a one-sided shift.

0018-9448/04$20.00 © 2004 IEEE

1328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 6, JUNE 2004

Given a (d; k)-constrained system, S(d; k), let qd;k(n) be the
number of length-n sequences in S(d; k). The Shannon capacity, or
simply capacity, of S(d; k) is defined as

C(d; k) = lim
n!1

1

n
log2 qd;k(n): (1)

It is well known (see, e.g., [3]) that C(d; k) = log2 �d;k , where �d;k
is the unique largest magnitude root of a certain polynomial, �d;k(z),
called the characteristic polynomial of the constraint. �d;k(z) is, in
fact, the characteristic polynomial of the adjacency matrix of the cor-
responding labeled graphGd;k .When k is finite,�d;k(z) takes the form

�d;k(z) = zk+1 �

k�d

j=0

zj (2)

and when k = 1

�d;1(z) = zd+1 � zd � 1: (3)

The root �d;k is always real and lies in the interval (1; 2], so that 0 <
C(d; k) � 1. In fact, C(d; k) = 1 if and only if (d; k) = (0;1).

It is easily verified that certain pairs of (d; k)-constrained systems
have the same capacity. For example, we have the identities

C(d;2d) =C(d+ 1; 3d+ 1) (4)

C(d;1) =C(d� 1; 2d� 1) (5)

true for all d � 1. The first equality is a consequence of the fact
that �d+1;3d+1(z) can be factorized as (zd+1 + 1)�d;2d(z). Since all
the roots of zd+1 + 1 lie on the unit circle, while the largest roots of
the �-polynomials lie outside the unit circle, we must have �d;2d =
�d+1;3d+1. Similarly, the factorization

�d�1;2d�1(z) = �d;1(z)

d�1

i=0

zi

yields (5), since

d�1

i=0

zi = (zd � 1)=(z � 1)

has all its roots on the unit circle as well.
Repeatedly applying the two identities above also yields the chain of

equalities

C(1;2) = C(2;4) = C(3;7) = C(4;1): (6)

In [5], [6], it was shown that no equalities other than those listed in
(4)–(6) are possible among the capacities C(d; k).

Given a pair of (d; k)-constrained systems, S(d; k) and S(d̂; k̂),
with the same capacity, a question that naturally arises in the context of
constrained coding is whether or not there exists a rate 1:1, finite-state
encoder from S(d; k) to S(d̂; k̂) that is sliding-block decodable. We
provide a brief review of the terminology used here. The reader is re-
ferred to [1] for a thorough discussion of encoders and decoders for
constrained systems.

A rate p:q finite-state encoder is a finite-state machine, shown sche-
matically in the top half of Fig. 3, that accepts a block of p bits as
input and generates a binary codeword of length q as output. The actual
output codeword depends on the input block and the current internal
state of the encoder. Upon generating an output, the internal state of
the encoder may change depending on the output and the current state.
A rate p:q encoder from S(d; k) to S(d̂; k̂) must satisfy the following
requirement: in response to a sequence of p-bit input blocks whose con-
catenation is in S(d; k), the encoder must produce a sequence of q-bit
codewords whose concatenation lies in S(d̂; k̂). In particular, a rate 1:1
encoder from S(d; k) to S(d̂; k̂), in response to an input sequence from

Fig. 3. Schematics of a rate p:q finite-state encoder and a sliding-block
decoder.

S(d; k), produces an output sequence belonging to S(d̂; k̂) by sequen-
tially replacing each input bit by an output bit.
A sliding-block decoder for a rate 1:1 finite-state encoder is a map-

ping

D : f0; 1gm+a+1 ! f0; 1g

for some integers m; a satisfying m + a � 0, such that if
ccc = c0c1c2 . . ., ci 2 f0; 1g, is any sequence of bits produced by
the encoder in response to the input sequence of bits bbb = b0b1b2 . . .,
bi 2 f0; 1g, then for i � m

bi = D(ci�mci�m+1 . . . ci . . . ci+a):

In other words, given a sequence ccc = c0c1c2 . . . of encoded bits, a
sliding-block decoder makes a decision on ci on the basis of its local
context in the sequence ccc. The local context of ci in this case is a
“decoding window” consisting of the bit ci itself, along with a fixed
numberm of bits preceding ci and a fixed number a of bits following
ci.

