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Abstract—Until the analysis of Repeat Accumulate codes by  In this paper, we consider the serial concatenation of an ar-
Divsalar et al, few people would have guessed that simple rate- pijtrary binary linear outer code of rate< 1 with m identical
codes could play a crucial role in the construction of “good” binary rated binary linear inner codes where, following the conven-
codes. In this paper, we will construct “good” binary linear block . . . ’ .
codes at any rater < 1 by serially concatenating an arbitrary tion of the turbo-codmg literature, we use the term serial con-
outer code of rater with a large number of rate-1 inner codes Catenation to mean serial concatenation through a “random” in-
through uniform random interleavers. We derive the average terleaver. Any real system must, of course, choose a particular
output weight enumerator (WE) for this ensemble in the limit as jnterleaver. Our analysis, however, will make use of tims
the number of inner codes goes to infinity. Using a probabilistic form random interleave(URI) [3] which is equivalent to av-
upper bound on the minimum distance, we prove that long codes . . . .
from this ensemble will achieve the Gilbert—Varshamov bound erqglng over aI_I_p(_JSS|bIe mterleaver_s._ We an_alyze this system
with high probability. Numerical evaluation of the minimum  USing a probabilistic bound on the minimum distance and show
distance shows that the asymptotic bound can be achieved with that, for any fixed block length and large enough the en-

a small number of inner codes. In essence, this construction semble contains some codes whose minimum distance achieves
produces codes with good distance properties which are also COM-the Gilbert—\Varshamov bound (GVB) [4].

patible with iterative “turbo” style decoding. For selected codes, . .
we also present bounds on the probability of maximum-likelihood Our work is largely motivated by [1] and by the results of

decoding (MLD) error and simulation results for the probability ~Oberg and Siegel [5]. Both papers consider the effect of a simple
of iterative decoding error. rated “accumulate” code in a serially concatenated system. In

Index Terms—Random coding, rated codes, serial concatena- [1], & coding theorgm is proved for RA codes, while i.n [5], the
tion, turbo codes, uniform interleaver. “accumulate” code is analyzed as a precoder for the dicode mag-
netic recording channel. Benede#bal. also investigated the
design and performance of double serially concatenated codes
I. INTRODUCTION in [6].
INCE the introduction of turbo codes by Berrou, Glavieux, We also discuss some specific codes in this family, known as
nd Thitimajshima [2], iterative decoding has made it praconvolutional accumulate: (CA™) codes, which were intro-
tical to consider a myriad of different concatenated codes, afldced as generalized RA codes in [7] and [8]. ACAode is a
the use of “random” interleavers and recursive convolutional egerially concatenated code where the outer code is a terminated
coders has provided a good starting point for the design of neanvolutional code (CC) and the inner code is a cascade of
code structures. Many of these concatenated code structure#ifgrleaved “accumulate” codes. These codes were studied in
into a class that Divsalar, Jin, and McEliece call “turbo-likesome depth forn = 1 by Jin in [9]. This paper focuses on the
codes [1]. Perhaps the simplest codes in this class are repeatase ofn > 1, and gives a straightforward Markov chain based
cumulate (RA) codes, which consist only of a repetition codgnalysis of the distance properties and MLD performance.
an interleaver, and an accumulator. Yet, Divsaaal. prove The outline of the paper is as follows. In Section Il, we
that the maximum-likelihood decoding (MLD) of RA codes hageview the weight enumerato(WE) of linear block codes
vanishing word error probability, for sufficiently low rates ancand the union bound on the probability of error for MLD.
any fixed signal-to-noise ratio (SNR) greater than a thresholMe also review the average WE for the serial concatenation
as the block length goes to infinity. This demonstrates that poaf two linear block codes through a URI, and relate serial
erful error-correcting codes may be constructed from extremeigncatenation to matrix multiplication using a normalized form
simple components. of each code’snput—output WEIOWE). In Section Ill, we
introduce our system, shown in Fig. 1, compute its average
output WE, and compare this WE to that of random codes.

, _ _ . In Section IV, we consider some properties of rateedes
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Fig. 1. Our system consists of any rate< 1 code followed bym rated codes.

sufficient to achieve the bound derived for asymptotically large Now we can consider the ensemble (af &) block codes
m. In Section VI, we evaluate the performance of those sarfe@med by first encoding with afnq, k) outer code with IOWE
CA™ codes using bounds on the MLD error probability and(”), | permuting the output bits with a URI, and finally en-
simulations for iterative decoding error probability. Fi”a”ycoding again with attn, n) inner code with IOWEA(i),.The
in Section VI, we share some conclusions and discuss tgﬁ CWE e o

L ’ semble averaged IO . n IS givenb
direction of our future work. ¢ W, 118 y

Il. WEIGHT ENUMERATORS AND SERIAL CONCATENATION Ay n= Z A(O)} Pr(hy — h)
) w, i
A. The Union Bound h1=0 "
In this section, we review the WE of a linear block code and _ i A Ahl,h )
the union bound on error probability for MLD. The IOWE, 1, ot w; b (Zi) '

of an (n, k) block encoder is the number of codewords with

input Hamming weighty and output Hamming weiglit, and  The average IOWE for the serial concatenation of two codes
the WE A, is the number of codewords with any input weighfnay also be written as the matrix product of the IOWE for the
and output weight.. Using these definitions, the MLD proba-gyter code and a normalized version of the IOWE for the inner

bility of word error is upper-bounded by code. Let us define, for any code, tim@ut—output weight tran-
n ok sition probability(IOWTP) P,, ;, as the probability that an input
Py < Z Z Ay, nz sequence of weight is mapped to an output sequence of weight
h=1 w=1 h. From (1), we can see th&, ; = Pr (w — h). Substituting

and the MLD probability of bit error is upper-bounded by (1) into (2), we have

n k o ny , : ) .
P<y Y %Amhzh. Avn= > AV, PY, = APO

h=1 w=1 h1=0

The parameter is known as the Bhattacharyya parameter, and (o) p(i) ; . .
2" represents an upper bound on the pairwise error probabilwherEA P. Is a matrix product and the matrix representa-
between any two codewords differingArpositions [10, p. 88]. tions are defined by

