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Abstract— New bounds on single-exclusion numbers are ob-
tained via probabilistic arguments, recurrent relations, as well
as explicit constructions. The new bounds are used to better
understand thestopping redundancy of MDS codes. In particular,
it is shown that for any fixed k, the stopping redundancy of a
linear [n, k] MDS code is between 1

k+1

`

n
k

´

and
`

1 + o(1)
´

1

k

`

n
k

´

.

I. I NTRODUCTION

We say a setA coverssetB if |B\A| = 1, i.e. if A contains
all except one element ofB. An (n, r)-single-exclusion (SE)
system[1], n > r, is a collection ofr-subsets of ann-set,
calledblocks, such that alli-subsets of then-set,i = 1, . . . , r+
1, are covered by at least one block. The smallest number of
blocks in an(n, r)-single-exclusion system is called the(n, r)-
single-exclusion (SE) number, and is denoted byS(n, r). An
(n, r)-SE system withS(n, r) blocks is said to beminimal.
The stopping redundancy[2] of a linear codeC, denoted by
ρ(C), is the smallest number of rows in a parity-check matrix
of C such that the smallest size of nonempty stopping sets [3]
is equal to the minimum distance ofC.

The stopping redundancy of a code characterizes the min-
imum “complexity” (number of check nodes) required in a
Tanner graph of the code, such that iterative erasure decoding
achieves performance comparable to (up to a constant factor,
asymptotically) maximum-likelihood (ML) decoding. In the
case of maximum distance separable (MDS) codes, stopping
redundancy has a highly combinatorial nature, and is closely
related to SE numbers, defined above, and Turán numbers [4].

Briefly, an(n, s, t)-Turán system, n ≥ s ≥ t, is a collection
of t-subsets of ann-set, calledblocks, such that everys-
subset of then-set contains at least one block. TheTurán
number, T (n, s, t), is the smallest number of blocks in an
(n, s, t)-Turán system. An(n, s, t)-Turán system isminimal
if it contains T (n, s, t) blocks. A related concept is that of
covering design [5]. An(n, s, t)-covering design, n ≥ s ≥ t,
is a collection ofs-subsets of ann-set, calledblocks, such that
every t-subset of then-set is contained in at least one block.
The covering number, C(n, s, t), is the smallest number of
blocks in an(n, s, t)-covering design. An(n, s, t)-covering
design withC(n, s, t) blocks is said to beminimal. Clearly,
by definition,

T (n, s, t) = C(n, n − t, n − s).

It is also straightforward to see that an(n, r)-SE system is
necessarily an(n, r + 1, r)-Turán system. Noting further that
each block (anr-subset in this case) is contained inn − r
(r + 1)-subsets, we have

S(n, r) ≥ T (n, r + 1, r) ≥
1

n − r

(

n

r + 1

)

=
1

r + 1

(

n

r

)

.

In [2], the stopping redundancy of MDS codes was con-
nected to covering numbers, and it was shown that for any
linear [n, k, d = n − k + 1] MDS codeC with d ≥ 3,

1

d − 1

(

n

d − 2

)

< ρ(C) ≤
max{n− d + 2, d − 1}

n

(

n

d − 2

)

.

The connection was further studied using results on Turán
numbers and through the definition of SE systems in [1], based
on the observation that

T (n, d− 1, d − 2) ≤ ρ(C) ≤ S(n, d − 2).

Hence, upper bounds onρ(C) can be obtained by studying
upper bounds on SE numbers. Indeed, much improved upper
bounds had been found this way in [1]. In this paper, we will
further improve these results.

It was conjectured in [2] that the stopping redundancy of
MDS codes should only depend on the code parametersn and
k, rather than on the code itself. In [1], this was shown to be
true in the asymptotic sense for any fixedd, and in the exact
sense in some special cases (whered is small). It was also
conjectured thatρ(C) should equalS(n, d − 2).

Our primary motivation for the further study of SE systems
is their evident relevance to an improved understanding of
iterative erasure decoding, especially the MDS stopping re-
dundancy conjectures outlined above. The results of this paper
take us one step closer to resolving them, particularly for the
asymptotic case withk fixed.