More generally, a sliding-block decoder for a rate p:q finite-state
encoder is a mapping

D : (f0; 1gq)m+a+1 ! f0; 1gp

for some integers m; a satisfying m + a � 0, such that if
ccc = ccc0ccc1ccc2 . . ., ccci 2 f0; 1gq, is any sequence of q-bit codewords
produced by the encoder in response to the input sequence of p-bit
blocks bbb = bbb0bbb1bbb2 . . ., bbbi 2 f0; 1gp, then for i � m

bbbi = D(ccci�mccci�m+1 . . . ccci . . . ccci+a):

The integerm is referred to as thememory of the sliding-block decoder,
and the integer a is called the anticipation of the decoder. A schematic
representation of a sliding-block decoder is provided in Fig. 3. Natu-
rally, a finite-state encoder is called sliding-block decodable if there
exists a sliding-block decoder for the encoder. Not every finite-state
encoder may be sliding-block decodable.
In this correspondence, we completely resolve the question of when

there exists a rate 1:1, sliding-block decodable, finite-state encoder be-
tween (d; k)-constrained systems having the same capacity. Moreover,
for each case where such an encoder exists, we explicitly describe the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 6, JUNE 2004 1329

Fig. 4. Encoder from S(d; 2d) toS(d + 1; 3d + 1).

encoder and its sliding-block decoder. Specifically, we prove the fol-
lowing theorem.

Theorem I.1: Let S(d; k) and S(d̂; k̂) be such that C(d; k) =
C(d̂; k̂). Then, there exists a rate 1:1, sliding-block decodable,
finite-state encoder from S(d; k) to S(d̂; k̂) if and only if one of the
following conditions holds:

1. (d; k) = (0; 1) and (d̂; k̂) = (1;1);

2. (d; k) = (d; 2d) and (d̂; k̂) = (d+ 1; 3d+ 1), d � 1;

3. (d; k) = (d;1) and (d̂; k̂) = (d� 1; 2d� 1), d � 1;

4. (d; k) = (1; 2) and (d̂; k̂) = (3; 7).

Note that Conditions 1–4 of the theorem are not symmetric with re-
spect to (d; k) and (d̂; k̂). In fact, the only case where there exists a
rate 1:1, sliding-block decodable, finite-state encoder from S(d; k) to
S(d̂; k̂), as well as one in the reverse direction from S(d̂; k̂) to S(d; k),
is when f(d; k); (d̂; k̂)g = f(0; 1); (1;1)g. The existence of these en-
coders is covered by Conditions 1 and 3, the latter with d = 1, in the
statement of the theorem.

The proof of the theorem is presented in two parts. In Section II, we
explicitly demonstrate rate 1:1 finite-state encoders and sliding-block
decoders for all of the indicated cases. In Section III, we use results
from the symbolic dynamics literature to prove that no such encoder
can be found for any other pairS(d; k) andS(d̂; k̂)with equal capacity.

Wewould like to remark that as a corollary of a theorem of Ashley [4,
Theorem 1.1], one can deduce necessary and sufficient conditions for
the existence of a rate 1:1 sliding-block decodable finite-state encoder
from one (d; k)-constrained system to another with equal capacity. In
principle, these conditions could be used to prove Theorem I.1. More-
over, Ashley’s proof of sufficiency of the conditions is constructive and
could be used to define a rate 1:1 encoder with the desired properties.
However, due to the generality of Ashley’s construction, the resulting
encoders will be substantially more complex than those presented in
Section II. Also, as shown in Section III, the nonexistence results im-
plicit in Theorem I.1 can be proved using more easily verifiable condi-
tions necessary for the existence of the sliding-block mappings.

II. EXISTENCE OF ENCODERS

A rate 1:1 finite-state encoder from S(0; 1) onto S(1;1) that is
trivially sliding-block decodable is obtained by mapping the symbols
0 and 1 to their respective complements. The same rule also defines a
similar encoder from S(1;1) onto S(0; 1).

