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Abstract— New bounds on single-exclusion numbers are ob- It is also straightforward to see that &n,r)-SE system is
tained via probabilistic arguments, recurrent relations, as well necessarily arin, r + 1, r)-Turan system. Noting further that

as explicit constructions. The new bounds are used to better h block _ in thi i ntain Lo
understand the stopping redundancy of MDS codes. In particular, ?:li 1?—§Sbsfaa':z \?vl;bﬁg;[/e this case) is contained sin—

it is shown that for any fixed k, the stopping redundancy of a

linear [n, k] MDS code is between— (") and (14 o(1)) (?). 1 1
Y (x) ( )% () S(n,r) >T(n,r+1,7)> (7“11) r+1 (n)

In [2], the stopping redundancy of MDS codes was con-
We say a sel coverssetB if |[B\ A| = 1, i.e. if A contains hected to covering numbers, and it was shown that for any
all except one element aB. An (n,r)-single-exclusion (SE) linear[n, k,d = n — k + 1] MDS codeC with d > 3,
system[1], n > r, is a collection ofr-subsets of am-set, 1 n max{n—d+2,d—1} [ n
calledblocks such that alf-subsets of the-set,i = 1,....7r+ 77 (d 2) <p(C) < - (d B 2)-

1, are covered by at least one block. The smallest number_of : i i i
blocks in an(n, r)-single-exclusion system is called the, r)- The connection was further studied using results on Turan

single-exclusion (SE) numbeand is denoted by(n, ). An numbers and through the definition of SE systems in [1], based

(n,r)-SE system withS(n, ) blocks is said to beninimal ©n the observation that
The stopping redundancf?] of a linear codeC, denoted by T(n,d—1,d—2) < p(C) < S(n,d—2).

p(C), is the smallest number of rows in a parity-check matrix

of C such that the smallest size of nonempty stopping sets [3gNce: upper bounds op(C) can be obtained by studying
is equal to the minimum distance 6f upper bounds on SE numbers. Indeed, much improved upper

The stopping redundancy of a code characterizes the mjp_unds had been found this way in [1]. In this paper, we will

imum “complexity” (number of check nodes) required in urther improye these _results. .

Tanner graph of the code, such that iterative erasure degod| It was conjectured in [2] that the stopping redundancy of
achieves performance comparable to (up to a constant IaCLYJPS ﬁOdehS shouldhonlyglepenlc; oln tqe cade parar;:atamj b
asymptotically) maximume-likelihood (ML) decoding. In the” raF eLt anont € code |ts$ - 1N [f].’; IS vC\i/gs Sh own to be
case of maximum distance separable (MDS) codes, stoppFﬁ in the asymptotic sense for any fixédand in the exact

redundancy has a highly combinatorial nature, and is S in some special cases (whérs small). It was also
y gnty o njectured thap(C) should equalS(n,d — 2).

rel E numbers, defin v,nTr'nnmrﬂo . ;=

e;:?ec:q;t,o :n (n uS tt))?TEr;:sygtde;?zO:si ? i: ;coIILtja ct?c?ns F ur primary motivation for the fL_thher study of SE sys_tems

of t—sub,sets o;‘ ém—set caIIedeocEs s_ucf,1 that everys- 1S th?'r evident relevan_ce to an |mproved understand_mg of

subset of then-set cont,ains at least one block. Tharan lterative erasure decodmg, especially the MDS stoppmg re

number T(n, s,t), is the smallest number of blocks in a dundancy conjectures outlined abpve. The resu!ts of thpepa
L i L ntake us one step closer to resolving them, particularly Her t

(n,s,t)-Turan system. An(n, s, t)-Turén system igninimal asymptotic case wittk fixed

If it contains T'(n, ,¢) blocks. A related concept is that of In addition, we believe .that SE systems warrant further

[ [ . - i i > 5> i L .
covering d_eS|gn [5]. Anln, s t)-covering designn > s > , attention because of their intrinsic mathematical appEady
is a collection ofs-subsets of am-set, callecblocks such that : . . o
are natural combinatorial objects, intimately connected t

everyt-subset of ther-set is contained in at least one block;

The covering numberC(n, s,t), is the smallest number of Covering designs and Turan systems, and it is not hard to

. ) . : imagine that they might become useful in other applications

blocks in an(n, s, t)-covering design. An(n, s, t)-covering . : O
. . ; . e Indeed, certain properties of SE numbers are rather simgris
design withC'(n, s,t) blocks is said to beminimal Clearly, .
L For example, we shall see that for any fixed
by definition,
S(n,n—k—1)
) < - .