In addition, we believe that SE systems warrant further
attention because of their intrinsic mathematical appeal.They
are natural combinatorial objects, intimately connected to
covering designs and Turán systems, and it is not hard to
imagine that they might become useful in other applications.
Indeed, certain properties of SE numbers are rather surprising.
For example, we shall see that for any fixedk,

S(n, n − k − 1)

T (n, n − k, n − k − 1)
≤
(

1 + o(1)
)

(

1 +
1

k

)

.
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Thus, despite the stricter requirements imposed upon the SE
system in comparison to the Turan system, the increase in the
total number of blocks is very small, for example, only up to
two percent whenk = 50.

As shown in the remainder of this paper, expanding our
knowledge about SE systems can shed further light upon
properties of both MDS codes and combinatorial constructs
to which they are closely related.

II. PROBABILISTIC BOUNDS

For any setA, let [A]i denote the set of alli-subsets ofA.
Let N be ann-set. Consider the following random exper-

iment in which we build an(n, r)-SE system,S ⊆ [N ]r. In
the first step, for a prescribed real valuep ∈ (0, 1), insert into
S each element of[N ]r with probabilityp. The expected size
of S at this point isp

(

n
r

)

, but somei-subsets,i = 1, . . . , r+1,
may not be covered. The probability that a giveni-subset is
not covered equals(1 − p)ϕ(n,r,i), where

ϕ(n, r, i) = i

(

n − i

r − i + 1

)

= i

(

n − i

n − r − 1

)

.

So, as a second step, for eachX ∈ [N ]i, i = 1, . . . , r + 1,
that is not yet covered, insert intoS some element of[N ]r

that coversX . The expected size ofS is then bounded from
above by

p

(

n

r

)

+

r+1
∑

i=1

(

n

i

)

(1 − p)ϕ(n,r,i).

This implies the following upper bound onS(n, r).
Theorem 1:For all 0 < p < 1,

S(n, r) ≤ p

(

n

r

)

+

r+1
∑

i=1

(

n

i

)

(1 − p)i( n−i
r−i+1). (1)

Alternatively, in the first step of the random experiment, we
may instead maket random drawings from[N ]r. At the end
of the first step, the probability that a giveni-subset is not
covered equals

(

1 −
ϕ(n, r, i)
(

n
r

)

)t

if the drawing is done with replacement, and equals

t−1
∏

j=0

(

1 −
ϕ(n, r, i)
(

n
r

)

− j

)

if the drawing is done without replacement. The results are
the following bounds.

Theorem 2:For all t ∈ N,

S(n, r) ≤ t +

r+1
∑

i=1

(

n

i

)

(

1 −
i
(

n−i
r−i+1

)

(

n
r

)

)t

. (2)

Theorem 3:For all t ∈ N, t ≤
(

n
r

)

,

S(n, r) ≤ t +
r+1
∑

i=1

(

n

i

) t−1
∏

j=0

(

1 −
i
(

n−i
r−i+1

)

(

n
r

)

− j

)

. (3)

The bound of Theorem 3 is clearly tighter than that of
Theorem 2, and is closely related to the bound of Theorem 1.
In fact, one can show that

t−1
∏

j=0

(

1 −
i
(

n−i
r−i+1

)

(

n
r

)

− j

)

≤

(

1 −
t − 1
(

n
r

)

)i( n−i
r−i+1)

.

On the other hand, if we letp = t/
(

n
r

)

, then (1) can be written
as

S(n, r) ≤ t +
r+1
∑

i=1

(

n

i

)

(

1 −
t
(

n
r

)

)i( n−i
r−i+1)

.

Hence, excluding integer effects, the bound of Theorem 3 is
at most that of Theorem 1 plus one. In practice, the difference
between the two will be small, while the bound of Theorem 1
is usually easier to compute.