It can be computed for any memoryless channel, and for the

binary-input additive white Gaussian noise (AWGN) channel [A<O)]w W Aff,)h and [PQ)L W PS,)}L-
itis z = e~F+/No whereE, /N, is the SNR of the decision ’ ’
statistic. Using induction, it is easy to verify that matrix multiplication by

an arbitrary number of IOWTP matrices results in the average
IOWE, A,,, 1, of the overall serial concatenation. It is also easy

We now briefly review the serial concatenation of codeg verify, using (1), that all IOWTP matrices are stochastic.
through a URI. The introduction of the URI in the analysis

of turb_o codes, by Benedetto and Mont(_)rsi [3], has made_t > A Simple Example—The Accumulate Inner Code
analysis of complex concatenated coding systems relatively
straightforward; using the URI for analysis is equivalent to We compute the IOWE and IOWTP of the rat¢accumu-
averaging over all possible interleavers. The important propefgje” code [1]. The “accumulate” code is a block code formed by
of the URI is that the output sequence distribution is a functidruncating, aften. symbols, the recursive rate€C with gener-
only of the input weight distribution. More precisely, giverator matrixG(D) = 1/(1 + D). The generator matrix for this
that the input to a URI has weight, each output sequence ofbtlock code is am x n matrix with all ones in the upper triangle
weightw will be observed with equal probability and all othend all zeros elsewhere. For the case 3, the generator ma-
output sequences will have zero probability. trix is

Consider any(n, k) block encoder with IOWEA,, ;, pre-
ceded by a URI. We will refer to such a code aséformly in-
terleaved cod€UIC). The probabilityPr (w — h) of the com- C=
bined system mapping an input sequence of weighb an
output sequence of weightis

B. Serial Concatenation Through a Uniform Interleaver

S O =
O = =
I

Using Table I, we see that the uniformly interleaved “accumu-
Pr(w — h) def Aw,h' 1) late” code maps an input of weighto an output of weight, 2,
(i) or 3, each with probabilityl /3. So thew = 1 row of the IOWTP
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TABLE | Multiplication acts independently on the components of a block-
INPUT-OUTPUT SEQUENCES ANDWEIGHT MAPPINGS FOR THER = 3 diagonal matrix. So we can also write
“A CCUMULATE” CODE !
Input Sequence 000 | 001 | 010 | 100 | O11 | 101 | 110 | 111 m 1 0
Input Weight 0 1 1 1 2 | 2 | 2 3 P" = 0 m |
Output Sequence | 000 { 001 | 011 | 111 | 010 | 110 | 100 | 101 Q
Output Weight 0 1 2 3 1 2 1 2

If P is afinite-dimensional stochastic matrix, then we can as-
sociate it with a finite-state Markov chain (MC) with state transi-

matrix is[0 1/3 1/3 1/3]. The matrix representations of thetion matrix P. In this case, bot and@ are finite-dimensional

IOWE and IOWTP are given by stochastic matrices and the association matches states in the
MC with input—output weights of the rateIC. Using some
1 000 1 0 0 0 well-known definitions from the theory of MCs, we say that
A 0 1 11 p_ 0 1/3 1/3 1/3 m = [mo, ..., m,] iS a stationary state distribution of the MC
0 2 10 0 2/3 1/3 0 |’ with transition probability matrix? if #P = = and)_ m; = 1.
0 01 0 0 0 1 0 This allows us to associate a stationary state distributiaf

the MC with a stationary weight distribution of the ratéJIC.

If the average WEA,,, of a code ensemble is not changed by
encoding every code in the ensemble with the samelratke,

A. The Input—Output Weight Enumerator then A, is a stationary WE of that rateUIC. Using (2), it is
easy to verify that this occurs when

I1l. M ULTIPLE RATE-1 SERIAL CONCATENATIONS

Now, we consider the average IOWE,,,JL, of the (n, k)

linear block encoder formed by first encoding with gmy k) [A1, ..., 4, Q= [4y,..., 4]
linear block encoder and then encoding with a cascade of . - _ _
identical interleaved raté-block encoders. Let the outer enwhich makes[ 4y, ..., A,] /(2 — 1) a stationary state dis-

coder be defined by the x n generator matrix@® and the tribution of the MC associated with state transition ma@ix
inner code be defined by thex n generator matriC® . The Recall also that an MC, with state transition ma#xis irre-
serial concatenation of linear block codes is achieved by mugucibleif and only if, for all, j, there exists a positivig ; such
plying their generator matrices, so the generator matrix of afyat [Qt"’j]m > 0[11, p. 18].

code in this ensemble can be written as Definition 1: A rate-1 UIC isirreducibleif the @ submatrix
of its IOWTP matrix P can be associated with an irreducible
MC.

