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Abstract — We determine the pairs of (d, k)-
constrained systems, S(d, k) and S(d̂, k̂), of equal ca-

pacity, for which there exists a rate 1:1 sliding-block

decodable encoder from S(d, k) to S(d̂, k̂). Whenever

such an encoder exists, we explicitly describe one such

encoder and its corresponding sliding-block decoder.

I. Introduction

Given non-negative integers d, k, with d < k, we say that a
binary sequence is (d, k)-constrained if every run of zeros has
length at most k and any two successive ones are separated by
a run of zeros of length at least d. A (one-dimensional) (d, k)-
constrained system is defined to be the set of all finite-length
(d, k)-constrained binary sequences. The above definition is
also extended to the case k = ∞ by not imposing an upper
bound on the lengths of zero-runs.

The capacity of a (d, k)-constrained system, S(d, k), is de-
fined as C(d, k) = limn→∞

1
n

log2 qd,k(n), where qd,k(n) is the
number of length-n sequences in S(d, k). It is well known that
for all d ≥ 1, we have the identities C(d, 2d) = C(d+1, 3d+1)
and C(d,∞) = C(d − 1, 2d − 1). Repeatedly applying these
identities also yields the chain of equalities C(1, 2) = C(2, 4) =
C(3, 7) = C(4,∞). In [2], it was shown that no other equalities
exist among the capacities C(d, k).

Given a pair of (d, k)-constrained systems, S(d, k) and
S(d̂, k̂), with the same capacity, a question that naturally
arises in the context of constrained coding is whether or not
there exists a rate 1:1, finite-state encoder from S(d, k) to
S(d̂, k̂) that is sliding-block decodable (cf. [1] for the relevant
definitions). The main result of this paper is the following
theorem, which completely resolves this question.

Theorem 1 Let S(d, k) and S(d̂, k̂) be such that C(d, k) =
C(d̂, k̂). Then, there exists a rate 1:1, sliding-block decodable,

finite-state encoder from S(d, k) to S(d̂, k̂) if and only if one

of the following conditions holds:

1: (d, k) = (0, 1) and (d̂, k̂) = (1,∞)

2: (d, k) = (d, 2d) and (d̂, k̂) = (d + 1, 3d + 1), d ≥ 1

3: (d, k) = (d,∞) and (d̂, k̂) = (d − 1, 2d − 1), d ≥ 1

4: (d, k) = (1, 2) and (d̂, k̂) = (3, 7).

In Section II, we show the sufficiency of each of the above
conditions by explicitly describing rate 1:1 finite-state en-
coders and sliding-block decoders in each case. The necessity
of one of conditions 1–4 above follows from results from the
symbolic dynamics literature, and the reader is referred to our
full paper [3] for the details.
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II. Existence of Encoders

A rate 1:1 finite-state encoder from S(0, 1) onto S(1,∞) that
is trivially sliding-block decodable is obtained by mapping the
symbols 0 and 1 to their respective complements.

The following figure depicts a rate 1:1 encoder from S(d, 2d)
to S(d + 1, 3d + 1).
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A sliding-block decoder for the above encoder, with mem-
ory d + 1 and anticipation d, is defined via the following rule:

D(yi−(d+1), . . . , yi+d) =

⎧⎨
⎩

1 if yi−(d+1) = 1, and
yi−d = · · · = yi+d = 0

yi otherwise.

A rate 1:1 encoder from S(d,∞) to S(d−1, 2d−1) is shown
in the following figure.
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The rule given below defines a sliding-block decoder for the
above encoder, with memory d and anticipation d − 1:

D(yi−d, . . . , yi+d−1) =

⎧⎨
⎩

0 if yi−d = yi = 1, and
yj = 0, j �= i − d, i

yi otherwise.

Finally, a rate 1:1, sliding-block decodable encoder from
S(1, 2) to S(3, 7), is obtained by concatenating the encoders
guaranteed by Condition 2 of Theorem 1 for the cases d = 1
and d = 2.
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