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Serial Concatenated TCM With an Inner Accumulate
Code—Part II: Density-Evolution Analysis
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Abstract—In a companion paper, we showed the existence of de-
coding thresholds for maximume-likelihood (ML) decoding of a se-
rial concatenated trellis-coded modulation (SCTCM) system with
one or more inner accumulate codes. In this paper, we compute
the decoding thresholds for an iterative, non-ML decoder by den-
sity evolution (DE), assuming infinite blocklengths. We also de-
rive a stability condition for the particular case of an outer parity-
check code and a single inner accumulate code. We show that, for
equiprobable signaling, the bit-wise log-likelihood ratio densities
for higher order constellations are symmetric. Furthermore, when
used in DE, these densities can be averaged without significantly
affecting the resulting threshold values. For an outer single parity-
check code, the lowest decoding thresholds are achieved with two
inner accumulate codes. For an outer repeat code, a single inner ac-
cumulate code gives the lowest thresholds. At code rates r. > 2/3,
the decoding thresholds for the SCTCM system are within 1 dB of
the constellation-constrained channel capacity for additive white
Gaussian noise channels, and within 1.5 dB for independent, iden-
tically distributed Rayleigh channels. Simulation results verify the
computed thresholds.

Index Terms—A ccumulate codes, density evolution (DE), fading
channels, iterative decoding, serial concatenation, stability condi-
tion, trellis-coded modulation (TCM).

1. INTRODUCTION

URBO codes [1] and interleaved serially concatenated

codes [2] allow us to approach Shannon’s theoretical
capacity limit using practical, suboptimal iterative decoding.
Trellis-coded modulation (TCM) [3] is a well-established tech-
nique to obtain coding gains without bandwidth expansion. The
desire to design systems that provide bandwidth-efficient com-
munication close to capacity motivated researchers to merge
turbo-like codes and TCM, and several such “Turbo-TCM”
systems have been proposed in the literature. Parallel concate-
nated TCM (PCTCM) was studied in [4] and [5], and serial
concatenated TCM (SCTCM) was introduced in [6]. In order
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to reduce the decoding complexity, SCTCM schemes with
low-complexity rate-1 inner codes were proposed in [7].

Inspired by the analytical tractability of repeat-accumulate
(RA) codes [8] and their generalizations [9], this paper studies
an SCTCM system with inner rate-1 accumulate codes. In this
paper, we propose an SCTCM scheme with a single or mul-
tiple inner rate-1 accumulate code(s), each preceded by an inter-
leaver, followed by a mapping to a higher order, Gray-labeled
signal constellation.

To achieve higher spectral efficiency, we consider parity-ac-
cumulate (PA) codes, where the outer code is a single parity-
check (SPC) code. However, the minimum distance of the outer
SPC is dESi)n = 2, and two or more inner accumulate codes
are required to make the word-error rate (WER) go to zero as
the blocklength tends to infinity. With an outer high-rate con-
volutional code with dg’c)c > 3, we simultaneously achieve high
spectral efficiency and asymptotically vanishing WER with only
a single inner accumulate code.

Bit-interleaved coded modulation (BICM) was initially
proposed to increase the diversity over fading channels, with
only a modest performance degradation over additive white
Gaussian noise (AWGN) channels [10]. BICM with iterative
decoding (BICM-ID) has been shown to give almost the same
performance as Turbo-TCM over AWGN channels, but at a
lower complexity [11], [12]. A BICM system can be considered
to be a special case of the proposed SCTCM system, since a
BICM system consists of an outer convolutional code, no inner
code, a channel interleaver, and a Gray-labeled constellation.
We show a comparison of the performance of the proposed
SCTCM system and BICM-ID over a correlated Rayleigh
fading channel in [13] and [14].

In this paper, we restrict the binary outer code to be either an
SPC code or a repeat code for the sake of simplicity of analysis.
We present an asymptotic analysis of this SCTCM scheme under
iterative decoding, where the blocklength goes to infinity, based
on the density-evolution (DE) technique [15]. In a companion
paper [14], we studied the performance of the same SCTCM
scheme via union bounds (assuming the optimal and prohibi-
tively complex maximum-likelihood (ML) decoding), and cal-
culated the potential thresholds under ML decoding. However,
due to the weakness of the union-bound technique, the thresh-
olds calculated in this paper are much more encouraging, and
indicate the potential of these coding schemes, even under sub-
optimal iterative decoding.

DE was introduced as a method to analyze message-passing
decoders [15]. A code can be described by a graph, and the mes-
sage-passing decoder passes messages along the edges of the
graph. In DE, the messages are the densities of the log-likeli-
hood ratios (LLRs) for the bits, and by tracing the evolution of
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Fig. 1. SCTCM system under consideration consists of an outer repeat or

SPC code, one or more inner interleaved accumulate codes, an optional channel
interleaver ¥, and a mapper to a Gray-labeled constellation.

the densities as the decoding progresses, we can determine the
minimum channel signal-to-noise ratio (SNR) needed for the
message-passing decoder to converge to the correct codeword
with high probability. By applying DE, we find the threshold *
for a message-passing decoder for the SCTCM system under
consideration.