where eaCII[i isann x n pel‘mutation matrix. Our ensemble We now draw upon some well-known theorems from the

of encoders, denoted ky,,,(C'”), ")), can be defined suc- theory of nonnegative matrices and MCs [11, p. 119].
cinctly by a probability distribution over all x n generator ma-

trices. In theory, this distribution can be computed by counting Theorem 1 (Perron—Frobenius)An irreducible MC has a
the number of distinct ways each generator matrix can be writtgfidue positive stationary state distribution. u

in the form of (3), but the large number of generator matrices proposition 1: Let P be the IOWTP matrix of an irreducible
makes this infeasible. Instead, we focus on computing the @4te1 UIC with block lengthn. The infinite family of stationary
erage IOWE of this ensemble. Le{”’, be the IOWE associ- state distributionsr () = [ro(cv), - .., m(a)], of Pis defined
ated with the generator matr&®) and IetAfj? , be the IOWE by

¢ =cm,cme? .. .1,,c" ©)

associated with the generator maifi¥’ . Let P be the IOWTP a, h=0
matrix associated witmfj? 5 then the average IOWESU”};L of () { ()
this ensemble is (I - o) 5, 1<h<n
—(m n . . Finally, the unique stationary distribution for inputs of nonzero
AEU,?L = Z Afn,);Ll [P ]hlh' (4) weight is given byr(0).
h1=0 Proof: The(n+ 1) x (n+ 1) matrix P is block diagonal

The linearity of the code guarantees that inputs of weight zeffjth the first block e‘?“a' to . scalarar)d the second block
will always be mapped to outputs of weight zero and inputs 89“"?" to thef” xn matrix@. Itis easy to verify thal? h.as exagtly
weight greater than zero will always be mapped to outputs %Yo irreducible components because a scalar is irreducible and

weight greater than zero, so the matPbwill be block diagonal is irreducible by Definition 1. The stationary distribution of
with two blocks. Let the 'first block be the x 1 submatrix as- the scalar component is the unit vector associated with inputs

sociated withw — i — 0 and the second block be thex n of weight zero because a linear code always maps the all-zero

submatrix formed by deleting the first row and columnfafin NPt to the all-zero output.

general, we will refer to the second block as @submatrix of  NOW. We consider the stationary distribution of Weirre-
the IOWTP matrix. and we write ducible component. The matriQ represents the action of a

rated linear code on the set of all nonzero sequences, which is
p— 1 0 simply a permutation of these sequences. Therefore, a uniform
10 Q) distribution on the set of nonzero sequences will be stationary



1428 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 2003

under this mapping. Now, we can simply calculate the weigBt A Large Number of Concatenations

distribution associated with a uniform distribution on the set of \ys now use (4) and Theorem 2 to compute the average WE
nonzero sequences. Simple combinatorics gives the answer ¢ any rater < 1 outer code serially concatenated with

(n) primitive rated UICs, in the limit asm goes to infinity. The
= % intriguing part of this result is that this average WE is indepen-
-1 dent of the particular outer encoder and inner encoder chosen.
forl < h <n. Using the notation from Section IlI-A, we 1€°) be thek x n

Any stationary distribution oP can be written as the convexgenerator matrix of the invertible outer code a0t be the
combination of these two unique stationary distributions (onex n generator matrix of the primitive rateinner code, and
for each irreducible component). Restricting our attention to ime IetQm(C("), C’(i)) denote the ensemble of codes witlse-
puts of nonzero weight has the effect of making the stationatigl concatenations. Since this sequence of ensembles may not
distribution unique and equal to the stationary distribution of thepproach a well-defined limit as goes to infinity, we avoid
Q component. O discussing properties of the infinite- ensemble. Instead, we
say that a property holds f@l*(C’(”), O’(i)) if there exists a fi-

Example 1: The ratet code from Section II-C is irreducible, nitemq such that the property holds for é)ln(C'("), O(i)), for

and applying Proposition 1 gives

m > mo.
T T
0 ro 0 0 0 Remark 1:An interesting open question is whether the
3/7 0 1/3 1/3 13| _ [3/7 ensemble,,, (C”), V) contains all invertible linear codes,
3/7 0 2/3 1/3 0 3/7 for sufficiently largem. Using the generator matrix definition
1/7 0o 0 1 0 1/7 (3), it is possible to give a sufficient condition for this. Let

S be the set of allh x n permutation matrices and define
An MC with state transition matrig) is primitiveif and only 7 _ iHC(i)m c 5}_ sinceC is invertible by assumption
1 i it t f. ’. 1 . . . . . . .
if there exists a positivesuch tha_t[_Q Ji,; >0 foralls, 7. This 504 all permutation matrices are invertible, it is clear tHas
is equivalent to the state transition mat@khaving a unique 5 gyhset of the multiplicative group efx = invertible binary
eigenvalue of maximum modulus. The following theorem from, atrices denoted' L (F»). Let

the theory of MCs characterizes the asymptotic behavior of a
primitive matrix taken to a large power [11, p. 119]. T ={VVy---V,|V, €T}

Theorem 2 (Perron—Frobenius)if @ is the state transition and assume that there existsrap such thatl™° = GL, (F2).
matrix of a primitive MC, with unique stationary distributian  In this case,Qm(C("),C'(i)) will contain all invertible linear
then codes for allm > mg. Furthermore, the limitim,,,_, o Q,,

(€, 0"y exists and is equal to the ensemble of all invertible

) m T linear codes under the uniform distribution. For example, when
'n'}gnoo Q=1 CY is the “accumulate” code, we have verified that this occurs
T forn=2, 3, 4 with mg=n-+1.

