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Abstract—For a linear block code �, its stopping redundancy is
defined as the smallest number of check nodes in a Tanner graph
for �, such that there exist no stopping sets of size smaller than
the minimum distance of �� Schwartz and Vardy conjectured that
the stopping redundancy of a maximum-distance separable (MDS)
code should only depend on its length and minimum distance.

We define the ��� ��-single-exclusion number, ���� �� as the
smallest number of �-subsets of an �-set, such that for each
�-subset of the �-set, � � �� � � � � � � �, there exists a �-subset that
contains all but one element of the �-subset. New upper bounds
on the single-exclusion number are obtained via probabilistic
methods, recurrent inequalities, as well as explicit constructions.
The new bounds are used to better understand the stopping
redundancy of MDS codes. In particular, it is shown that for
��� � � � � � � �� �� MDS codes, as ����, the stopping redun-
dancy is asymptotic to ���� �� 	�, if � � 	�

�
��, or if � � 	�

�
��,

����, thus giving partial confirmation of the Schwartz–Vardy
conjecture in the asymptotic sense.

Index Terms—Erasure channel, iterative decoding, maximum-
distance separable (MDS) code, single-exclusion number, stopping
redundancy, stopping set, Turán number.

I. INTRODUCTION

T HE stopping redundancy of a linear code characterizes
the minimum “complexity” (number of check nodes) re-

quired in a Tanner graph for the code, such that iterative erasure
decoding achieves performance comparable to (up to a constant
factor, asymptotically) maximum-likelihood (ML) decoding. It
can be viewed as a basic measure of the complexity–perfor-
mance tradeoff in the use of redundant parity checks (RPCs)
in an iterative decoder on the erasure channel.

Although this tradeoff is less straightforward to understand
in non-erasure channels, there is empirical evidence that RPCs
can improve performance in belief-propagation decoding on an
additive white Gaussian noise (AWGN) channel [1], [2], and, re-
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cently, the concept of stopping redundancy has provided partial
motivation for novel decoding algorithms that achieve near-ML
performance for short, high-rate codes [3].

Formally, we define stopping redundancy as follows. Let be
an linear code, and let be a parity-check
matrix for . We shall assume that , but may
be larger than . The Tanner graph is a bipartite
graph with variable nodes, each corresponding to one column
of , and check nodes, each corresponding to one row of ,
such that variable node is adjacent to check node if and only
if . A stopping set in is a set of variable nodes such
that all check nodes adjacent to the set are connected to the set at
least twice. It is well known [4] that iterative erasure decoding
is successful if and only if the set of erasure locations does not
contain a stopping set. The size of a smallest nonempty stopping
set, referred to as the stopping distance and denoted by ,
is therefore an important parameter governing the performance
of the iterative decoder. It is clear that , and it is not
difficult to see that equality can be achieved for any code, for
example by choosing the rows of to be the nonzero codewords
of the dual code . This leads to the following definition.

Definition 1: Let be a linear code with minimum distance .
The stopping redundancy of , denoted by , is the smallest
integer such that there exists a parity-check matrix for with

rows, and .

Stopping redundancy was introduced by Schwartz and Vardy
[5], [6], and was further studied in [7], [8]. The concept was
later extended in a number of interesting ways [9]–[11]. Related
concepts, such as stopping set enumerator, and generic erasure-
correcting sets, were studied in [12], [13], and in [14], [15],
respectively.

In this paper, we study the stopping redundancy of maximum-
distance separable (MDS) codes. A code is MDS if it satis-
fies the Singleton bound [16] with equality. Hence, an
linear code is MDS if . MDS codes are in-
teresting for their unique properties and their close relation to
other problems in mathematics and engineering. They are also
very widely used in practice, a prime example being the class of
Reed–Solomon codes [17].

For the rest of the paper, unless otherwise noted, denotes
an linear MDS code. In [6], it was shown
that for all

(1)

where
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is the minimum distance of , the dual code of . The authors
of [6] then made an intriguing conjecture that should in
fact be a function of just and .