T(n,s,t):C’(n,n—t,n—s) T(n,n—k,n—k—l)*(l—FO(l)) 1+k

n—r o
I. INTRODUCTION
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Thus, despite the stricter requirements imposed upon the SHhe bound of Theorem 3 is clearly tighter than that of
system in comparison to the Turan system, the increase in fteeorem 2, and is closely related to the bound of Theorem 1.
total number of blocks is very small, for example, only up tén fact, one can show that
two percent wherk = 50. , i)

As shown in the remainder of this paper, expanding our = i(rﬁ;ﬁ) t—1\ " B
knowledge about SE systems can shed further light upon H 1= (™ —j s|1- W

properties of both MDS codes and combinatorial constructs 7=0

to which they are closely related. On the other hand, if we let=t/("), then (1) can be written
as
Il. PROBABILISTIC BOUNDS a1 : ("7
. n
For any setd, let [A]* denote the set of al-subsets of4. S(n,r) <t+ Y <Z> (1 - W) :
Let N be ann-set. Consider the following random exper- i= T

iment in which we build an(n,r)-SE systemS C [N]". In Hence, excluding integer effects, the bound of Theorem 3 is
the first step, for a prescribed real valpe (0, 1), insert into  at most that of Theorem 1 plus one. In practice, the diffeeenc
S each element ofN]” with probabilityp. The expected size between the two will be small, while the bound of Theorem 1

of S at this point iSp(Z), but somei-subsets; = 1,...,r+1, is usually easier to compute.
may not be covered. The probability that a giviesubset is  Asymptotically, asn — oo, it can be shown that (details
not covered equalél — p)#(™) where omitted) if n = Poly(r), then the upper bound in (1)
, , (minimized overp) is O (222 (™)). In particular, ifn — r is
N\ — 4 n—u — n—1 A Inn (n H H
o(n,r,i) =1 reint) =) a constant, then the upper boundds(22 (")), while it can
also be shown that in this case the bound must grow faster
So, as a second step, for eakhec [N]?, i = 1,...,r + 1, than<(7), for any constant. We shall see in later sections

that is not yet covered, insert int8 some element of N]” that other bounds provide much stronger results in this.case
that coversX. The expected size &f is then bounded from In the other extreme, if is a constant, then the bound in (1)

above by is asymptotic to("'), the trivial upper bound.
r4+1
p<”) + Z (”) (1 — p)e(mri), I1l. CONSTRUCTIVE BOUNDS
" = Construction A:Let N be ann-set, and letr be a pre-
This implies the following upper bound ofi(n, r). scribed positive integer such thak n — 2. Partition N into
Theorem 1:For all0 < p < 1, subsetle, 1=0,...,1—1, as equally as possible. Thug,=
i1 Ul 0Nz, such thath/lJ < |N;| < [n/1] for all i. For all
S(n,r <p( ) +Z< ) (o) L X C N, define theweightof X asw(X) = Zﬁ éz|XﬂN|
Forallj € {0,...,l — 1}, a subset of N]" is constructed as

Alternatively, in the first step of the random experiment, wiollows: .
may instead make random drawings fronpiN]". At the end Bj =ZU By,
of the first step, the probability that a giveérsubset is not

covered equals where
t
(1_@(71,7“,2')) Z={X € [N]":3k, X NN, =0,Ny_1 € X},
() and
if the drawing is done with replacement, and equals Bj ={X € [N]":w(X)=j mod l}.
t—1 o(n, 7, 1) Note that in the above definition df, the subscripk — 1 is
H 1—- (n)ii interpreted agk—1 mod [). We shall stick to this convention
J=0 r) wherever applicable.
if the drawing is done without replacement. The results are Theorem 4:For allj and alll > n/(n—r—2), B; as given
the following bounds. in Construction A is ar(n,r)-SE system
Theorem 2:For all t € N, Proof: We show that anyX € [N]’, i =1,...,7 + 1,
. ; is covered by a block iB;. If X N N = () for somek, let
) < Kn 1 i, ) 9 Y € [N\ Ni]"*! be selected such that C Y and|Y N Nj_1]
S(n,r) H’Z ) : @ s as small as possible. Sinée> n/(n — r — 2), we have
Theorem 3:For aIIt c N 1< ("), n — |Nk| > r + 2, which ensures thal” exists and that if