For PA! codes, P, decreases very slowly as the number of de-
coding iterations increases. It is, therefore, hard to determine an
accurate numerical value for the threshold for PA! codes via DE.
In this case, we derive a stability condition, similar to the one
in [16], to determine thresholds for these codes. In the stability
analysis, we assume that decoding has progressed successfully
to a point where only a small fraction of bits remain in error.
The stability condition then gives the minimum channel SNR re-
quired to ensure that the remaining errors vanish as the number
of decoding iterations goes to infinity.

The probability density functions (pdfs) for the LLRs of the
bits play an important role in the DE and stability analysis. Mul-
tiple bits are transmitted in each channel symbol, and the pdfs
for the bits are different. We show that the resulting pdfs are
symmetric [16] under certain assumptions. Furthermore, our
analysis shows that the pdfs can be averaged, simplifying the
analysis, without significantly affecting the computed thresh-
olds.

We report numerical values for the thresholds for RA™ and
PA™ codes of various rates, used with 8-ary phase-shift keying
(8-PSK) and 16-quadrature amplitude modulation (QAM) con-
stellations over AWGN and independent, identically distributed
(i.i.d.) Rayleigh fading channels. The simulated performance of
the proposed SCTCM system corresponds well to the computed
thresholds.

The paper begins with a brief description of the proposed
system in Section II. Section III treats the DE, and in Section IV,
we derive the stability condition. In Section V, we report some
simulation results. Our conclusions are presented in Section V1.

II. SYSTEM DESCRIPTION

The encoder, shown in Fig. 1, consists of an outer block code,
one or more inner interleaved accumulate codes, an optional
channel interleaver, and a mapping to a higher order Gray-la-
beled signal constellation.

The outer code is either a r. = 1/n repeat code or a r. =
(n — 1)/n SPC code. The component codes are separated by
an interleaver II. In the analysis, we assume that II is a uniform
interleaver [17], and in the simulations, we use an S-random
interleaver [18]. The accumulate code can be thought of as a
recursive rate-1 convolutional code with generator matrix

G(D) = (ﬁ) .

The memoryless mapper maps an m-tuple of bits, z, to a con-
stellation point s € S, where S is a Gray-labeled constellation
of size |S| = M = 2™.

We receive 1 = ps + z, where p is a sample from an i.i.d.
Rayleigh fading process, and z is AWGN with variance o2 in
each dimension. At the decoder, bit metrics are calculated by

Plz' =b;0] = > Plrls] (1)

SES]

where 2% is the ith bit in the binary label of the transmitted
symbol, and S; = {s € S|¢i(s) = b} is the set of points
in the constellation S such that the ith bit, 7 € {1,...,m},
in the binary label of the point s has the value b, b € {0,1}.
The bit metrics are fed to a message-passing decoder, which is
described in detail in Section III-C.

III. DENSITY EVOLUTION

In this section, we compute the LLR densities of the received
bits for higher order constellations, and show that the densities
are symmetric in the sense of (5) below [16]. (This property was
earlier called “consistency” [19].) We describe the code graphs
and the message-passing algorithm, and use DE to determine
thresholds for the proposed SCTCM system when a message-
passing decoder is used.

A. Densities for Higher Order Constellations

For output symmetric channels [15], it can be assumed that
the all-zeros codeword was transmitted. All received bits will
then have a common LLR density, which simplifies the DE
analysis. Since we are considering higher order constellations,
we cannot make this assumption. Instead, we assume that all
constellation symbols are transmitted equally likely, and define
the LLR as the LLR of receiving the same bit value as was
transmitted. There are m bits in the label for each constellation
symbol, so we get m possibly different LLR pdfs. The assump-
tion that all constellation symbols are transmitted equally likely
implies that the bits in the label will take on the values 0 and 1
with equal probability, and for long codewords, the LLR pdfs
are independent of the transmitted codeword.!

Let S be a signal constellation of size |S| = M = 2™ ad-
mitting a binary labeling with m bits. Consider the ¢th bit of
the binary label. (Henceforth, we omit the bit index ¢ for clarity,
but all functions depend on the bit under consideration.) Let Sy
be the subset of S where the ith bit in the label is zero, and
S1 = S\ Sp. Let 19 (n1) be the index set for the elements in
So (S1), and let s € S be the transmitted symbol.

We compute the LLR of receiving the same bit value as was
transmitted. Since z depends on which symbol s was trans-
mitted, we express LLR [ as

> fr(rlss)
go(r) = log &z ),
Zje]l fr(rls;)

Do fr(rlss)
g1(r) = log &2&n s
Zje,m Fr(rls;)

s €S8y
l=g(r)= 2)

eSS

where the random variable R is the received value, and fr(r|s;)
is the pdf of R, given that the symbol s; was transmitted. If

I'This assumption is similar to the channel adapter in [20].
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we assume that all symbols are transmitted equally likely, the
density for R becomes

~

1 M
fr(r) = MZfR(ﬂSj) €
j=1

Note that for any labeling go(r) = —g1(r).

The value of the LLR, | = g(r), is a one-dimensional (1-D)
random variable and a function of the possibly multidimensional
random variable R. For 2-D modulation, let r = (r1,72). The
LLR L then becomes a function of a 2-D random variable, | =
g(r1,72). The pdf for the LLR, f1,(), can then be calculated by
21, p. 167]

leRz (7"1., T2>

9g(r1,m2)
ory

frl) =

bade o}

“4)

dTg.

ri=g—1(l,r2)

If, for a fixed value of | and 79, the equation r; = g=*(I,72)
(or equivalently, I = g(rq,r2)) has multiple solutions, then (4)
should be integrated over all such solutions.