Note that the upper bound in (1) is never better than

So the upper and lower bounds can differ by up to a factor
of . In [8], Han and Siegel observed that the upper bound
can be improved by introducing a new combinatorial quantity,
the single-exclusion number, which we describe below. Before
doing so, we first review two related, well-studied combina-
torial constructs. For positive integers , and an

-set1 , an -Turán system [18] is a collection of -sub-
sets of , called blocks, such that each -subset of the -set
contains at least one block. The -Turán number, de-
noted hereafter by , is the smallest number of blocks
in an -Turán system. A concept “dual” to that of a Turán
system is that of a covering design [19]. Specifically, for

and an -set , an -covering design is a collection
of -subsets of , also called blocks, such that each -subset of
the -set is contained in at least one block. The -cov-
ering number, denoted by , is the smallest number of
blocks in an -covering design. Clearly, by definition

The stopping redundancy of an MDS code is closely related
to covering/Turán numbers. In fact, the lower bound in (1) was
shown by noting that to maximize , the supports of min-
imum-weight rows of must form an

-covering design (equivalently, the complements of supports
form an -Turán system). Hence

We now define the single-exclusion number, which was in-
troduced in [20].

Definition 2: For an -set and , an -single-ex-
clusion (SE) system is a collection of -subsets of , called
blocks, such that for each -subset of , ,
there exists at least one block that contains all but one element
from the -subset. The SE number, , is the smallest
number of blocks in an -SE system.

Note that an -SE system is a special kind of
-Turán system. Note also that if we require all rows in the

parity-check matrix to be of minimum weight, then
is equivalent to the condition that the sets of column indices
corresponding to the zeros in each row form an -SE
system. Hence

Therefore, any upper bound on is an upper bound
on .

In [8], a number of upper bounds on were obtained
using combinatorial constructions and were shown to be su-
perior to the upper bound in (1). It was shown that

for , , and
for . It was also shown that

1An �-set is a set that contains � elements. Similarly, if � is any set, then a
�-subset of � is a subset of � that contains � elements.

is asymptotic to (and to ) as
for any fixed , and that it is asymptotically at most

for any fixed .
In this paper, we build upon the work in [8] and investigate

through a number of different approaches. New upper
bounds are obtained and analyzed. They are then used to show
that as , is asymptotic to if ,
or if .2 Hence, in an asymptotic sense, the
Schwartz–Vardy conjecture is proved in these cases. For all

, it is shown that . A lower bound on
is also derived.

The connection between SE systems and the stopping redun-
dancy of MDS codes provides ample motivation to better un-
derstand their properties. In addition, they hold intrinsic appeal
as well-defined mathematical objects with close relationships
to other combinatorial constructs, such as covering designs and
Turán systems, that have found wide use in discrete mathematics
and its applications.

The rest of the paper is arranged as follows. Section II is
devoted to upper bounds on . The bounds are obtained
through three approaches: combinatorial construction, proba-
bilistic methods, and recurrent inequalities. Certain asymptotic
properties of our bounds are observed and discussed, some con-
firming the Schwartz–Vardy conjecture in an asymptotic sense.
The upper bounds are also compared numerically with the best
bounds found for up to . In Section III, we derive a lower
bound on and observe its implications. Section IV fo-
cuses on the Schwartz–Vardy conjecture. We prove the conjec-
ture for all MDS codes with , and comment on why

may be a reasonable estimate of . Section V
concludes the paper.

II. UPPER BOUNDS ON

We start with some preliminaries. For any set , let de-
note the set of all -subsets of . We say that covers another
set if . Hence, if is an -set, then is
an -SE system if and only if for each and

, there exists a block in that covers . A covering
design/Turán system/SE system (with prescribed parameters) is
said to be minimal if it contains the least number of blocks.

By definition, an -SE system is also an -Turán
system. Hence, we have

(2)

where the second inequality [22] follows by noting that each
block in the Turán system is contained in distinct

-subsets.
Let be an linear MDS code. Recall

that the stopping redundancy of is related to SE and Turán
numbers in the following way:

2We adopt the standard “�-notation” and related asymptotic expressions
[22, Ch. 9]. Functions ���� and ���� are said to be asymptotic to each other,
denoted by ���� � ����, if ��� �� ��������� � �, or equivalently, if
���� � �� � ���������, where ���� stands for any function that goes
to zero as � goes to infinity. More generally, we write ���� � ������� if
��� �� ���������� 		
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or equivalently

We now focus on upper bounds on .

A. Probabilistic Bounds

Probabilistic methods were used to obtain general upper
bounds on stopping redundancy [8], [23]. For the case of
SE number, we appeal to the same approach with a different
argument.