Moreover, the convergence is uniform and geometric. Specifi-Theorem 3: Letzglm)(n, k) be the average output WE of the
cally, if we let \» be the eigenvalue with second largest magnénsembleﬂm(do), C(i)), whereC'” is thek x n generator
tude, the [Qm]ij —m;| = O(¢™), for anyq satisfying|A2| < matrix of the outer code ard® is then x n generator matrix
q<1. O of the primitive ratet inner code. If we define?ﬁfo)(n./ k) to

: = (m) .
Definition 2: An irreducible ratet UIC is primitive if the belimy, o A}, (n, k), then we have

MC associated with th€ submatrix of its IOWTP matrix is . & () .
primitive. A, k) = { @' -1 g5, Fhx1
1 if h=0.
Corollary 1: If P is the IOWTP matrix of a primitive raté- ' ) '
UIC with block lengthn, then Furthermore, for any > 0, there exists am, such that
1, ifi=j=0 ‘ng’o)(m k) - A" (n, k)‘ <y
W}LH})o [P™];; = (7;)/(211 - 1), ifi>0andj >0 (5 forall m > my.
0, otherwise. Proof: Starting with (4) gives
k n
Example 2: The ratet code from Section II-C is also prim- Zf‘”(m k) = im Z Z A,fm)hl [P ]hn -
itive, and applying Theorem 2 confirms that ) w=1 hy=1
1 0 0 0 Applying (5) gives
. m |0 3/7 3/7 17 koon n
lim P™ = . — (o0 o (L)
i 0 3/7 3/7 1)7 A (n, k) = <Z 3 Afv,)h) 211’—_1
0 3/7 3/7 1/7 w=1 h;=1
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and the double sum is independent of the outer code and equatorollary 2: LetZELm)(n, k) be the average WE of the en-
to the number of codewords (excluding the all-zeros codewordbmble2,,, (C*, €*), as defined in Theorem 3. For afy<
SO r < 1 ande > 0, there exist integers, andm such that

(i)

o — 1" ‘

A, k) = (24 1) Af (no, [rnol) =A™ (no, [rnol)| < ¢
for all m > mg.

Proof: Using the fact that < 1, it is easy to verify that,
for anye > 0, there exists an such that

For the second statement, we start with

[AF (. Fr) = A, fra])| <

DN

-1

w

A0, k) = A (0, B)|
=1

k n
Z AE;,)IH (Wh - [Pm]hlh)
h1:1

for all n > ng. Using Theorem 3, it is also easy to verify that,
for anye > 0, there exists am, such that

and then we separate the terms and apply Theorem 2 to get (o) ()
|45 (o, Trma) = A5 (o, rmo])| <

N ™

A3, k) = A )|

k n
< (Z Z Aﬁ(t?,)h) |7rh - [Pm]h,lh| = (zk - 1)O(qm)-

w=1 hy=1

for all m > mgy. Combining these two bounds completes the
proof. O

IV. PROPERTIES OFRATE-1 CODES

Although the(2* — 1) term is possibly quite large, it is aA' Conditions for Primitivity

constant with respect to, so this expression is stitD(q™). In this subsection, we consider the conditions under which
Sinceq < 1, it follows that, for anyy > 0, there exists am, @ rated linear code is primitive. Theorem 4 gives a sufficient
such that, for alln > my, the inequality condition by showing that the ratieblock code formed by trun-

cating any rate-/1 CC is primitive. Surprisingly, this also in-
— (o) —(m) cludes nonrecursive CCs, which are seldom considered in prac-
Ay (ny k) — Ay (n, k)| <y tical turbo coding systems.

Theorem 4:Leth = hg, hq, ho, ... be the semi-infinite im-

holds. = pulse response of a nontrivial, causal, raté-convolutional

Let us define the uniform ensemble of linear codes as the épde. To avoid degenerate cases, assumehthat 1. Define
semble generated by the set of lalk n generator binary ma- / to be the smallest positive integer such that= 1. Then, the
trices. This is equivalent to the ensemble formed by letting eatied block code formed by truncating this convolutional code,
entry of arandom generator matrix be chosen independently dadny lengthn > [ + 1, is primitive.
equiprobably from the sef0, 1}. For nonzero input weights, Proof: This proof is given in the Appendix. O
_the average WE is computed_by 5|_mply hoting there%ire_l Proposition 2 establishes a simple necessary condition for
Input sequences, each_of which will be mapped to a W_e@ht'primitivity. In fact, we conjecture that this condition is also suf-
codeword with probability}}) /2™. Of course, the all-zero input ficient.
is always mapped to the all-zero output. Therefore, the average