Ni—1 € X thenN;,_; € Y. Now, chooser € X such that if

r+1 t—1 z( n—i ) Ni_1 C X thenx € Nj_4, otherwise arbitrarily. Note thaX

S(n,r) <t+ Z ( ) - (3 s covered by \ {z}. But we also haveY \ {z}) N N} = 0,
andNjy_1 ¢ (Y \ {z}). ThereforeY \ {z} € Z.
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On the other hand, iX N N, # 0 for all k, select one  Construction B:Let N be ann-set, and letr be a pre-
element in each such intersection, say € X N N,. Now, scribed positive integer such thak n. Let N;, i =0,...,[—
chooseY € [N]"*! such thatX C Y, and considet” \ {z;}, 1, andw(X), forall X C N, be defined as in Construction A.
k =0,...,1 — 1. All these sets coveX, and sincew(Y \ We will call the N;’s bins For all j € {0,...,1— 1}, let
{zx}) = w(Y") — k, they have distinct weights that sp&n . .
consecutive integers, one of which must be congruent to Bj = {X € [N]" : w;(X) < max{e(X), f(X)}},
modulol. Hence, for allj, there exists: such tha" \ {zx} € |\ here

[

B;. () = -
Corollary 1: For all integerd > n/(n —r — 2), wi(X) = W(X)+3) mod,
n= 3 (n= LR - TF] L 1(m) and
st ("7 1) rore )T e(X) = [{i: X NN, = 0},
Proof: Omitted. [ ] )
An alternative (slightly looser) form of the upper bound is FX) =[{i: Ni € X}

given in the following corollary.

; are the number of “empty” and “full” bins fak, respectively.
Corollary 2: For all integerd > n/(n —r —2),

The constructed collection afsubsets ofV is

S(n,r)gzm (”_ij_l>+%(z>. B; = FUB;,
|

C Pr(I)IOf: (;mi_ltte(:_. dk where F' is constructed as follows.
oroflary s: For ixedr, asn — oo, Let the elements in each bin be ordered in some arbitrary,

S(nyn—k—1) < + o(n™1) n but fixe_d way. Letl < {0,... 7_l — 1} be aminimal index
k k set satisfying) ., [Nx| > r, in the sense that all proper
Proof: Corollary 2 applles prowded that> n/ subsets off violate this condition. For each minimdl and
If k>4, letl=[n/2]. We have index pairi, j € I, i # j, let F include ther-set that contains
S(n,n—k—1) all elements from bingVy,, k € I\ {7,5}, the smallestV;| —
3/ n—3 2 n 1 elements ofN;, and the smallest + 1 — 37, ;. [Nk
< — 1+0 elements oflV;.
2 \n—k—-1 n n—k—1

Theorem 6:For all j and all/, B; as given in Construc-
_ 2 (”> + O(nkfl). tion B is an(n,r)-SE system.

k+1\k Proof: We show that anyX < [N]}, i =1,...,7 + 1,
For k < 4, the result has already been shown in [1]. m is covered by a block inB;. If ¢ = r + 1, note that allr-
Corollary 4: For all fixedk, subsets ofX can be written asX \ {z}, for somex € X.
S(n,n—k—1) . Since @(X \ {x})_ = w(X) - w({m_}) for all z € X, by

1< <24+0(n™ 7). choosingr from different bins thatX intersects, we can make

- T(n—kn-k-1) _ _ _ _ w(X \ {x}) take onl — e(X) different values. Since no two of
Hence, for all[n, k] MDS codesC with a fixed dimensiork, these values differ by more than- 1, this also means that we
can realize — e(X) different values forw; (X \ {z}). Since

p(C) -1
l< Tn,n—k,n—k—1) <2+0(n™) only ! — e(X) — 1 numbers in{0,...,l — 1} are greater than
Proof: Simply noteT(n,n — k,n —k — 1) > %-5-1(:) e(X), there existsr € X such thatw; (X \ {z}) < e(X) <
m e(X\{z}), henceX \ {z} € B;, and it coversX.
That S(n,n — k — 1) is asymptotically at mos2T (n,n — If ¢ <r, consider two cases. First, let us assume that there