The graph in Fig. 4 depicts a rate 1:1 finite-state encoder from
S(d; 2d) to S(d + 1; 3d + 1), for d � 1. The vertices of the graph
represent the states of the encoder, and the directed edges represent
the state transitions. The vertex labeled 0 (drawn as a double circle in

Fig. 4) will be referred to as the initial state of the encoder. Note that
each edge of the graph is tagged by x=y, where x is the input label
for that edge, and y is the corresponding output label. The encoder
transforms (finite or infinite) sequences from S(d; 2d) to sequences
in S(d + 1; 3d + 1) as follows. Suppose that xxx = x0x1x2 . . . is
a sequence in S(d; 2d) that is to be encoded. Starting at the initial
state (vertex 0), there is precisely one path whose sequence of input
labels is x0x1x2 The sequence yyy = y0y1y2 . . . of output labels
along this path is the output of the encoder corresponding to the input
sequence xxx.
We now provide an explanation for why this encoder produces

(d + 1; 3d + 1)-constrained sequences as its output in response
to (d; 2d)-constrained input sequences. For the sake of notational
convenience, we shall use the shorthand “(1) 0j” to either denote a
block of the form 10j within some sequence, or a block of the form 0j

at the beginning of a sequence. Let xxx be a sequence in S(d; 2d) that
is to be encoded. Note that xxx also belongs to S(d + 1; 3d+ 1) if and
only if it does not contain the block 10d1. From the encoder graph in
Fig. 4, it can be seen that the only edge in the graph whose output label
is different from its input label is the edge ed0 , from state d to state
00. This edge is used in the encoding process precisely when the input
sequence xxx contains the block (1) 0d1 (i.e., xxx contains 10d1 or starts
with 0d1). Thus, when the edge ed0 is not used by the encoder, which
happens precisely when xxx does not contain (1) 0d1, the input sequence
is passed through unchanged. But, in this case, since xxx does not
contain 10d1, it belongs to S(d+1; 3d+1) as well, so that the output
of the encoder is indeed a (d + 1; 3d + 1)-constrained sequence. On
the other hand, when the edge ed0 is used by the encoder, a block of
the form (1) 0d1 is converted to (1) 0d+1. Note that if the block (in xxx)
following the transformed block is 0j1, d � j � 2d, then the segment
of the output sequence corresponding to the input segment (1) 0d1 0j1
is (1) 0d+j+11, which satisfies the (d + 1; 3d + 1)-constraint. Thus,
if the input to the encoder is a (d; 2d)-constrained sequence, then
the corresponding output is always a (d + 1; 3d + 1)-constrained
sequence.
It must be pointed out that if the input to the encoder is not a

(d; 2d)-constrained sequence, then the output of the encoder may not
be a (d+ 1; 3d+ 1)-constrained sequence. For example, the all-zeros
input sequence of any length is passed through unchanged by the
encoder.
A sliding-block decoder for the above encoder, with memory d +

1 and anticipation d, is defined via the mapping D : f0; 1g2d+2 !
f0; 1g specified by the following rule:

D(yi�(d+1); . . . ; yi; . . . ; yi+d)

=

1; if yi�(d+1) = 1 and
yj = 0; j = i� d; . . . ; i+ d

yi; otherwise.

1330 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 6, JUNE 2004

Fig. 5. Encoder from S(d;1) toS(d� 1; 2d� 1).

Let y0y1y2 . . . be the sequence generated by the encoder in response to
the (d; 2d)-constrained input sequence x0x1x2 To ensure proper
retrieval of the entire sequence x0x1x2 . . . , the decoder is actually
run on the extended sequence y

�(d+1)y�d . . . y�1y0y1y2 . . . , where
y
�(d+1)y�d . . . y�1 = 0d1. It is easily verified that the sliding-block

decoder defined above reverses any changesmade by the encoder, since
the decoding rule converts blocks of the form (1)0d+j+11, d�j�2d;
to (1) 0d1 0j1.

Moving on to the next case, a rate 1:1 finite-state encoder from
S(d;1) to S(d � 1; 2d � 1), for d � 1, is graphically depicted in
Fig. 5. The initial state of the encoder is the vertex labeled 0, drawn as
a double circle in the figure. The encoding procedure is similar to that
described previously for the encoder in Fig. 4.