In the 1-D case, the LLR functions g¢ and g; are functions of
one random variable, and the partial derivative in (4) becomes
the ordinary derivative of go () or g1 (r) with respect to r.

For binary phase-shift keying (BPSK) modulation, s; = —sg
and go = 2sor/0>. It is straightforward to show that f7,(I) is
Gaussian with mean E[L] = 2s2/0? and variance var[L] =
4s%/0? = 2E[L]. For BPSK modulation over a Rayleigh fading
channel, the pdf conditioned on the fading power is Gaussian,
and the unconditional pdf is given by

25\/2+ %

For higher order constellations, we find the density in (4) nu-
merically. For fading channels, we use (4) as the expression for
the pdf conditioned on the fading power. The unconditional pdf
is found by numerically integrating over the fading power dis-
tribution.

A density is called symmetric if [16]

fo(=1) = e "' fr(l). )

This symmetry property is used in the stability condition in Sec-
tion IV.

Theorem 1: For a higher order constellation S and equiprob-
able signaling, the bit log-likelihood density f1,(!) is symmetric
in the sense of (5) for all bits in the labels.

Proof: The proof is given in the Appendix. [ |

1
2
(&

g

fu(lls) =

B. Code Graphs

A linear code can be thought of as a linear system of equa-
tions, with variables and check equations. A graph can be used
to visualize the structure of the code, i.e., the connections be-
tween variables (codeword bits and, if the code has memory,
states) and parity-check equations.

A graph G(V, F) is an ordered pair of disjoint sets V' and
FE, where V is the set of vertices (or nodes) and F is the set
of edges. If G is a graph, V(G) denotes the set of vertices, and
E(QG) the set of edges of G. A graph is said to be r-partite with
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Fig. 2. Code graph for a r. = 2/3 PA2 code without channel interleaver .

r vertex classes Vq, Vs, ..., V,. if the set of vertices can be par-
titioned V(G) = Vi UVaU...UV,and V; N V; = 0, Vi # 4,
and no edge joins two vertices from the same class. For code
graphs, V' consists of variable nodes corresponding to the code-
word bits, check nodes corresponding to the parity-check equa-
tions and, if the code has memory, state nodes. Block codes,
such as low-density parity-check (LDPC) codes [22], are de-
scribed by bipartite (2-partite) graphs. We view the accumulate
code as a convolutional code, so the graph representation of the
accumulate code will have state nodes. Therefore, the graph rep-
resentation of the RA™ and PA™ codes are 3-partite.

Two vertices v,w € V(G) are said to be adjacent if they
are connected with an edge e,,, € E(G). The set of vertices
adjacent to v is called the neighborhood (of depth 1) of v and
denoted N(v). The neighborhood of depth ¢ of v is the set of
vertices connected to v by a path of length at most £, and is
denoted N*(v). Let E,, denote the set of edges connecting the
vertex v to its neighborhood (of depth 1). The degree of a vertex
v is the number of edges connected to that vertex, deg v = |F,|.

In Fig. 2, we show a code graph for a PA? code. Bit nodes are
drawn as circles, state nodes as double circles, and parity-check
nodes as squares.?

C. Message-Passing Decoders

In a message-passing decoder, messages are passed along the
edges of the code graph. The message passed along an edge is
the current opinion, or belief, about a bit. The message sent from
a node v along an edge e, m(e), depends on all messages to
node v except the message along the edge e. The code graph G

2An accumulate code has two states, 0 and 1, and the ending state in a trellis
transition is the same as the output from the code. A separate state node, as in
Fig. 2, is, therefore, somewhat superfluous, but highlights the memory of the
code.
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per se is undirected, but the message going from v to w, where
v,w € V(Q), is different from the message going from w to v.

Bit nodes represent bits, and all messages should agree on a
common bit value. The outgoing message along the jth edge
from a bit node of degree n is given by the sum of the incoming
LLRs, except the contribution on the jth edge

=> mi. (6)

1=1
i#j

A repeat code imposes the same constraint as a bit node—all
variables should agree on a common bit value. The operation
carried out in the “repeat node” is, therefore, the sum in (6).
The final decision in the repeat node is based on all  incoming
messages.

At the parity-check nodes, random variables are added under
a parity constraint. The outgoing message on the jth edge from
a check node of degree n is given by the tanh operation [23]

tanh ( ) H tanh (mz)

In the context of DE, the messages are not the beliefs about a
particular received bit, but rather the pdf of the LLR of the bit.
When we want to stress that the message on an edge e, m(e), is
a pdf, we write f.({).

At the bit and repeat nodes, random variables are added, and
their pdfs are convolved. The outgoing message along the jth
edge from a bit or repeat node of degree n is given by the (n —
1)-dimensional convolution

fe, () ®a

I#J

At a parity-check node of degree n, the outgoing message on
the jth edge is given by the (n — 1)-dimensional integral

fo () = / 1;[ feu () @)

where the region A is given by

l - ti
— n—1, — ?
A=<teR .tanh(§>—‘||tanh<2>

We denote the operation in (7) by H.