Let be an -set. Consider the following random experiment
in which we build an -SE system, . In the first
step, for a prescribed real value , insert into each
element of with probability . The expected size of at
this point is but some -subsets, , may not
be covered. The probability that a given -subset is not covered
equals where

So, as a second step, for each , , that is
not yet covered, insert into some element of that covers

. The expected size of is then bounded from above by

This implies the following upper bound on .

Theorem 1: For all ,

(3)

Alternatively, in the first step of the random experiment, we
may instead make random drawings from . At the end of
the first step, the probability that a given -subset is not covered
equals

if the drawing is done with replacement, and equals

where , if the drawing is done without re-
placement. The results are the following bounds.

Theorem 2: For all

(4)

Theorem 3: For all ,

(5)

Theorem 3 is clearly stronger than Theorem 2, and is closely
related to Theorem 1. In fact, one can show that

So the upper bound (5), when minimized over , is no greater
than

Note that we have strategically allowed to take the value
in the above expression. On the other hand, letting in
(3), we see that the minimum value of the upper bound (3) is

Now, suppose the minimum value of the above expression is ,
achieved at . Then its value at is less than .
Therefore, we conclude that the upper bound (5) (when mini-
mized over ) is less than the upper bound (3) (when minimized
over ) plus two. In practice, the difference between the two
bounds is very small, while the upper bound in (3) is usually
easier to compute.

The upper bound in (3) can be written as

(6)

The first term in (6) is minimized when takes the value

in which case (6) becomes

(7)

where

(8)

As , it can be shown (see Appendix A) that if
, then the term corresponding to prevails in the

sum (8). Therefore
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Plugging the above into (7), we conclude that as , the
bound (7) is3

if
if

if

where is any constant. By the choice of , and the fact
that for the st term prevails in (8), no other
values of give asymptotically tighter bounds than the above.

For the case when , a different asymptotic anal-
ysis (see Appendix B) shows that the bound (3), when mini-
mized over , is for all such that

, and is, particularly, for all
.

B. Constructive Bounds

Our first construction for SE systems is based on a Turán
system construction due to Kim and Roush [24].

Construction A: Let be an -set, and be a positive
integer. For a prescribed positive integer , partition into
subsets, , , as equally as possible. Thus,

, such that for all . We will call
each a bin. Define

For , let

where

Note that in the above definition of , the subscript is
to be interpreted as , and we shall stick to this
convention where applicable.

Proposition 1: For all and all , as
given in Construction A is an -SE system.

Proof: We show that any , ,
is covered by a block in . If for some , let

be selected such that and
is minimized. Such exists since , which
implies that Now let be chosen such
that if then . Note that covers

. Note also that , and that the choice of
and ensures . Hence, .
On the other hand, if for all , select one

element in each such intersection, say . Now,
choose such that , and consider ,

. All these sets cover , and since

3We write ���� � ����, if ���� � �������, and similarly, ���� � ����,
if ���� � ��� ����, as ����.

, the set contains con-
secutive integers, one of which must be congruent to modulo
. Hence, for all , there exists such that is covered by

.

Theorem 4: For all integers

Proof: From Proposition 1, for all

Noting that

where

and that is a partition of , we have

An alternative (slightly looser) form of the upper bound is
given in the following theorem.

Theorem 5: For all integers

(9)

Proof: Note that

The rest of the proof is similar to that of Theorem 4.

Corollary 1: For all fixed , as

Proof: Theorem 5 applies provided that . If
, let . From (9), we have
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For , let . If is even, the above derivation is
still valid. If is odd, then there is one bin that contains a single
element, while the remaining bins each contain two
elements. From the proof of Theorem 5, we have

Hence

For , the result has already been shown in [8].

Since

Corollary 1 also implies that for any fixed

confirming a conjecture made in [8]. Note that the asymptotic
factor of in the above inequality is sharp for , in which
case , while .
For , stronger results can be obtained using recurrent
inequalities, as shall be discussed in the next section.

Construction A is also a construction for Turán systems. In-
deed, it can be viewed as an improved version (i.e., one with
fewer blocks) of the Turán system construction in [24].

Proposition 2: For all and all , as given in Construction
1 is an -Turán system.

Proof: The proof is similar to that of Proposition 1.

Our second construction for SE systems is inspired by a con-
struction for Turán systems due to Frankl and Rödl [25].

Construction B: Let be an -set, and be a positive
integer. Let , , and , , be
defined as in Construction A. For , let

where

and

are the number of “empty” and “full” bins for , respectively.
For , the constructed subset of is

where is constructed as follows. Fix an arbitrary total order
on . Let be an index set that satisfies

, and is minimal in the sense that all proper
subsets of violate this condition. For each such and ,

, let contain the -set that consists of all elements from

bins , the smallest elements of ,
and the smallest elements of .