Asymptotically, asn → ∞, it can be shown that (details
omitted) if n = Poly(r), then the upper bound in (1)
(minimized overp) is O

(

ln r
r

(

n
r

))

. In particular, if n − r is
a constant, then the upper bound isO

(

ln n
n

(

n
r

))

, while it can
also be shown that in this case the bound must grow faster
than c

n

(

n
r

)

, for any constantc. We shall see in later sections
that other bounds provide much stronger results in this case.
In the other extreme, ifr is a constant, then the bound in (1)
is asymptotic to

(

n
r

)

, the trivial upper bound.

III. C ONSTRUCTIVE BOUNDS

Construction A:Let N be ann-set, and letr be a pre-
scribed positive integer such thatr < n−2. PartitionN into l
subsets,Ni, i = 0, . . . , l−1, as equally as possible. Thus,N =
⋃l−1

i=0 Ni, such that⌊n/l⌋ ≤ |Ni| ≤ ⌈n/l⌉ for all i. For all
X ⊆ N , define theweightof X asw(X) =

∑l−1
i=0 i|X ∩Ni|.

For all j ∈ {0, . . . , l − 1}, a subset of[N ]r is constructed as
follows:

Bj = Z ∪ B̃j ,

where

Z = {X ∈ [N ]r : ∃k, X ∩ Nk = ∅, Nk−1 * X},

and
B̃j = {X ∈ [N ]r : w(X) ≡ j mod l}.

Note that in the above definition ofZ, the subscriptk − 1 is
interpreted as(k−1 mod l). We shall stick to this convention
wherever applicable.

Theorem 4:For all j and alll ≥ n/(n−r−2), Bj as given
in Construction A is an(n, r)-SE system.

Proof: We show that anyX ∈ [N ]i, i = 1, . . . , r + 1,
is covered by a block inBj . If X ∩ Nk = ∅ for somek, let
Y ∈ [N \Nk]r+1 be selected such thatX ⊆ Y and|Y ∩Nk−1|
is as small as possible. Sincel ≥ n/(n − r − 2), we have
n − |Nk| ≥ r + 2, which ensures thatY exists and that if
Nk−1 * X thenNk−1 * Y . Now, choosex ∈ X such that if
Nk−1 ⊆ X thenx ∈ Nk−1, otherwise arbitrarily. Note thatX
is covered byY \ {x}. But we also have(Y \ {x})∩Nk = ∅,
andNk−1 * (Y \ {x}). Therefore,Y \ {x} ∈ Z.

ISIT2007, Nice, France, June 24 – June 29, 2007

2942



On the other hand, ifX ∩ Nk 6= ∅ for all k, select one
element in each such intersection, sayxk ∈ X ∩ Nk. Now,
chooseY ∈ [N ]r+1 such thatX ⊆ Y , and considerY \{xk},
k = 0, . . . , l − 1. All these sets coverX , and sincew(Y \
{xk}) = w(Y ) − k, they have distinct weights that spanl
consecutive integers, one of which must be congruent toj
modulol. Hence, for allj, there existsk such thatY \{xk} ∈
B̃j .

Corollary 1: For all integersl ≥ n/(n − r − 2),

S(n, r) ≤ l

[(

n − ⌊n
l
⌋

r

)

−

(

n − ⌊n
l
⌋ − ⌈n

l
⌉

r − ⌈n
l
⌉

)]

+
1

l

(

n

r

)

.

Proof: Omitted.
An alternative (slightly looser) form of the upper bound is

given in the following corollary.
Corollary 2: For all integersl ≥ n/(n − r − 2),

S(n, r) ≤ l
⌈n

l

⌉

(

n − ⌊n
l
⌋ − 1

r

)

+
1

l

(

n

r

)

.

Proof: Omitted.
Corollary 3: For fixedk, asn → ∞,

S(n, n − k − 1) ≤

(

2

k + 1
+ O(n−1)

)(

n

k

)

.

Proof: Corollary 2 applies provided thatl ≥ n/(k − 1).
If k ≥ 4, let l = ⌊n/2⌋. We have

S(n, n − k − 1)

≤
3n

2

(

n − 3

n − k − 1

)

+
2

n

(

1 + O

(

1

n

))(

n

n − k − 1

)

=
2

k + 1

(

n

k

)

+ O(nk−1).