In Fig. 2, we indicate the messages passed in the decoding
of a PAZ code. If no channel interleaver ¥ is present between
the inner code and the signal mapper, then m different channel
densities fr,, 1 < ¢ < m, are passed to the first accumulate
code decoder. The forward and backward state messages are
denoted « and 3, and u and d denote the messages up to and
down from the next decoder. We get m different «, (3, and u
messages in the first decoder (subscripts denote the code layer,
and superscripts denote variables within the code). Due to the
interleaver II, the m upward messages u¢ are averaged before

TABLE 1
E}, /No THRESHOLDS IN DECIBELS FOR ITERATIVE DECODING. 8-PSK
MODULATION OVER AWGN CHANNEL

rate C ¢ 1% % Y| M v 7
1/6 | -0.82 -0.80 | 093 424 747 | 091 437 17.55
1/5 | -0.66 -0.62 | 092 384 692 | 088 395 6.99
1/4 | -041 -036 | 1.03 339 628 | 097 349 634
173 0.00 0.12 1.53 294 551 144 3.01 5.56
172 0.86 128 | 541 276 465 | 531 278 4.69
2/3 1.76 275 | 625 382 517 | 620 383 5.18
3/4 2.23 366 | 676 453 562 | 6.73 454 563
4/5 2.51 430 | 7.11 504 598 | 7.10 5.05 598
5/6 2.70 475 | 739 543 626 | 738 543 6.27
6/7 2.84 511 | 761 574 650 | 7.60 574 6.50
7/8 2.94 541 | 780 599 670 | 779 599 6.70
8/9 3.02 566 | 795 621 687 | 795 621 6.87

passing to the next accumulate code decoder. From Fig. 2, we
get the update equations for the inner accumulate code as

of = (o7 Bdy) ® fr,
/Bi:( ’+1®fL1+1)EEd1
uj = (51®fL) af!

ulz— E ul

dy = (a2 EE da) ® [ (3)
where the index additions and subtractions are modulo . Note
that these are local updates, we do not perform the full forward
and backward recursions of the Bahl-Cocke—Jelinek—Raviv
(BCIJR) algorithm [24].

If multiple accumulate codes are used, the update equations
for the jth accumulate code are the same as above, but the m
channel densities fr, are replaced by the single message u;_1,
and the superscript ¢ in (8) is omitted. The update equations for
ar. = (n—1)/n SPC code and a r. = 1/n repeat code are

dy = u;l)a("_l)
d, =u® (n—1)

respectively, where the superscript H(n — 1) denotes applying
the operation H to n — 1 arguments, and similarly for ® (n — 1).

If the interleaver VU is present, the channel densities are aver-
aged over the m bits in the constellation, and we pass the density

A0
i=1

to the decoder. In this case, the superscript ¢ is omitted in (8)
above.

D. Numerical Results

We trace the evolution of the bit LLR pdfs as the number of
iterations ¢ increases, and determine ¢*, the maximum channel
o, such that forall o < o*, P, — 0 as £ — oo. We assume that
N*(v) is loop-free for all v € V(G), which implies indepen-
dent messages [15].

In Tables I-IV, we report the E;/Ny thresholds v* above
which P, — 0as{ — oo. The thresholds for 7 accumulate codes
and m different channel densities are denoted +y;*, and the thresh-
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TABLE 1I
E, /Ny THRESHOLDS IN DECIBELS FOR ITERATIVE DECODING. 8-PSK
MODULATION OVER INDEPENDENT RAYLEIGH FADING CHANNEL

rate c 7 V3 Vs 71 73 7
1/6 -0.13 1.71 5.76 9.88 1.70 5.86 9.93
15| 016 | 180 544 940 | 177 552 945
1/4 | 062 | 207 511 885 | 204 518 889
13| 141 ] 28 484 822 | 283 489 825
12 318 | 833 504 766 | 802 505 7.68
23 | 537 1017 687 899 | 993 688  9.00
34 | 681 | 1144 817 1008 | 1123 817 10.09
4/5 | 788 | 1224 916 1096 | 1222 9.16 10.96
56 | 874 | 13.03 996 11.69 | 13.01 996 11.69
6/7 | 944 | 1370 1063 1231 | 13.69 10.64 1231
7/8 | 10.07 | 14.27 11.22 12.85 14.26 11.22 12.86
8/9 | 10.61 1478 11.73 13.34 14.77 11.73 13.34
TABLE III

E, /N, THRESHOLDS IN DECIBELS FOR ITERATIVE DECODING.
16-QAM OVER AWGN CHANNEL

o el N A R A R A
1/6 | -0.55 -0.52 [ 143 493 830 | 1.34 523 845
/5 | -033  -029 | 145 455 776 | 133 480 7.90
1/4 0.00 0.07 | 1.61 413 7.13 147 433 724
1/3 0.57 0.69 | 222 372 637 | 2.04 385 646
12 1.76 211 | 626 3.60 551 | 6.13 3.64 556
2/3 3.02 3.68 | 702 467 597 | 696 4.68 599
3/4 3.68 454 | 747 534 636 | 743 534 637
4/5 4.08 510 | 779 580 6.68 | 7.76  5.81 6.69
5/6 4.35 554 | 804 6.16 694 | 8.01 6.16 6.95
6/7 4.55 586 | 824 644 7.16 | 823 644 7.16
7/8 4.69 6.14 | 8.41 6.68 734 | 840 6.68 7.35
8/9 4.81 6.36 | 856 6.88 7.51 8.55 688 7.51
TABLE 1V