Proposition 3: For all and all , as given in Construction
B is an -SE system.

Proof: We show that any , , is
covered by a block in . If , note that all -subsets of
can be written as , for some . Since

for all , by choosing from different bins
that intersects, we can make take on
different values. Since no two of these values differ by more
than , this also means that we can realize different
values for . Since only numbers in

are greater than , there exists such
that , hence ,
and it covers .

If , consider two cases. First, let us assume that there
exists , such that and . In this case,
remove from an arbitrary element in , add in other
elements from using as few elements from as possible,
and call the resulting -set . That is, ,
for some and some that has a
minimal number of elements from . Note that the choice of

ensures that . Since
for all , by choosing , , from

different bins where possible, we can make take on
different values. This also means

that we can realize different values for .
Since only numbers in are greater
than , there exists such that

, hence , and it covers .
Next, if no exists such that and , this

means that for all such that , we have .
Figuratively, it means that consists of a number of full bins.
Let be any bin that intersects. Let be its largest
element. Take , and add to it elements from bins that

does not intersect, one bin after another, from the smallest
to the largest within each bin, until is augmented to
contain elements. By construction, the -subset thus obtained
is contained in .

Theorem 6: For all positive integers

where

Proof: From Proposition 3, for any prescribed

To further bound , first note that
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where if , and otherwise. Similarly

Now, since each is contained in precisely
’s, we have

Hence

Finally, note that contains -subsets for
each valid , which must satisfy and

. Therefore, .

C. Recurrent Bounds

We observe that an -SE system can be constructed from
an -SE system and an -Turán system,
as shown in the following lemma.

Lemma 1: For all

or, equivalently, for all

Proof: Let be an -set and be an arbitrary ele-
ment. Let be a minimal -SE
system, and be a minimal -Turán
system. Define . Then is an

-SE system. Indeed, for all , ,
if , then there exists such that

, which implies that ,
i.e., is covered by a block in . The only cases left are when

, and when . In either case, is
covered by a block in .

Theorem 7: For all

(10)

or, equivalently, for all

(11)

Proof: Recursively apply Lemma 1.

Interesting results follow. When , (11) implies that
, which is sharp. When , since

, (11) gives

which is asymptotically tighter than Corollary 1.
Generally, since exact values of most Turán/covering num-

bers are not known, the upper bounds in Theorem 7 often cannot
be directly evaluated. To get a computable upper bound, one can
simply replace each Turán/covering number in the sum by an ex-
plicit upper bound. We show several ways to do this. The first
one is based on a result by Erdös and Spencer [26].

Theorem 8: For all

Proof: In [26], it was shown that for all

(12)

Plugging (12) into (11), we obtain the claimed result after
some algebraic manipulations.

The second computable upper bound is based on an upper
bound on Turán numbers due to Sidorenko [18, Construction 4].

Theorem 9: For all and positive integers

where

and .
Proof: Omitted.

A third way to obtain an explicit upper bound from Theorem 7
is based on a construction of an -covering design due
to Kuzjurin [27], although we count blocks in a slightly different
manner.

Lemma 2: For all positive integers

Proof: Let be an -set. Without loss of generality, let
. Let

and

s.t.
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For each , we can add one block to , such
that . Hence, by adding no more than blocks to ,
we construct an -covering design. Therefore, for
all

Now note that for all , , we have
. Therefore, for all there is at most one block

in such that ; on the other hand, for every
there are elements such that . Hence

We have

Therefore, there exists , such that

Plugging the bound in the preceding lemma into (11), we ob-
tain the following theorem.

Theorem 10: For all

Proof: Omitted.

Corollary 2: For all

In particular, as , if and , then

Proof: Omitted.

Interestingly, a similar asymptotic result can be shown for
when is relatively small. First, we note the following

theorem relating SE and Turán numbers.

Theorem 11: For all

Proof: We will use the fact [28] that

From Theorem 7, we have

In [8, Theorem 21], it was shown that is asymptotic
to for any fixed as . Theorem 11 enables
us to extend this result to all .

Corollary 3: For all

In particular, as , if , then

Proof: Note that

The result then follows immediately from Theorem 11.

D. Comparison of Upper Bounds

We numerically computed several of the upper bounds on
, and hence on , for all .