For k < 4, the result has already been shown in [1].
Corollary 4: For all fixedk,

1 ≤
S(n, n − k − 1)

T (n, n − k, n − k − 1)
≤ 2 + O(n−1).

Hence, for all[n, k] MDS codesC with a fixed dimensionk,

1 ≤
ρ(C)

T (n, n − k, n − k − 1)
≤ 2 + O(n−1).

Proof: Simply noteT (n, n − k, n − k − 1) ≥ 1
k+1

(

n
k

)

.

That S(n, n − k − 1) is asymptotically at most2T (n, n −
k, n− k− 1) has been conjectured in [1]. This bound is sharp
for k = 1, in which caseS(n, n−2) = n−1, while T (n, n−
1, n − 2) = ⌈n/2⌉. For all k > 1, the result can be further
improved using recurrent inequalities to be discussed in the
next section.

Construction A can also be used to construct Turán systems.
In that sense, it can be viewed as an improved version (i.e.
one with fewer blocks) of a Turán system construction due to
Kim and Roush [6].

Theorem 5:For all j and all l, Bj as given in Construc-
tion A is a Turán(n, r + 1, r)-system.

Proof: Omitted, similar to the proof of Theorem 4.
Next, we consider another construction for SE systems,

inspired by a construction for Turán systems due to Frankl
and Rödl [7].

Construction B:Let N be ann-set, and letr be a pre-
scribed positive integer such thatr < n. Let Ni, i = 0, . . . , l−
1, andw(X), for all X ⊆ N , be defined as in Construction A.
We will call the Ni’s bins. For all j ∈ {0, . . . , l − 1}, let

B̃j = {X ∈ [N ]r : wj(X) ≤ max{e(X), f(X)}},

where
wj(X) = (w(X) + j) mod l,

and
e(X) = |{i : X ∩ Ni = ∅}|,

f(X) = |{i : Ni ⊆ X}|

are the number of “empty” and “full” bins forX , respectively.
The constructed collection ofr-subsets ofN is

Bj = F ∪ B̃j ,

whereF is constructed as follows.
Let the elements in each bin be ordered in some arbitrary,

but fixed way. LetI ⊆ {0, . . . , l − 1} be a minimal index
set satisfying

∑

k∈I |Nk| > r, in the sense that all proper
subsets ofI violate this condition. For each minimalI and
index pairi, j ∈ I, i 6= j, let F include ther-set that contains
all elements from binsNk, k ∈ I \ {i, j}, the smallest|Ni| −
1 elements ofNi, and the smallestr + 1 −

∑

k∈I,k 6=j |Nk|
elements ofNj .

Theorem 6:For all j and all l, Bj as given in Construc-
tion B is an(n, r)-SE system.

Proof: We show that anyX ∈ [N ]i, i = 1, . . . , r + 1,
is covered by a block inBj . If i = r + 1, note that allr-
subsets ofX can be written asX \ {x}, for somex ∈ X .
Since w(X \ {x}) = w(X) − w({x}) for all x ∈ X , by
choosingx from different bins thatX intersects, we can make
w(X \{x}) take onl−e(X) different values. Since no two of
these values differ by more thanl−1, this also means that we
can realizel − e(X) different values forwj(X \ {x}). Since
only l − e(X)− 1 numbers in{0, . . . , l − 1} are greater than
e(X), there existsx ∈ X such thatwj(X \ {x}) ≤ e(X) ≤
e(X \ {x}), henceX \ {x} ∈ B̃j , and it coversX .