k,n —k—1) has been conjectured in [1]. This bound is shargxistsk, such thatX N N, # 0 and N, € X. In this case,
for k = 1, in which caseS(n,n —2) = n—1, while T'(n,n — remove fromX an arbitrary element it N N, add inr —i
1,n —2) = [n/2]. For all K > 1, the result can be further other elements fromV using as few elements fronv; as
|mproved using recurrent inequalities to be discussed @ thossible, and call the resulting — 1)-set X. That is, X =
next section. (X\{z})uY, for somer € XNN; and som&” € [N\ X]|"~*
Construction A can also be used to construct Turan systertigat has a minimal number of elements fra¥. Note that
In that sense, it can be viewed as an improved version (itbe choice of X ensures thatf(X U {z}) = f(X). Since
one with fewer blocks) of a Turan system construction due to(X U {z}) = w(X) 4+ w({z}) for all z ¢ X, by choosing

Kim and Roush [6]. z ¢ X,z # x, from dlfferent~b|ns where possible, we can
Theorem 5:For all j and alll, B, as given in Construc- makew(X U{z}) take onl— f(XU{z}) = I— f(X X) different
tion A is a Turan(n,r + 1, r)-system. values. This also means that we can realizef (X X) different

Proof: Omitted, similar to the proof of Theorem 4.m  values forw;(X U {z}). Since onlyl — f(X) — 1 numbers in

Next, we consider another construction for SE system§),...,l — 1} are greater tharf(X), there exists: such that

inspired by a construction for Turan systems due to Frankzy(X' U {z}) < f(X) < f(X U{z}), henceX U {z} € Bj,
and Rodl [7]. and it coversX.
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Next, if no k exists such thaiy N NV, # 0 and N, € X, Proof: Since (cf. [8]) for fixedk, t, asn — oo,
this means that for alk such thatX N Ny # 0, we have C(n,s,t) = (1+0(1))(7})/(;), we have
N, C X. Figuratively, it means thakX consists of a number
of full bins. Let V; be any bin thatX intersects. Letr € N; S(n,n—k—1)
be its largest element. Tak¥ \ {«}, and add to it elements < Z C(i,k,k—1)+ Z C(i, k,k—1)
from bins thatX does not intersect, one bin after another, i<lnn Inn<i<n
from smallest to the largest within each bin, until\ {z} is Inn 1/ i
augmented to containelements. By construction, thesubset <lnn- ( k ) + Z (1+ 0(1))E (k _ 1)
thus obtained is contained if. [ ‘“"<:L<7i
Corollary 5: For all positive integers, < o(n)+ (1+ 0(1»1 Z < i )
s =32+ () (1)
(n,r) S 7 + + +g(n,r,l),
L \r r r— %) _ 1/n
— (1 +o(1) 1 <k>
where
l .
g(n,nl) = (Z)Z(Z -1). Corollary 6: For all fixedk, k > 0, asn — oo,
ray <i<[ g | —k—-1 1
Proof: Omitted. [ ] 1< T(nb:(nn,—nk,nk— p )_ = kz (1+0(1)).
IV. RECURRENTBOUNDS In [1], it was shown thatS(n,3) = T'(n,4,3) for 6 <n <
53. Theorem 7 now allows us to show that the result holds for
Lemma 1:Forall0 <r<n-—1, alln > 6.
Stn,r) < Stn—1,r—1)+T(n—1,7r+1,7), Theorem 9:For alln > 6,
or equivalently, for all0 < k < n — 1, S(n,3) =T(n,4,3).
Proof: Omitted. ]
Snn—k—-1)<Sn-1,n-k—-2)+C(n—1,kk—1). Since the exact values of most Turan / covering numbers

Proof: Let N be ann-set anda € N be an arbitrary zre not known, in most cases, the upper bounds in Theorem 7
element. LetS C [N\ {a}]"~" be a minimal(n — 1,7 — 1)-  cannot be directly evaluated. To get a computable upperdoun
SE system, and C [N'\{a}]" be a minimal Turattn—1,7+  one way is to replace each Turan / covering number in the sum
1,r)-system. Define&s’ = {sU{a} : s € S}. ThenS'UT isan  py an explicit upper bound. Erdés and Spencer [9] showed tha
(n,7)-SE system. Indeed, foralk € [N]',i=1,....,7+1, foralln>s>t,
if 1 < |X\ {a}| < r, then there exists € S such that - N
(X \ {a}) \ s| = 1, which implies thatX \ (s U {a})| = 1, Clns.1) < (1 n (S)) (1) ©)
i.e. X is covered by a block irS’. The only cases left are t (i)
when X = {a}, and whenX € [N\ {a}]"*". In either case, pj,gging the above into (5), we obtain the following result.