We now describe how the encoder converts infinite (d;1)-con-
strained input sequences to infinite (d� 1; 2d� 1)-constrained output
sequences. The encoding process for finite sequences is just a finite
termination of the process for infinite sequences. Given a binary
sequence xxx = x0x1x2 . . ., we use x[i;j), i < j, to denote the finite
block xixi+1 . . . xj�1. Also, x[i;1) will be used to denote the infinite
sequence xixi+1xi+2 Using this notation, we define a maximal
run of zeros in a binary sequence xxx to be a block x[i;j) (j may be1),
that consists of zeros alone, such that xi�1 = 1 and, if j is finite,
xj = 1 as well. To extend this definition naturally to the case of an
initial run of zeros, we take x�1 to be 1. Thus, a maximal run of zeros
is a run of zeros that is not a subblock of a larger run of zeros. Note
that in a (d;1)-constrained sequence, every maximal run of zeros
after the first 1 is of length d or more.

From the encoder graph in Fig. 5, it can be seen that the encoder
converts each 1 in the input sequence to a 0, and the process of en-
coding a maximal run of zeros always begins at the initial state (vertex
0). Following paths on the graph from the initial state, we see that in
response to a maximal zero run of finite length `, the encoder produces
the output sequence (0d�11)r0s, where r, s are the unique integers
such that ` = rd + s, with 0 � s � d � 1. Also, the output of
the encoder corresponding to a maximal zero run of infinite length is
the infinite sequence (0d�11)

1

= 0d�110d�11 0d�11 Now, let
the input to the encoder be a (d;1)-constrained sequence of the form
0` 1 0` 1 0` 1 . . ., with `0 � 0 and d � `i < 1, i � 1. The corre-
sponding encoder output is the sequence

(0d�11)r 0s 0 (0d�11)r 0s 0 (0d�11)r 0s . . .

where for each i � 0, ri, si are the unique integers such that `i =
rid+ si, with 0 � si � d� 1. It is easily verified that this output
sequence is a (d�1; 2d�1)-constrained sequence. Finally, if the input
(d;1)-constrained sequence is of the form 0` 1 0` 1 . . . 0` 10` ,
for some integer j � 1, with `0 � 0, d � `i < 1, 1 � i � j�1,
and `j =1, then the encoder output is the (d�1; 2d�1)-constrained
sequence

(0d�11)r 0s 0 (0d�11)r 0s 0 . . . (0d�11)r 0s (0d�11)1

where ri; si, 0 � i � j � 1, are defined as before.

The mapping D : f0; 1g2d ! f0; 1g specified by the rule given in
what follows, defines a sliding-block decoder for the above encoder,
with memory d and anticipation d � 1

D(yi�d; . . . ; yi; . . . ; yi+d�1)

=

0; if yi�d = yi = 1 and
yj = 0; i� d+ 1 � j � i+ d� 1; j 6= i

yi; otherwise.

Let yyy = y0y1y2 . . . be the sequence generated by the encoder in
response to the (d;1)-constrained input sequence xxx = x0x1x2
To start decoding, the decoder is given as input the extended se-
quence y�dy�(d�1) . . . y�1y0y1y2 . . ., where y[�d;0) = 0d�11. Let
x̂xx = x̂0x̂1x̂2 . . . be the output produced by the decoder in response
to yyy. When xxx begins with a run of d or more zeros, then it may
be verified that x̂xx = xxx. However, when xxx starts with 0j1, with
0 � j � d� 1, then we indeed have x̂i = xi for all i � 0, except for
i = j, as xj = 1, but the decoder produces x̂j = 0. Therefore, since
the decoder has no prior knowledge of the length of the initial zero run
in xxx, it can only be guaranteed that x̂i = xi for all i > d.
To finish the proof of the sufficiency of Conditions 1–4 of Theorem

I.1, it only remains to show the existence of a rate 1:1 finite-state en-
coder from S(1; 2) to S(3; 7) and the corresponding sliding-block de-
coder. Let E1 be the encoder from S(1; 2) to S(2; 4) guaranteed by
Condition 2 of the theorem applied with d = 1, and let D1 be its
sliding-block decoder. Similarly, Condition 2 applied with d = 2 yields
an encoder E2 from S(2; 4) to S(3; 7) with sliding-block decoder D2.
But now, the composition E2 � E1 is a rate 1:1, finite-state encoder
from S(1; 2) to S(3; 7), which is sliding-block decodable by the de-
coder defined byD1 � D2. This completes the proof of the sufficiency
of Conditions 1–4 of Theorem I.1.