If i ≤ r, consider two cases. First, let us assume that there
existsk, such thatX ∩ Nk 6= ∅ and Nk * X . In this case,
remove fromX an arbitrary element inX ∩Nk, add inr − i
other elements fromN using as few elements fromNk as
possible, and call the resulting(r − 1)-set X̃ . That is,X̃ =
(X\{x})∪Y , for somex ∈ X∩Nk and someY ∈ [N \X ]r−i

that has a minimal number of elements fromNk. Note that
the choice ofX̃ ensures thatf(X̃ ∪ {x}) = f(X̃). Since
w(X̃ ∪ {z}) = w(X̃) + w({z}) for all z /∈ X̃, by choosing
z /∈ X̃ , z 6= x, from different bins where possible, we can
makew(X̃∪{z}) take onl−f(X̃∪{x}) = l−f(X̃) different
values. This also means that we can realizel−f(X̃) different
values forwj(X̃ ∪ {z}). Since onlyl− f(X̃)− 1 numbers in
{0, . . . , l − 1} are greater thanf(X̃), there existsz such that
wj(X̃ ∪ {z}) ≤ f(X̃) ≤ f(X̃ ∪ {z}), henceX̃ ∪ {z} ∈ B̃j ,
and it coversX .
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Next, if no k exists such thatX ∩ Nk 6= ∅ and Nk * X ,
this means that for allk such thatX ∩ Nk 6= ∅, we have
Nk ⊆ X . Figuratively, it means thatX consists of a number
of full bins. Let Ni be any bin thatX intersects. Letx ∈ Ni

be its largest element. TakeX \ {x}, and add to it elements
from bins thatX does not intersect, one bin after another,
from smallest to the largest within each bin, untilX \ {x} is
augmented to containr elements. By construction, ther-subset
thus obtained is contained inF .

Corollary 5: For all positive integersl,

S(n, r) ≤
1

l

(

n

r

)

+

(

n − ⌊n
l
⌋

r

)

+

(

n − ⌊n
l
⌋

r − ⌊n
l
⌋

)

+ g(n, r, l),

where

g(n, r, l) =
∑

r+1

⌈n/l⌉
≤i≤⌈ r+1

⌊n/l⌋⌉

(

l

i

)

i(i − 1).

Proof: Omitted.

IV. RECURRENTBOUNDS

Lemma 1:For all 0 < r < n − 1,

S(n, r) ≤ S(n − 1, r − 1) + T (n − 1, r + 1, r),

or equivalently, for all0 < k < n − 1,

S(n, n− k − 1) ≤ S(n − 1, n− k − 2) + C(n − 1, k, k − 1).
Proof: Let N be ann-set anda ∈ N be an arbitrary

element. LetS ⊆ [N \ {a}]r−1 be a minimal(n − 1, r − 1)-
SE system, andT ⊆ [N \{a}]r be a minimal Turán(n−1, r+
1, r)-system. DefineS′ = {s∪{a} : s ∈ S}. ThenS′∪T is an
(n, r)-SE system. Indeed, for allX ∈ [N ]i, i = 1, . . . , r + 1,
if 1 ≤ |X \ {a}| ≤ r, then there existss ∈ S such that
|(X \ {a}) \ s| = 1, which implies that|X \ (s ∪ {a})| = 1,
i.e. X is covered by a block inS′. The only cases left are
whenX = {a}, and whenX ∈ [N \ {a}]r+1. In either case,
X is covered by a block inT .

Theorem 7:For all 0 < r < n − 1,

S(n, r) ≤
r
∑

i=0

T (n− r + i − 1, i + 1, i), (4)

or equivalently, for all0 < k < n − 1,

S(n, n − k − 1) ≤
n−1
∑

i=k

C(i, k, k − 1). (5)

Proof: Recursively apply Lemma 1.
Interesting results follow. Whenk = 1, (5) implies that

S(n, n − 2) ≤ n − 1, which is sharp. Whenk = 2, since
C(i, 2, 1) = ⌈i/2⌉, (5) gives

S(n, n − 3) ≤
⌈n

2

⌉ ⌊n

2

⌋

− 1,

which is better than Corollary 3. In general, we have the
following theorem.