E, /Ny THRESHOLDS IN DECIBELS FOR ITERATIVE DECODING.
16-QAM OVER INDEPENDENT RAYLEIGH FADING CHANNEL

rate c* i ¥ 73 " 3 Vs
1/6 | 026 | 228 646 1062 | 223 666 10.74
1/5 ] 062 | 240 615 1014 | 233 632 1025
1/4 | 116 | 272 58 959 | 263 597 9.8
13| 207 | 359 557 896 | 348 566  9.04
12| 393 | 88 578 839 | 872 580 840
23 | 613 | 1069 761 972 | 1063 762 9.72
3/4 | 757 | 1197 890 1080 | 1193 890 10.80
4/5 | 864 | 1295 988 11.67 | 1291  9.88 11.67
5/6 | 948 | 1374 1068 1240 | 1371 10.68 12.40
6/7 | 1019 | 1440 1135 13.02 | 1438 1136 13.02
7/8 | 10.80 | 1479 1194 13.56 | 1479 11.94 13.56
8/9 | 1133 | 1481 1244 1404 | 1481 1244 14.04

olds with one averaged channel density are denoted 7;. Rates
r. < 1/2 correspond to outer repeat codes, and rates r. > 1/2
correspond to outer SPC codes. For r. = 1/2, repeat and SPC
codes are the same. For numerical reasons, we have defined the
decoding threshold as the Ej, /Ny for which P, < 10710 within
500 iterations.
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In the tables, we also give the capacity for the channels under
consideration. The 2-D channel capacity for an unconstrained
discrete-time AWGN channel is C' = log(1 + SNR). For con-
strained input channels, such as PSK and QAM, and equiprob-
able signaling, the capacity for AWGN channels is given by [3]

Ml yrey—sj02

CA—logM—— ZE logZe 252 +HyH2

©)

In (9), we use Monte-Carlo simulation to find the expected value
of the random variable 4, which is Gaussian distributed. For an
independent Rayleigh fading channel, we extend (9) and get the
constrained capacity as

. M-—1 M-1 _Herpxkfpach +HyH2
Cr=logM — — > B, logz e” 2T o0
k=0 7=0
(10)

Again, we use Monte-Carlo simulation to evaluate the double
expectation in (10), where the fading amplitude p is Rayleigh
distributed. In Tables I-IV, C and C* denote the minimum
E, /Ny needed to achieve the corresponding rate for an uncon-
strained and a constrained channel, respectively.

In the tables, we notice that for an outer repeat code, a single
inner accumulate code gives the lowest threshold. For an outer
SPC, the lowest threshold is achieved with two accumulate
codes. We know from the coding theorems in [14] that for PA!
codes, P, — 0 as N — oo, but Py does not. This implies
that the number of bit errors in a word n, # 0, but n, grows
slower than N (or stays constant), so P, = n./N — 0 as
N — o0o. Therefore, the thresholds for PA! codes are really
thresholds above which n. grows slower than P, /N. Note that
for PA! codes, the value of the F;, /Ny thresholds in Tables I-IV
depend on the choice P, < 10719, In Section IV, we derive a
stability condition which provides a lower bound on the E}, /Ny
threshold. For all other codes, the computed thresholds are
insensitive to the choice of the P, threshold.

We can consider a PA? code as an outer PA! code and one
inner accumulate code. The outer code has a cl](ml)n > 3 with a
probability approaching 1 as N — oo. Hence, for the concate-
nation PA2, Py — 0 with high probability as N — oco.

For PA? codes of rate 7, > 2 /3, the thresholds are about
1 dB away from the constrained capacity for AWGN channels,
and about 1.5 dB away for Rayleigh fading. For RA! codes, the
gap to the constrained capacity is between 1.5 and 2 dB for both
AWGN and Rayleigh fading. All codes under consideration are
regular. By using irregular RA codes [25], [26] or irregular PA
codes, we expect to reduce the gap to capacity.

We also notice that the differences between the thresholds
computed with m different channel densities and the thresholds
computed with one averaged density are small, in particular for
higher rates. Using one averaged channel density simplifies the
threshold computations.

IV. STABILITY CONDITION

As noted in the previous section, the DE thresholds for PA!
codes depend on the choice of target P,. To avoid this, we now
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derive a stability condition similar to the one in [16]. We assume
that decoding has progressed successfully to a point where only
a small fraction of bits remain in error, that is, the LLR den-
sity is close to a unit impulse. The stability condition gives the
minimum channel SNR required to ensure that the LLR den-
sity becomes a unit impulse at positive infinity as the number of
decoding iterations goes to infinity. If the messages in the DE,
the pdfs, are symmetric in the sense of (5), then a unit impulse
at +oo implies that f({) = 0 for all [ < oo, and hence, the
bit-error probability (BEP) P, = [°__ f(I)dl = 0.

Let a message consist of a discrete part at positive infinity, 6o,
and a continuous general density Q(1) # 60, [~ Q(1)dl = 1,
that is

m(l) = [(1 - €)beo +eQ(1)]

where 1 — e is the fraction of the pdf at +o0, and ¢ is the fraction
in the continuous part. We assume that a sufficient number of
iterations have been performed so ¢ is small. For the decoder to
have a fixed point, i.e., to be stable, at P, = 0, the continuous
part @ of the message must vanish as the number of iterations
goes to infinity. We wish to find the lowest £, /Ny for which @
vanishes.