III. NONEXISTENCE OF ENCODERS

In this section, we prove the converse part of Theorem I.1, i.e., we
show that there do not exist rate 1:1, sliding-block decodable, finite-
state encoders betweenS(d; k) andS(d̂; k̂) that have the same capacity
but are not covered by Conditions 1–4 of the theorem. The proof relies
upon results from symbolic dynamics; the reader is referred to [2] for
the relevant background.
As noted earlier, all the equalities possible among the capacities

C(d; k) are listed in (4)–(6). Thus, we need to show the nonexistence
of rate 1:1, sliding-block decodable encoders in the following cases:

i) from S(d+ 1; 3d+ 1) to S(d; 2d), d � 1;

ii) from S(d� 1; 2d� 1) to S(d;1), d > 1;

iii) from S(4;1) to S(1; 2) or S(2; 4).

Observe that a sliding-block decoder for a rate 1:1 finite-state en-
coder from S(d; k) to S(d̂; k̂) (viewed as constrained systems of fi-
nite sequences) can be extended to a sliding-block map from the shift
spaceS(d̂; k̂) onto the shift spaceS(d; k). Now, from an elementary re-
sult in symbolic dynamics [2, p. 18, Proposition 1.5.11], we know that,
under a sliding-block mapping from S(d̂; k̂) to S(d; k), the image of a
bi-infinite sequence yyy in S(d̂; k̂) of period n must be a sequence xxx in
S(d; k)whose least period dividesn. Moreover, from [2, p. 414, Propo-
sition 12.2.3], we can deduce that whenever the shift spacesS(d; k) and
S(d̂; k̂) have the same capacity, the existence of a sliding-block map-
ping from S(d̂; k̂) onto S(d; k) implies that the characteristic polyno-
mial �d;k(z) is a divisor of �d̂;k̂(z) in the ring of integer polynomials.
Consequently, there exists a sliding-block decoder for a rate 1:1 en-
coder from S(d; k) to S(d̂; k̂) only if the periodic sequence condition
and the characteristic polynomial condition simultaneously hold.
The existence of such an encoder for the constrained systems listed

in cases i) and ii) above is ruled out by the application of the condition

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 6, JUNE 2004 1331

on periodic sequences. In particular, for case i), note that the condi-
tion is violated because for any d � 1, the shift space S(d; 2d) con-
tains a sequence of period d + 1, namely, the sequence (0d1)

1

=
� � � 0d1 0d1 0d1 . . ., while S(d + 1; 3d + 1) does not contain any se-
quence of period d+1 or less. The periodic sequence condition is vio-
lated in case ii) as well, since S(d;1) contains the all-zeros sequence
01, which is periodic with period 1, while S(d � 1; 2d� 1), d > 1,
does not contain the all-zeros sequence or the all-ones sequence, which
are the only sequences of period 1. We would like to remark that when
d = 1, the shift space S(d�1; 2d�1) does in fact contain the all-ones
sequence.

The condition on periodic sequences is not strong enough to handle
case iii), since S(4;1) contains the period-1 sequence consisting of
all zeros. Instead, we show that there cannot exist a rate 1:1 sliding-
block decodable encoder from S(4;1) to either S(1; 2) or S(2; 4) by
appealing to the characteristic polynomial condition. From (3), we see
that

�4;1(z) = z
5 � z

4 � 1

and from (2) we find that

�1;2(z) = z
3 � z � 1

and

�2;4(z) = z
5 � z

2 � z � 1:

By inspection, it follows that �4;1(z) is not a divisor of either �1;2(z)
or �2;4(z) in the ring of integer polynomials. Therefore, there does
not exist a sliding-block mapping from either S(1; 2) or S(2; 4) onto
S(4;1). This completes the proof of Theorem I.1.

We would like to make one final observation regarding the
(d; k)-constrained shift spaces S(d; k). Our proof of Theorem I.1 in
fact shows that given distinct shift spaces S(d; k) and S(d̂; k̂) of equal
capacity, there exists a sliding-block map from S(d̂; k̂) onto S(d; k)
if and only if one of Conditions 1–4 in the statement of the theorem
holds. It follows that the only case where there exists a sliding-block
map from S(d̂; k̂) onto S(d; k), and from S(d; k) onto S(d̂; k̂) as
well, is when f(d; k); (d̂; k̂)g = f(0; 1); (1;1)g. Therefore, aside
from S(0; 1) and S(1;1), no pair of distinct (d; k)-constrained
shift spaces can be conjugate. It is a well-known and trivial fact that
S(0; 1) and S(1;1) are indeed conjugate as shift spaces, the required
conjugacy being obtained by mapping 0’s and 1’s to their respective
complements. Thus, the only pair of (d; k)-constrained shift spaces
that are conjugate are S(0; 1) and S(1;1).