WE of the uniform ensemble is given by Proposition 2: A primitive rated linear code must have at
least one row of even weight in its generator matrix.
. (@) Proof: Assume that all rows of the generator matrix have
AV(n, k) = 2" =1) %57, fort>h=n @) odd weight. It is easy to see that any linear combination of an
hA T 2k _1 even (odd) number of rows will have even (odd) weight. So e
1+ for h = 0. gnt. ven

o (odd) weight inputs will map only to even (odd) weight outputs

. . . and there will be no weight paths from odd weights to even
Since the average number of weight-zero codewords is larger. : . : :
. : . eights andrice versaTherefore, the MC associated with this
than one, there will always be some codes in this ensemble ~" " L
: . . code is reducible into at least two components and thelrate-
which are not invertible. code is not primitive O
It turns out that the WEL §L°°> (n, k) is almost identical to the P '
average WE of the uniform ensemble of random linear codes.Now, we discuss two exceptional classes of rateedes
The main difference between these two ensembles is that alladfich are not primitive. Remember that a rateede cannot be
the codes ir,, (C'”, €™ are invertible, while the uniform primitive if its associated MC is reducible. First, consider any
ensemble contains a small percentage of noninvertible codeded code whose generator matrix is anx n permutation
The following corollary of Theorem 3 explicitly compares thematrix. All of these codes map inputs of weightto outputs
average WE of the ensemb(é,m(C'(o)7 C’('L)), with the average of weighth and, therefore, their associated MCs are reducible

WE of the uniform ensemble of random codes. into n + 1 components. Next, for evem, consider any raté-
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code whose generator matrix is the complement ohann  n, the interleaved cascade «f recursive rate-/1 CCs has no
permutation matrix. For inputs of even weight, this mapsaths from weighpn to weight1. In practice, recursive CCs
inputs of weighth to outputs of weighth. For inputs of odd are preferred because this is a much more desirable property
weight, this maps inputs of weight to outputs of weight for error-correcting codes. In fact, the results of Section V-B
n — h. Therefore, the MC associated with any of these codesiiisply that many codes with relatively small still have large
reducible into roughlyn /4 components. minimum distance.

In fact, we have been unable to construct a dat@de that is . .
L . . Remark 3: Another way to see the difference between recur-
not primitive and that still has at least one row of even weight,

. . ...~ ¥ siye and nonrecursive rate€Cs is in the second largest eigen-
This leads us to conjecture that the necessary condition implie : . >
. . - value )\, of the @ submatrix of the IOWTP matrix. Numerical
by Proposition 2 is also sufficient. ) . S
observations suggest that the magnitude of this eigenvalue for
Remark 2: Suppose the MC associated with a rateede the G(D) = 1/(1 + D) code is|\s| = O(n~!) while for the
breaks into exactly two components based on parity (cf. ti§ D) = 1 + D code, itis|A\z| = O(1). It is well known that
Proof of Proposition 2). In this case, a variant of Theorem tBe convergence of the matrix produRt" to its limiting value
will still apply. This is because the code will preserve the odd very sensitive to the magnitude ®f (cf. Theorem 2). More-
or even parity of its inputs. Since the outer code is linear, aver, we believe this behavior may be characteristic of all recur-
ther none of the codewords will have odd weight or exactly hafve and nonrecursive codes, and if this is true, then it is another
of the codewords will have odd weight. If exactly half have odthctor which favors recursive CCs over nonrecursive CCs.
weight, then the average WE will be identical to (6). If none have
odd weight, then the even-weight terms of the overall code will V. BOUNDS ON THEMINIMUM DISTANCE
be roughly QOubIed Whl|? the odd—welght.t_erms will be exa_ctlx The Minimum-Distance Distribution
zero. For this reason, this type of reducibility based on parity’is _ _ _ o _ _
essentially irrelevant in terms of minimum distance and perfor- In this subsection, we examine minimum-distance properties

mance. of the ensembIeQm(C("), C'(i)). We make use of a general
upper bound on the probability that any code in some ensemble
B. Recursive Versus Nonrecursive Rata-CCs has minimum distancé,.;, less thani. The key property of this

_ bound is that it can be computed using only the average WE of

If V(VO? (:(?)n5|der the average WE of the ensemblge onsemble. The bound, a simple corollary of the Markov in-
0, (C,€), for finite m, then there is a distinct dif- gquality [12, p. 114], has been used previously by Gallager [13]
ference between using a generator mai@), derived from g by Kahale and Urbanke [14]. For convenience and com-

a recursive rate;/1 CC and one derived from a nonrecursivgyeteness, we now explicitly state and prove this bound.
rate1/1 CC. This difference manifests itself in the convergence

rate of the matrix producP™ to its limiting value for large ~Lemma 1:The probability that a code, randomly chosen
m. This is very much related to the convergence ratepjrof from an ensemble of linear codes with average W[ has
the average WE of the ensemig, (C®,C¥) to the value @min < d is bounded by

predicted by Theorem 3. Since the WE predicted by Theorem 3 d—1
has almost no codewords of small output weight, we compare Pr(dpin < d) < (Ag— 1) + Z Ay (8)
these two ensembles by considering the number of cascaded h=1

rate- UICs required to map an input of small weight 0 an  pygof. | et 4, be a random variable equal to the number

output whose weight grows linearly with the block length. ¢ codewords with weight. in a code randomly chosen from
Consider the nonrecursive CC with generaiD) = 1+D. 41 ensemble of codes with average \WE. We can bound the

Itis easy to verify that the output weight of this code will be ab,opapility that a code in the ensemble has minimum distance
most twice the input weight. If the desired output weightis  |ogs thand with

and the input weight i, then the minimum number of encod- i1

ings required idog, pn. More generally, for any nonrecursive Pr(d.. D =Prl (4 DU A S0