For each pair, the tightest bound is identified, and the re-
sults are shown in Fig. 1. Other bounds in the comparison that do
not appear in Fig. 1 are those of Theorem 8, [1, Theorem 27],
[1, Theorem 39], and the upper bound in (1), which is due to
Schwartz and Vardy [6]. Note that is not considered,
since in this case (and ) is known to be at most

, for which either precise formulas are
known, or tighter special upper bounds exist [8].

We observe that Theorem 9 appears to be the best upper
bound except when the code rate is low, in which case The-
orems 1, 4, and 10 give better results. Theorem 6 yields the
tightest bound for just a few occasions with small values of
and .

Some examples of the upper bounds are given in Table I. The
tightest are highlighted in boldface. For comparison, a lower
bound on (hence on and as
well) has been included, based on (13) (see Section III). Com-
pared to upper bounds previously known, significant improve-
ments are observed. As a side note, we caution that while The-
orem 10 is an excellent bound when is very close to , it be-
comes loose quickly as gets smaller, and should be avoided if
the code rate is greater than .
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Fig. 1. Best upper bounds on ���� ���� (hence on ����), for ���������.

TABLE I
UPPER BOUNDS ON ���� � � �� AND ����

III. LOWER BOUNDS ON

A few other lower bounds on Turán/covering numbers are
known, besides the simple lower bound in (2). For example,
Schönheim [28] showed that

(13)
Another useful bound is due to de Caen [29]

Note that a lower bound on is in turn a lower
bound on and on .

In this section, we study a lower bound result on
(which is not a lower bound on in general). Note
that a lower bound (just) on is not necessarily a lower
bound on .

Theorem 12: For all

Proof: Let be an -set, and be a minimal
-SE system. For each , can be partitioned into

blocks that contain and those that do not, namely

where and .
Note that for all , is an -Turán system. Further,
if we let , then each member of

includes an element of as a subset. To see
this, suppose . Then is a -set
and so there exists such that . Since

, we must have . Hence, and
.

On the other hand, since each element of is contained in

-subsets of , it is contained in at most distinct
-sets in . Therefore

This lower estimate can be improved by a more careful argument
as follows. Let

...

...

Note that for all . Since is finite, there
exists such that for all . Regardless, define

We claim that on average, an element in is contained in at
most -sets in . To see this, consider
a process in which we enumerate elements of , and for each
element, “mark” the -sets in that contain it.
We start with elements in and proceed to , and
so on. Each element in is contained in -sets in

, at least one of which lies in . Therefore, for each
element in , at most -sets are marked. Now, for
any , by definition, there exists , such that

. Hence, among the -sets that contain , at
least one of them, namely, , is already marked. Therefore,
processing any marks at most additional
-sets in . A similar argument shows that among

the -sets that contain an element of , at least one
of them is already marked after elements of have been
processed.
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For , we show that on average, each element marks at
most -sets in . Let . As

, there exists such that .
Since , we have and, hence, .
In fact, , since otherwise it would imply
that . Now, let , and denote by the
number of elements of that are contained in . Note
that , since contains both and . Therefore, of
the elements that are contained in , each on average marks

-sets in . For other elements in , the
above argument can be repeated until all elements have been
considered.

Based on the preceding discussions, we conclude that on av-
erage, each block in is contained in no more than

-sets in . Hence

(14)

Since each block of appears in of the ’s, we have

Summing (14) over all , dividing both sides by , and noting
that (since was chosen to be minimal) gives the
desired inequality.

Corollary 4: For all , we have

Proof: Simply use the facts that

and

Equivalently, letting , we have that for all

hence the following corollary.

Corollary 5: For all , as

Proof: Trivial.

For fixed , the value is asymptotic
to (cf. [30]). So the above corollary shows that for
any fixed , the ratio
is bounded away from as .

IV. ON THE SCHWARTZ–VARDY CONJECTURE

Schwartz and Vardy [6] conjectured that the stopping redun-
dancy of an MDS code only depends on its length and minimum
distance. Han and Siegel [8] showed that for , the
upper and lower bounds on for any MDS
code differ by at most . Using Theorem 7, we can now close
the gap completely and prove the Schwartz–Vardy conjecture
for all MDS codes with .