We consider a rate 7. = (n — 1)/n parity code and sim-
plify the notation by incorporating the state information in the
bit node. The case of one averaged channel density was treated
in [27], and here we also analyze the case of multiple channel
densities.?

A. Averaged Channel Density

When the channel interleaver U is present, we average the
pdfs from the channel. This simplifies the analysis, since all
messages from a given node will be the same. A fragment of
the corresponding decoding graph is shown in Fig. 3(a).

In general, the operations performed at the nodes can be any
two operations, as long as they are associative and commutative,
and preserve the symmetry of the pdfs. In this case, the opera-
tions are ® and H, as previously described, which are associa-
tive and commutative. It was shown in [16] that they preserve
the pdf symmetry.

From the graph in Fig. 3(a), we get the following relationships
between the messages:

a:b®fL
c=aBa
d:CEEI(n—l)
b=aHd
md:CEEn.

The update equation for the message a and the decision message
mg in terms of the message a are

a :aEE(Zn—l) ® fL
H2n

Y
(12)

mg =a

3The notation for the single-density case is different in this paper in order to
be compatible with the notation for the multiple-density case.

fLm le fL2 fL,,l le

Fig. 3. (a) Fragment of the simplified decoding graph with a common,
averaged channel density. The one-input, one-output bit node between the
accumulate code and the SPC is omitted for clarity. (b) Fragment of decoding
graph with multiple input densities.

The probability of bit error is

0
Pb:/md(l)dl.

For P, to go to zero, the continuous part of the message my,
Qm, » must vanish on the interval (—oo, 0] as the number of iter-
ations (£) goes to infinity. Since m, is symmetric, this implies
that P, goes to zero if and only if my(l) — é.. as the number
of iterations goes to infinity.

In order to expand (12), note that Q HH 6. = @, 000 H oo =
000, and Q ® 0o = 0oo. Expanding the update equation for
message a as given in (11)

a :aE':I(anl) ® fL
= [(1 - Ea)é‘oo + EaQa]E(2n71) ® fL
= |:(1 — EG)(Qn—l)éi(Zn—l) 4 (ZTL _ 1)(1 _ gﬂ’)(Zn—l)—l

xeaQu B2V 1 0(2)] @ fr.
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Assuming ¢, small, we neglect €2 and higher terms, yielding

a=[1-2n—1)eq)boo +(2n —1)e,Qu] @ fr. (13)

After { iterations, the update equation is
a=(1-(2n—1)"cy) boo + (2n — 1) caQq ® f1*
and the decision message my after / iterations is
my = (1 —2n(2n — 1)Z€a) oo +2n(2n — 1)%e,Q, ® f?[.

The BEP P, is given by

0
P, = /2n(2n—l)lgaQa(l)(X)fL(l)@ldl. (14)

Since fr, is a symmetric density and Q) # 6., (14) goes to zero
only if

0
/ 2n(2n — 1) fr(1)®*dl (15)

goes to zero as £ — oo. Using Chernoff’s large deviation result,
as in [16], the condition in (15) can be restated as saying that

0

(2n—1)”/fL(1)®"dz

— 00

(16)

must go to zero as £ — oo. By defining the parameter r as

oo

r::—ln/fL(l)e’édl

— 00

the condition in (16) reduces to

2n —1<e'. a7
Finding the lowest channel SNR such that (17) is met gives us a
E, /Ny threshold 7., below which P, > 0. That is, the stability
condition is a necessary condition and provides a lower bound
on the E; /Ny threshold. It is stated without proof in [16] that
the condition is both necessary and sufficient. The stability con-
dition would, therefore, also provide an F /Ny threshold above
which P, — 0 as £ — oo.

B. Multiple Channel Densities

In this section, we derive a stability condition where we con-
sider m different densities from the channel. We now need to
keep track of different messages in the decoding of the accumu-
late code. Because of the interleaver between the accumulate
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code and the SPC, the messages are averaged before decoding
the SPC. Hence, the messages in and out of the SPC nodes are
all the same. A fragment of the decoding graph is shown in
Fig. 3(b).

In the previous section, the message a and b were the same
for all nodes. Here we need to account for multiple channel den-
sities and index the messages. The a messages become a;; =
[(1—eij)booteijQij], where 1 < i < mand1 < j < 2. Again,
we express the other messages in terms of a;;. All index addi-
tions and subtractions are performed modulo m. From Fig. 3(b),
we get

a1 = (a1 Bd) ® fr,
aiz = (agi—1)2 Bd) ® fr,.