CC with an impulse response of weighthe minimum number H(dmin < d) r| (4o >1) H (4i>0) |-

of encodings idog, pn. Therefore, for fixedn and asymptoti- o N

cally largen, there will be no mappings from input weighto Since A;, takes only positive integer values, we can apply the

output weighton. So, for any finitem, we expect this ensembleUnion bound and then the Markov inequality to get

to have low-weight codewords. d—1
Now consider the recursive CC with generat@é(D) = Pr(dmin <d) < Pr(4g—1>1)+ ZPr(Ah >1)
1/(1 4 D). ltis easy to verify that this encoder maps an input h=1
of weight1 at positioni = 1, ..., n to an output weight of d—1
n — i + 1. Moreover, most inputs of small weight are mapped <(Ag-1)+ Z A,. 0
to outputs of large weight. If we view this code simply as he1
the inverse of the previous code, then it is clear that if one
code mapsi,,, », input sequences from weight to weighth Now, we use Lemma 1 to compare the minimum-distance dis-

then the other code maps the same number of sequences fndbution of the uniform ensemble with thatﬁfm(C'(o), C'(i)).
weighth to weightw. So, for fixedm and asymptotically large Both of these are also compared to the well-known GVB.



PFISTER AND SIEGEL: THE SERIAL CONCATENATION OF RATE-1 CODES THROUGH UNIFORM RANDOM INTERLEAVERS

1431

n n
Outer 1/(1+D)
H Encoder

n n n
H 1/(1+D)
m Encoder

Fig. 2.

inner code |

Encoder for a CA code with the block size indicated at each stage.

Using the counting argument of Gilbert [15], itis easy to shothis expression is negative for< d < n andT(n, k, d) <

that there exists at least one code witbode bitsk information S(n, k, d). O
bits, and minimum distance f Let do(n, k, €) be the largest such thatl'(n, k,d) < ¢ and
ok 1 2/ on 9 notice that Proposition 3 implies thég (n, k e) >d (n, k,e).
(2" -1) }ZO n) << ©) Recall that the WE of the enseml:ﬂ?e,n(C’ , ¢l ) can be

Varshamov derives a slightly better bound by considering o
linear codes, and the similarity between the two permits on

refer to them jointly as the GVB [4]. Leigys(n, k) be the

largestd which satisfies (9) for a particular andk. This is the
largest minimum distance which is guaranteed to be achieval

by the GVB.

Consider the bound which results from applying Lemma 1 &
the average WE of the uniform ensemble of linear codes, g|ve

in (7). For this ensemble, we find
Pr(dmin < d) < S(n, k, d)

where
d—1
h=1
26— 1 (X2 (n
h=0
Letdy(n, k, €) be the largest such thatS(n, k, d) < . No-

iy

made arb|trar|Iy close tol (°°)(n k) by mcreasmgm Since
< S(n, k, d), this shows that there exists am

such that for allm > mg, the minimum distance guaran-
teed by Lemma 1 fof2,, (C'(") ct )) is greater than or equal
Eﬁe ). Qualitatively, it is interesting to note that this
proves (mdependently of the GVB) that there exists at least one
code satisfyinglnin, > davs(n, k).

The asymptotic form of the GVB says that, in the limit as
1 goes to infinity, there exists a code with rate= k/n and
normalized minimum distance= d,;,, /n if

H@) <1-—7r (10)

whereH (z) = —zlogy z — (1 — ) log,(1 — z) is the binary
entropy function [4]. Lebg.,5(r) be the largest < 1/2 which
satisfies (10) for a particular block length and rate. This is the
largest normalized minimum distance which is guaranteed to be
achievable by the GVB.

Now, we can define similar normalized distance bounds for
the uniform ensemble and for the enserﬂblee0<°), C'(i)). Let

tlcethatthemequahty (9)is actuallyequwalenttothe|nequal|t§5U r, €) be the largest such that

S(n, k, d) < 1. Therefore, this bound contains the GVB as a

special case andy (n, k, 1) = dgvs(n, k).
Now, we apply Lemma 1 to the average V\TEﬁf’o)(n, k)
given in (6). In this case, we get

Pr(duin < d) < T(n, k, d)

where
T(n, k, d) = (Zg°°>(n, k) — 1) + S A, k)

2k _1

n
2n —1 Z (h)'
h=1
Proposition 3: The inequalityT(n, k, d) < S(n, k, d)
S(n, k, d)

2k _ 1

is given by the expression
n
2n —1 h

which can be simplified to

holds foralln > 2,0 < k < n,and0 < d < n.
ok _ 1 di n\) 2¥-1
2n(2" —1) \ & \h 2n

Proof: Notice that the differenc@(n, k, d) —
d—1 n 2k ~1 d—1
h 2n
h=1 h=0
Notice that this expression is negative for= 0, strictly in-

creasing withd, and equal to zero fal = n + 1. Therefore,

lim S(n, [rn], én) <€
and letég(r, €) be the largest such that
lim T(n, [rn], 6n) < e.

Following the approach taken by Pierce in [16], it is easy to
verify that

6Q(T, 6) = (SU(T, 6) = (SGVB(’I“)
foranye < 1.

B. Convolutional Accumulate: (CA™) Codes

Now, we apply Lemma 1 to get some numerical results for
the minimum distance of specific CAcodes. Recall that CA
codes are the serial concatenation of a terminated CCrand
interleaved ratd- “accumulate” codes. The encoder for CA
codes is shown in Fig. 2. We note that the MLD performance of
RA codes and some other CAcodes withm = 1 was reported
in [9]. Generalizations ten. > 1 were introduced in [7] and
a coding theorem for these codes was given in [8]. Now, we
give results pertaining to the minimum distance of'CAodes
using a few examples. For simplicity, our examples use CCs
with memory0, which may also be viewed as repeated block
codes [7].