X is covered by a block ir". u Theorem 10:For all0 < k < n — 1,
Theorem 7:Forall0 <r <n—1,

1+Ink/n

r Sn,n—k—-1) <
S(n,r) < Z_: Tn—r+i-1i+14), ) If instead we bound each term in the sum of (4) or (5) using
) =0 a different technique, we end up with a different bound. For
or equivalently, for all0 <k <n —1, example, one could apply to (4) the constructive bound on
n—1 Turan numbers due to Sidorenko [4].
Stn—k-1)< > CGkk-1). ©) V. CONCLUDING REMARKS

_ i=k
Proof: Recursively apply Lemma 1. . =u Figs. 1-3 show how some of the bounds obtained in
Interesting results follow. Whewt = 1, (5) implies that this paper compare with other known bounds, when ap-
S(n,n —2) < n — 1, which is sharp. Wherk = 2, since plied to stopping redundancy of MDS codes. (Hence, for

C(i,2,1) = [i/2], (5) gives an [n, k, d=n—k+1] MDS code, bounds oi$(n,d — 2) are
g < [n|n 1 used.) For “probabilistic” and “Construction A”, the boumnaf
(n,n—3) < bw bJ o Theorem 1 and Corollary 1 have been used, respectively. For

In general, we have tHaounds based on recurrent inequalities, “Recurrent Arsdie
Theorem 10, and “Recurrent B” refers to (4), with each term
in the sum replaced by an upper bound from [4]. All bounds
are minimized over their respective auxiliary variablegy(e

<Sn,n—k—1)< (1+o0(1) _( ) p, 1), if any, and are normalized relative to the trivial upper
k+1 <k> ( i\ bound, (,",).

which is better than Corollary 3.
following theorem.
Theorem 8:For all fixedk, k£ > 0, asn — oo,
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o fixed d=50 o fixed k=50
10" 10" ¢
—*— Schwartz & Vardy [2] —— Schwartz & Vardy [2]
—&— Construction 1 [1] 4 —6— Construction 1 [1]
j —A— Construction 3 [1] —4A— Construction 3 [1]
—&— Probabilistic —&— Probabilistic
—v— Construction A —%— Construction A

Construction B
—%*— Recurrent A
—%— Recurrent B
- * - Lower Bound

—

1 Construction B
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Fig. 1. Bounds on the stopping redundancy of (@nn — 49,50) MDS  Fig. 2. Bounds on the stopping redundancy of (@350, n — 49) MDS

code. All bounds normalized relative {d3). code. All bounds normalized relative g} ).
. fixed R=0.5
. 10 -
Constructions A and B are closely related to Construc- —+— Schwartz & Vardy 2]
. . . —6— Construction 1 [1]
tions 1 and 3 in [1], respectively. From the plots, we see —a— Construction3[1] ¥
that Construction A performs very similarly to Construatib e

in most cases, but shows noticeable improvement when thg . Construction 8
code rate is low, as supported by our asymptotic analysis 5 10" —+— Recurrent B
. . . T RKOX - * - Lower Bound
Like Construction 3, Construction B performs poorly when s
the code rate is low, while it works very well in all other
cases, and the improvement over Construction 3 is ofter
significant. The probabilistic bound gives good results lin a
cases considered. (Although it is asymptotically weak for
fixed k or fixed d, the effect is insignificant in practice.)
Moreover, its performance is very similar to that of “Reeuntr
A’ (Theorem 10). This is not a coincidence, as (6) was derived
based on similar probabilistic arguments. Except for vewy | 107 ] ] ] ] ] ] ] ] ‘

. 100 200 300 400 500 600 700 800 900 1000
code rates, “Recurrent B” gives the best results among al n
bounds considered. Its relatively weak performance for IO\F/\_/ s Bound he Stonpi dund f(ann/2,n/2 + 1) MDS

. . . . ig. 3. Bounds on the stopping redundancy of(ann/2,n/2 +
code rates is only attributed to the ineffectiveness of thenldl . = ™ A ounds normalized reiative ©,0)-
from [4] on T'(n,r + 1,r) for r close ton.
Our study has brought up interesting questions that remain

to be answered. For example, B(n,n — k — 1) in fact
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