At the input of the interleaver, we have
ci =a; Bag_1)

and at the output of the interleaver

m

C:%ZQ

i=1
=— — — — . — Em2)00o
m [(m €11 — €12 £ ,2)
+e11Q11 + €12Q12 + - - . + Em2Qma] -

Define the averages ¢ := (1/2m)} ;& and Q :=
(ZU EijQi]'/ 27] 6,‘,]’). Then we have

c=1[(1-2e)boo +2eQ)] .
The output from the SPC is
d= B = [(1 - 2(n = 1)g) boe + 2(n — 1)eQ)]
and the decision message is
mg = ¢ = [(1 — 2ne)bo + 2n£Q)] .
The update equations for aj1, ..., a2 are

a1 = [(1 —e(i+1)1 — 2(n — 1)6) S0
+ (e(i+1)1 Q411 + 2(n — 1)eQ) @ f1,]
Ao = [(1 —g(i—1)2 — 2(n — 1)6) Ooo
+ (ei—1)2Q(i—1)2 + 2(n — 1)eQ) @ fr,] . (18)

It is interesting to compare these expressions with (13), the up-
date equation for a in the case of a single averaged channel den-
sity. Here, () is an average over the ();;, and if all );; are equal,
the expressions in (18) are identical to (13). Instead of aver-
aging the channel densities before the decoder, the averaging
takes place within the decoder.
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TABLE V

STABILITY CONDITION E}, /Ny THRESHOLDS IN

DECIBELS FOR 8-PSK AND 16-QAM

8-PSK 16-QAM
AWGN Fading AWGN Fading
rate Ysc Ysc Vsc Ysc Ysc Ysc Ysc Ysc
172 528 5.19 7.89 7.83 | 6.15 6.01 8.63 8.53
2/3 6.18 6.14 9.82 9.79 | 696 6.90 | 11.10 11.06
3/4 | 671 6.68 | 11.12 11.10 | 7.57 7.55 | 13.00 12.97
4/5 7.07 7.06 | 12.11 12.10 | 8.05 8.04 | 1408 14.08
5/6 735 734 | 1270 1270 | 840 839 | 1435 1435
6/7 7.58 7.57 | 12.84 12.84 | 8.68 8.68 | 14.55 14.55
7/8 777 776 | 12.94 1294 | 892 891 14.69 14.69
8/9 793 792 | 13.02 13.02 | 9.11 9.11 14.81 14.81

The stability condition for m densities is somewhat more in-
volved than the corresponding criterion for an averaged density.
Let Q be a vector of densities @;;, such that the first element of
Q is the sum of the two densities ();; that are convolved with
fr, in the update equations for a;; (18). Let f;, be a column
vector of the channel densities fr,, ..., fr, and fr be the av-
eraged channel density.

The message c after / iterations can then be expressed as

c=[(1-26)8 + Q"]

and the update equation for the continuous density () is given
by

Q' =2n-1)Q"'® fr+Q ' ®f,

where QF is the vector Q after ¢ iterations. The BEP as ¢/ — oo
is then

0
P, = / Jim e()Brdl
0 ‘
— /ZE%O%;[z(n—l)r Q' ef e fy dl. (19)

If the m channel densities are all equal, then Q(I) ® fr(I) =
Q) ® fr(l), and (19) collapses to (14).

Since the expressions for the single density and multiple den-
sities are almost the same, we do not expect any large differ-
ences in the threshold values. Indeed, in Table V, we see only
small differences between the thresholds obtained from the two
methods. The threshold for an averaged density is denoted 7,
and the threshold for m densities is denoted ~sc.

V. SIMULATION RESULTS

In Fig. 4, we compare simulated bit-error rate (BER) perfor-
mance of an RA code to the DE thresholds for 8§-PSK modu-
lation over AWGN. The code rate is 1/3 and the blocklength

BER / WER

—5

10 L 1 1 1 1
1.2 1.25 1.3 1.35 1.4 1.45 1.5
Eb/N 0 (dB)
Fig. 4. Comparison of simulations to the DE threshold for an r. = 1/3

RA code with blocklength N = 105. The vertical, dot-dashed line is the DE
threshold.

10 : 10

T r
w10t N gm1
10}
I
5
—8 1 —2
1 : 1
05 6 7 195 7

6
E,/N, (dB) E,/N, (dB)

Fig.5. BER and WER as a function of the blocklength V. For the dotted line,
N = 103, for the dot-dashed line, N = 104, dashed line, N = 10°, and for
the solid line, N = 10°. The vertical, dot-dashed line is the stability condition
threshold.

N = 10°. The DE threshold is 1.44 dB, and is indicated with
a vertical dash-dotted line. The simulated performance corre-
sponds well to the threshold.

In Fig. 5, we show the BER and WER for rate-2/3 PA codes
of different blocklengths for 8-PSK modulation over AWGN.
We compare the BER with the stability condition threshold at
6.18 dB. As the blocklength increases, the BER decreases, but
the WER does not depend on the blocklength. This is consistent
with the coding theorems in [14].

In Fig. 6, we show the BER and WER for rate-2/3 PAZ and
PA? codes, blocklength N = 10°, 8-PSK modulation over an
AWGN channel. As the SNR exceeds the DE thresholds, both
the BER and WER decrease rapidly.
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Fig. 6. BER (solid lines) and WER (dashed lines) for PA% and PA® codes,
left and right plots, resp., with 8-PSK modulation over an AWGN channel. The
blocklength is N = 107, and the dot-dashed lines are the DE thresholds.

VI. CONCLUSIONS

We have analyzed an SCTCM system with one or more inner
accumulate codes. We have used DE to compute F}, /N, thresh-
olds for an iterative message-passing decoder. For PA® codes,
we have also computed lower bounds on the Ej, /Ny thresholds
using a stability condition.