In order to apply Lemma 1 to a specific ensemble, we must
compute the ensemble averaged WE and choose ket C;
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Fig. 3. Probabilistic bound on the minimum distance of various"Godes. (a)yn = 1, (b) e = 2, (c)m = 3, (d) m = 4.

be a sequence of code ensembles Wjtinformation bits and we will focus on whether or not the minimum distance appears
n; code bits such that the rate = k;/n; is fixed. We de- to be growing linearly with block length and on how close the
finedy (n;, €) as the largest minimum distance guaranteed, witlf.(n;, 1/2) is to the GVB. For ensembles of CAcodes with
probability1l — €, by applying Corollary 1 to the ensemble averm = 1, it is known that the minimum distance of almost all of
aged WE ofC;. In the following results, we look at the sequencéhe codes grows like& (n(4=2)/4"), whered® is the free dis-
dt(n;, 1/2) using numerically averaged WEs for various codtance of the outer terminated CC [14]. Examining Fig. 3 for
ensembles. This means that at least half of the codes in eachren= 1, we see that the minimum distance grows slowly for
semble have a minimum distance of at ledstn,, 1/2). We R4 and H8 (which have® > 3) and not at all for R2 and P9
consider 16 ensembles formed by choosing one of four ouferhich haved® = 2). Form = 2, the growth rate of the min-
codes and the number of “accumulate” codes= 1, ..., 4. imum distance for R4, H8, and R2 appears distinctly linear. It
Each outer code is referred to in shorthand: repeat by 2 (R2), izdifficult to determine the growth rate of P9 with = 2 from
peat by 4 (R4), rates/9 single parity check (P9), and tlig, 4) these results. Witih = 3, all of the codes appear to have a min-
extended Hamming code (H8). The results, over arange of codaum distance growing linearly with the block length. In fact,
word lengths, are shown in Fig. 3. the apparent growth rates are very closétQ(r). Finally,

We compare these code ensembles to the uniform ensembi m = 4, the bounds on minimum distance af{g ;(n, )
by focusing on the rate at which the minimum distance grovese almost indistinguishable. These results are very encouraging
with the block length. It is important to note that, at a fixed rat@nd suggest that, over a range of rates, even a few “accumulate”
a “good” code is defined by a minimum distance which growsodes are sufficient to approach the behavior of an asymptoti-
linearly with the block length. When examining these resultsally large number.
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C. Expurgated Ensembles nent, for any binary linear code. Applying Theorem 1 from [18]

One of the problems with average WEs is that some terrjfs(6) Shows that, for any symmetric memoryless(c)hanp;al with
may be dominated by the probability of choosing very banary inputsand discrete outputs, the enserfihle™””, C*)
codes. For example, at large enough SNR, the ensembfs nearly the same error exponent as the Shannon ensemble of
averaged probability of error will always be dominated by th@”d%n codes. A Shannon random cocie is generated by picking
code with smallest minimum distance even if the probability §f€ 2" codewords uniformly from the" possible binary se-

choosing that code is extremely small. Now, suppose we co§ences with replacement, and the Shannon ensemble is the
remove all of the codes with minimum distante,,, < d from set of possible codes chosen in this manner with their asso-
a particular ensemble. Then, every code in the egpurgated ciated probabilities. Since the Shannon ensemble achieves the

ensemblenust have minimum distanck,;,, > d. Note that we capacity of any symmetric discrete memoryless channel, this

. (o) ((4)
must choosel carefully, otherwise there may be no codes leRroves that the ensembfe. (C*/, C'*/) can operate at rates
in the new ensemble. Suppose that we chabaade together arbitrarily close to capacity.

such that the total probability of picking a code within > d  Theorem 5 (Shulman—Feder)he probability of word error
from the original ensemble is exactly— e. Py for a family of (n, [rn]) linear codes, transmitted over a

We can bound the ensemble averaged IOWE of the expdymmetric memoryless channel with binary inputs and discrete
gated ensemble, which only contains codes with, > d, by  outputs, is upper-bounded by

dividing the original ensemble into two disjoint sets. L&}, » CnE(r4 520
be the average IOWE for the ensemble with,, < d, which Py <2 B (11)

has probabilitye, and letC'y, , be the average IOWE for the wheref(-) is the error exponent of the channel and
ensemble withi,;,, > d, which has probability — ¢. We can

write the original avErage IOWE as o = max _ A 2 |
. . . 1<h<n 2[mm] — 1 (Z)
A'w, h = EB’U/‘, h+ (1 - E)Cw, h
and solving forC,, 5, gives Corollary 3: Consider the en_semb@mm’("), V) with n
’ _ o code bits andrn] information bits for0 < r < 1. Let Py be
Cou = Aw,h — qu,,,h. the average probability of word error when a code is randomly
o 1—e chosen from the ensemble and used on some channel with MLD.
Dropping theeﬁw_, , term gives the upper bound There exists am such that, for alin > mg, we have
. 1 _ PIV S 2—nE(r+O(1/n))
Cw.h S —Aw.h- .
’ I—e whereE(+) is the error exponent of the channel.
Up to this point, we have assumed thas known exactly. It is Proof: Using Theorem 5, we must simply show that the
sufficient, however, to have an upper boundeomhich is less constant: for the ensembl@,,, (€, C*)) remains essentially
than1. Applying Lemma 1 to this end gives constant as increases. Using the formula farand Theorem
o 1 - 3, we find that
Cu,n < a1k Aw, b Zém) on
[ — 1 271,
It is also clear, from the definition of',, 5, thatC,, , = 0 for <—+ J