Theorem 8:For all fixedk, k > 0, asn → ∞,

1

k + 1

(

n

k

)

≤ S(n, n − k − 1) ≤
(

1 + o(1)
) 1

k

(

n

k

)

Proof: Since (cf. [8]) for fixed k, t, as n → ∞,
C(n, s, t) =

(

1 + o(1)
)(

n
t

)

/
(

s
t

)

, we have

S(n, n − k − 1)

≤
∑

i≤ln n

C(i, k, k − 1) +
∑

ln n<i<n

C(i, k, k − 1)

≤ lnn ·

(

lnn

k

)

+
∑

ln n<i<n

(

1 + o(1)
)1

k

(

i

k − 1

)

≤ o(n) +
(

1 + o(1)
) 1

k

n−1
∑

i=0

(

i

k − 1

)

=
(

1 + o(1)
) 1

k

(

n

k

)

.

Corollary 6: For all fixedk, k > 0, asn → ∞,

1 ≤
S(n, n − k − 1)

T (n, n − k, n − k − 1)
≤

k + 1

k

(

1 + o(1)
)

.

In [1], it was shown thatS(n, 3) = T (n, 4, 3) for 6 ≤ n ≤
53. Theorem 7 now allows us to show that the result holds for
all n ≥ 6.

Theorem 9:For all n ≥ 6,

S(n, 3) = T (n, 4, 3).
Proof: Omitted.

Since the exact values of most Turán / covering numbers
are not known, in most cases, the upper bounds in Theorem 7
cannot be directly evaluated. To get a computable upper bound,
one way is to replace each Turán / covering number in the sum
by an explicit upper bound. Erdős and Spencer [9] showed that
for all n ≥ s ≥ t,

C(n, s, t) ≤

(

1 + ln

(

s

t

))

(

n
t

)

(

s
t

) . (6)

Plugging the above into (5), we obtain the following result.
Theorem 10:For all 0 < k < n − 1,

S(n, n− k − 1) ≤
1 + ln k

k

(

n

k

)

.

If instead we bound each term in the sum of (4) or (5) using
a different technique, we end up with a different bound. For
example, one could apply to (4) the constructive bound on
Turán numbers due to Sidorenko [4].

V. CONCLUDING REMARKS

Figs. 1–3 show how some of the bounds obtained in
this paper compare with other known bounds, when ap-
plied to stopping redundancy of MDS codes. (Hence, for
an [n, k, d=n−k+1] MDS code, bounds onS(n, d − 2) are
used.) For “probabilistic” and “Construction A”, the bounds of
Theorem 1 and Corollary 1 have been used, respectively. For
bounds based on recurrent inequalities, “Recurrent A” refers to
Theorem 10, and “Recurrent B” refers to (4), with each term
in the sum replaced by an upper bound from [4]. All bounds
are minimized over their respective auxiliary variables (e.g.
p, l), if any, and are normalized relative to the trivial upper
bound,

(

n
d−2

)

.
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Fig. 1. Bounds on the stopping redundancy of an(n, n − 49, 50) MDS
code. All bounds normalized relative to

` n
48

´

.

Constructions A and B are closely related to Construc-
tions 1 and 3 in [1], respectively. From the plots, we see
that Construction A performs very similarly to Construction 1
in most cases, but shows noticeable improvement when the
code rate is low, as supported by our asymptotic analysis.
Like Construction 3, Construction B performs poorly when
the code rate is low, while it works very well in all other
cases, and the improvement over Construction 3 is often
significant. The probabilistic bound gives good results in all
cases considered. (Although it is asymptotically weak for
fixed k or fixed d, the effect is insignificant in practice.)
Moreover, its performance is very similar to that of “Recurrent
A” (Theorem 10). This is not a coincidence, as (6) was derived
based on similar probabilistic arguments. Except for very low
code rates, “Recurrent B” gives the best results among all
bounds considered. Its relatively weak performance for low
code rates is only attributed to the ineffectiveness of the bound
from [4] on T (n, r + 1, r) for r close ton.

Our study has brought up interesting questions that remain
to be answered. For example, isS(n, n − k − 1) in fact
asymptotic to(1+1/k)T (n, n−k, n−k−1) for all fixedk? Is
it true thatS(n, r) ≤ 2T (n, r + 1, r) for all n andr? Finally,
does the stopping redundancy of a linear[n, k, d] MDS code
equalS(n, d − 2) (as conjectured in [1])?
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