We have devised a method to compute the LLR pdfs for
higher order constellations, and shown that these pdfs are sym-
metric. Furthermore, the m different LLR pdfs of a higher order
constellation can be averaged without significantly changing
the computed DE and stability condition thresholds.

For PA? codes, which have the lowest thresholds of the PA®
codes, and 8-PSK modulation over AWGN channels, the thresh-
olds are about 1 dB away from the constrained capacity for
r. = 2/3, and closer to capacity for higher rates.

APPENDIX
SYMMETRY OF LOG-LIKELIHOOD PDFS

Let the random variable L be an LLR and the value / an out-
come of L. In this appendix, we show that the pdf f1,(I) for the
LLR is symmetric in the sense of [16], i.e., that

fu(=) = e 'fr(l). (20)

As in Section II-A, S is a signal constellation of size |S| =
M = 2™, with a binary labeling of m bits, Sy is the subset of
S where the sth bit in the label is zero, and S; = S\ Sp.

The log-likelihood functions go(r) and gy (r) are defined in
(2). If the subscript O or 1 is omitted, the choice of function go(r)
or g1 (r) depends on the transmitted symbol s. For a given value
r, the only difference between go(r) and g; () in (2) is the sign.

The received value r is an outcome of the random variable R,
whose mean depends on the transmitted symbol s and variance
depends on the channel SNR. The function fg(r|s) is the pdf for
the received value r, given that the symbol s was transmitted. In
two dimensions, let 7 = (z,y), s = (s4, s,), and the functions
in (2) become go(z,y) and g1 (z,y). For independent Gaussian
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random variables X and Y, we get the pdf of the received values
z and y, conditioned on the transmitted symbol s, as

1 _m=sp)? 1 (y—sy)?
252

e —e 20

V2ro V2ro
Assuming all symbols are transmitted equally likely, the uncon-
ditional pdf is given by (3). The LLR L is a function of two
random variables, L. = g(X,Y), and the pdf of the LLR, f1,(I),
is calculated by (4). If, for fixed values [ and ¥, the equation
x = g~ Y(I,y) has several solutions, (4) should be integrated
over all such solutions.

fxy(w,yls) =

A. Proof for 2-D Constellations

We are now ready to verify (20). Define, for given values of
[ and y, the sets

zd = {x €R: go(w,y) = +1}
vy = {r € R: gola,y) = 1)
of = {r €R:gi(z,y) = +1}
ry = {r €R:gi(z,y) = I} 21)

where sets may be empty. By definition, go(z,y) = —g1(x,y),
sory = a7 and 2y = z7.
Inserting first (3) into (4) and then (4) into (20) yields

oo M
' 1
TR =t 17 S vl .
—oo I= z=g~'(Ly)
(22)

Split the summation into sums over Sy and Sy, and let .Jy and
Jp denote the Jacobian evaluated using go(z,y) and g1(z,v),
respectively. The right-hand side of (22) becomes

(oo}

e / |Jo|_1% Z fxy(w,yls))

o J€Mo0

=gy (L,y)

1
+|J1|_1M Z fxy(z,yls)) dy. (23)
JE€EM r:g;l(l,y)

Recall that we sum (integrate) over all probability contributions

for which z = g~1(I, y). Bring ¢~ inside the integration to get

1 7 1
i / [To| 7' e™ Y fxv (@, yls))
oo jemn 2=gy" (L)
+]Jp| et Z Ixv(z,yls;) dy. (24)
JEM r:g;l(l,y)
By the definitions in (21), g1(z,y) = —I for z € =z, and
go(z,y) = —lforz € zf,s0 e™! = 9@ forany v € zf
and e~! = e%(*¥) for any z € x7". Then (24) can be written
! ' T Legr(zy)
i |Jo| e ZfXY(x;?Asj)
oo J€mo e=g5 " (1y)
T NS frey (x,yls) dy. (25)

< -
JEm w=g7 " (l,y)
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Using the definitions of gy and g1, we get

/. |J0|,1 Z]G'Ih fXY(x y|8])
M

J€7]0 fXY(iU,y|5j)

X Z fXY($7y|SJ)
g€ =g5 ' (Ly)
D ien [xv (@, ylsj)

+ |47
Zjenl fXY($7y|sj)

X Z fxv(z,ylsj) dy. (26)
iem =g, '(Ly)
Cancel terms to reduce (26) to
- / ol S Fry (@ yls;)
Jem =gy ' (Ly)
+|J1|” Z Ixy(z,y|s;) dy. (27)
J€0 e=g; ' (Ly)
Since zf =z and 2y = z7, and |Jo| = |J1|, we get
1 T _
M | ™8 v, yls))
Jem w=g7" (=)
Il ™D fxv (@, yls;) dy
J€mo z=g; ' (—Ly)
- / S v (o ylsy)
J€m e=g; ' (~Ly)
+[Jo|™ Z fxv (@, yls)) dy
i€n0 e=g; ' (~1.y)
= [ |17 57 3 peaals) dy
—oo =t =9-'(~Ly)
= fo(=1).
|

B. Proof for 1-D Constellations

In the 1-D case, the LLR functions gg and g; are functions
of one random variable. The Jacobian determinants become the
derivatives of go(z) and g1 (z) with respect to z. The proof of
symmetry follows the proof for the 2-D case.
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