ACKNOWLEDGMENT

The authors wish to thank Brian Marcus for an especially thorough
review of the correspondence, and for suggesting various changes to
the presentation in the interests of simplicity and correctness.

REFERENCES

[1] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrained systems and
coding for recording channels,” in Handbook of Coding Theory, R.
Brualdi, C. Huffman, and V. Pless, Eds. Amsterdam, The Netherlands:
Elsevier, 1998.

[2] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge, U.K.: Cambridge Univ. Press, 1995.

[3] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inform. Theory, vol. 44, pp. 2260–2299, Oct.
1998.

[4] J. Ashley, “Resolving factor maps for shifts of finite type with equal
entropy,” Ergod. Theory Dynam. Syst., vol. 11, pp. 219–240, 1991.

[5] N. Kashyap and P. H. Siegel, “Capacity equalities in 1-dimensional
(d; k)-constrained systems,” in Proc. IEEE Int. Symp. Information
Theory, Yokohama, Japan, June/July 2003, p. 105.

[6] , “Equalities among capacities of (d; k)-constrained systems,”
SIAM J. Discr. Math., vol. 17, no. 2, pp. 276–297, 2003.

Binary Construction of Quantum Codes of Minimum
Distance Three and Four

Ruihu Li and Xueliang Li

Abstract—We give elementary recursive constructions of binary self-
orthogonal codes with dual distance four for all even lengths 12

and = 8. Consequently, good quantum codes of minimum distance
three and four for such length are obtained via Steane’s construction and
the CSS construction. Previously, such quantum codes were explicitly con-
structed only for a sparse set of lengths. Almost all of our quantum codes
of minimum distance three are optimal or near optimal, and some of our
minimum-distance four quantum codes are better than or comparable with
those known before.

Index Terms—Binary code, quantum error correcting code, self-orthog-
onal code.

I. INTRODUCTION

Since the initial discovery of quantum error-correcting codes [8],
researchers have made great progress in developing quantum codes.
Many code constructions are given in [2], [8], [9], [11]. Reference [2]
gives a thorough discussion of the principles of quantum coding theory,
many example codes, and a tabulation of codes and bounds on the min-
imum distance for codeword length n up to 30 quantum bits. For larger
n there has been less progress, and only a few general code construc-
tions are known, see [1], [2], [4], [5], [10], [11].
In [2, Theorems 10 and 11], Calderbank et al. proved that whenn is a

power of 2 or sums of odd power of 2, there exists a quantum code with
parameters [[n; n�m� 2; 3]] for certainm, see Theorem 1.2 below.
An [[n; k; d]] code is an additive minimum-distance d quantum code
of length n encoding k quantum bits [2]. In this correspondence, we
use elementary recursive constructions to generalize their result to all
even n � 12 and n = 8. Our quantum codes are additive and pure in
the nomenclature of [2], [11]. A pure additive code is nondegenerate in
the nomenclature of [2], [6]. Using the sphere-packing bound, we show
that almost all of our quantum codes of minimum distance three are
optimal or near optimal, and some of our quantum codes of minimum
distance four are better than or comparable to previously known codes
in [1], [2], [5], [11].

Manuscript received May 1, 2003; revised August 16, 2003.
R. Li is with the Department of Applied Mathematics and Physics, Col-

lege of Art and Science, Air Force Engineering University, Xi’an, Shaanxi
710051, China, and the Department of Computer Science and Engineering,
Northwestern Polytechnical University, Xi’an, Shaanxi 710016, China (e-mail:
liruihu@yahoo.com.cn).

X. Li is with the Center for Combinatorics, Nankai University, Tianjin
300071, China (e-mail: x.li@eyou.com).

Communicated by E. H. Knill, Associate Editor for Quantum Information
Theory.

Digital Object Identifier 10.1109/TIT.2004.828149

0018-9448/04$20.00 © 2004 IEEE