Theorem 13: For all

Proof: Let be a minimal -Turán system, .
We show that must also be an -SE system. Since is
an -Turán system, all -sets are covered. In [8], it was
shown that all -sets and -sets are covered too. It remains to
show that all -sets are covered. Suppose, to the contrary, that
some -set, , is not covered. It was shown in [8] that at least

blocks in contain elements from , and those that
do not form an -Turán system. Hence

However, from Theorem 7

And since (cf. [18])

we have

Together, these imply that

Putting the upper and lower bounds on together, we have

However, since it is known (cf. [31], [32]) that
, the above inequality results in a contradiction

for all . For , the theorem can be verified
directly, and was also proved in [8] (for ) using
a different argument.

Summarizing Theorem 13 and results in [8], we reach the
following conclusion.

Proposition 4: If is an MDS code, and
, then

Proof: For , it is easy to find
that , , , and verify that
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in all three cases. Otherwise, since
, it follows immediately from

Theorem 13 and [8, Theorems 14 and 16] that

in all other cases.

In addition, from Corollaries 2 and 3, we see that as ,
if , or if and , then

So in these cases we may say that the Schwartz–Vardy conjec-
ture holds in the asymptotic sense.

Our approach regarding the conjecture has been so far to show
that in some cases the upper and lower bounds on stopping re-
dundancy (SE and Turán numbers, respectively) converge, ei-
ther exactly or asymptotically. However, we have seen that in
other cases the corresponding SE and Turán numbers can be
provably different, even in the asymptotic sense (for example,
see the discussion following Corollary 5), which shows the lim-
itation of the current approach in fully resolving the conjecture.

It was conjectured in [20] that for an MDS
code

(15)

the proof of which would in turn prove the Schwartz–Vardy con-
jecture. We have shown that (15) is true for and
that it is true in an asymptotic sense for , and for

, . A reasonable question to ask is: what if
both and are larger than ? For example, what if
approaches a constant? The current approach only bounds
to within a factor of up to . For example, using the result of
Theorem 8, we have

while, for the lower bound, we saw that

Alternatively, let us make the following observation. Suppose
we are given one optimal parity-check matrix, i.e., one with
rows that maximizes stopping distance. It is not apparent that all
rows should have minimum weight, but suppose rows are of
minimum weight and the rest are not. We can replace each row
that is not of minimum weight (and whose weight is, of course,
at most ) with no more than minimum-weight
rows, such that the union of supports of these rows is precisely
the support of the row they replaced. It is simple to verify that
the replacement procedure does not decrease the stopping dis-
tance, which also implies that the rank of the matrix is not re-
duced. After all rows that are not of minimum weight have been
replaced, we obtain a parity-check matrix with at most

rows, all having minimum weight, that achieves maximum stop-
ping distance. Therefore

Now note that

so we have

Without knowing better how compares with
, if we just ignore the second term, we obtain

This shows that in many cases, is a good estimate of
. For example, if the code rate ,

then

And, clearly, for any constant code rate, is within a constant
factor of .

V. CONCLUDING REMARKS

While we have obtained a fairly good understanding of the
SE number, and in some cases come close to uncovering the true
value of the stopping redundancy of MDS codes along the way,
many interesting questions remain unanswered. For example,
what is the asymptotic value of for a fixed ?
And how does compare with in general?
(Do they differ by at most a constant factor?) Finally, is it true
that the stopping redundancy of an MDS code
equals ?

APPENDIX A
ASYMPTOTICS OF (8) FOR

Rewrite (8) as

(16)

where

Assuming

we show that the st term

prevails in the sum of (16).
It suffices to show that each of the other terms is an

fraction of . For , it is easy to verify that
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In general, we have

(17)

For , consider two cases. For
, we have

In this case, (17) decreases super-exponentially with , and is
certainly . On the other hand, for ,
we show that , by showing that

is monotonically increasing for . Indeed,
for , we have

APPENDIX B
ASYMPTOTICS OF THE BOUND (3) FOR

Let , and . The right-hand side of
(3) becomes

(18)

Let . Assume that

( being a special case). We show that the
first term in (18) prevails. Note that

For , we have

For , we have

Noting further that for

we see that the second term in (18) is at most

Hence, at , the upper bound (3) is asymptotic to
for all such that ,

which implies that for , the
upper bound (3), when minimized over , is .

Note that the estimate is not always tight.
For example, when , we have shown using a dif-
ferent analysis that the upper bound (3), when minimized over

, is in fact . However, note that by keeping
just the term in the sum, the upper bound (3) is at least

where . In particular, this shows that the
estimate is tight if is . That is, the

bound (3) is when minimized over , for all
.
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