S —n max ﬁ
all b < d andw > 0. 142 1<h<n (201 = 1) (3)

Itis important to note that this result allows one to derive pebincey can be made arbitrarily small by increasing (from
formance bounds which can be much tighter for typical codd§eorem 3), we choose,, such that
in the ensemble. For example, suppose that all of the codes in y2m 1
the ensemble with small minimum distance have a small total 121}?;‘” (2l — 1)(n) < (1—2-n)
probabilitye so that the rest of the codes, which have very goad . " n
minimum distance, have a large total probability. Pen‘ormanI:(?.‘r allm = mo. This ges the upper poundg 2/(1=27"),
bounds based on the average WE will always have an error fiG8}d NOW We can estimatéog, a)/n using

based upor and the small minimum distance, while bounds 1 loo 1 1 n 1
; —logoa< ———logy(1-2"")=0(—|.
based on the expurgated ensemble will represent the perfor- n n o n n
mance of the typical codes, which have large minimum distangg,;g completes the proof. n
VI. PERFORMANCE Remark 4: Since the constant is proportional tog™ for

someq < 1, this proof actually requires the value of, to
grow linearly withn. This is because the probability that a poor

In this subsection, we draw on a generalization of Gallagertede is chosen from the ensemble decays very slowly. Nonethe-
derivation of the error exponent [17] due to Shulman and Fedess, we believe that almost all of the codes in the ensemble will
[18]. This generalization allows one to upper-bound the probaehieve the error exponent as longag grows faster than log-
bility of MLD error, using Gallager’s random coding error expoarithmically inn.

A. The Error Exponent
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Fig. 4. Analytical and simulation results for a rat¢2 RA™ code withk = 1024 andwm = 1, 2, 3. Simulations are completed using 50 decoding iterations

and the left plot shows the word-error rate (WER) while the right plot shows the bit-error rate (BER). The label XVV signifies the Viterbi—Viterbo(vid)
applied to the expurgated ensembles.
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Fig. 5. Analytical and simulation results for a rate 1/4'R&ode withk = 1024 andm = 1, 2, 3. Simulations are completed using 50 decoding iterations and
the left plot shows the WER while the right plot shows the BER. The label XVV signifies the VV bound applied to the expurgated ensembles.

B. MLD Performance In all cases, increasing,, the number of “accumulate” codes,

In Section V-B, we applied (4) to compute the averagetfe€MSs to improve the performance both by shifting the cliff re-
WEs for several CA code ensembles. Using the WES angion to the left and by lowering the error floor. We also see that,
the Viterbi—Viterbi (VV) bound [19], we calculated upperi” some cases, the effect of expurgation is negligible, which im-
bounds on the probability of MLD error for some of thes@lies that almost all of the codes in the ensemble have small
ensembles. The results for the R2, R4, and P9 ensemblesdf@mum distance. As we saw in Section V-B, the minimum
given in Figs. 4, 5, and 6, respectively. These figures aldistance of the expurgated ensemble depends_o.n the ogter code
show the results of iterative decoding simulations which wifind the number of "accumulate” codes. The minimum distance
be discussed in the next section. At high SNR, these bourftighe outer code does not seem to completely explain the be-
are dominated by the probability of picking a code with smaflavior tht?,ugh, because the P9 ensemble requires one more “ac-
minimum distance, as reflected in the pronounced error flodrdMmulate” code than the R2 ensemble in order for expurgation to
of the nonexpurgated ensembles in Figs. 4, 5, and 6. pppke a significant difference. Of course, atlonger block lengths
this reason, we also considered the expurgated ensembledhigsmay change. _
described in Section V-C, with = 1/2. The axes of the figures were chosen to show details of the

The results of applying the Viterbi—Viterbi (VV) bound toPerformance curves, but in many cases the error'floor of the ex-
these ensembles have some characteristics worth mentionRfj9ated ensemble is too low to be shown. Consider the R2 en-
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Fig. 6. Analytical and simulation results for a rate 8™ with £ = 1024 andm = 1, 2, 3. Simulations are completed using 50 decoding iterations and the
left plot shows the WER while the right plot shows the BER. The label XVV signifies the VV bound applied to the expurgated ensembles.
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Fig. 7. Simulation results for raté/2 RA™ codes for 30 decoding iterations with = 1, 2 andk = 1024, 2048, 4096, 8192, 16 384. (a) Word-error rate
(WER). (b) Bit-error rate (BER)

semble withm = 2; the word-error rate (WER) of the expur-backward/forward pass through all “accumulate” encoders) and
gated ensemble remains steep until arouric?d@vhere it flat-  a single APP decoding operation of the outer code. It is worth
tens somewhat. The expurgated R2 ensemble mith 3 has noting that the complexity of iterative decoding is linear in both
a WER which remains steep until well below the numerical ae» andn, making it quite feasible to implement. All simula-
curacy of our computations. The expurgated P9 ensemble wiihn results were obtained using between 20 and 50 decoding
m = 3 also shows no error-floor region, but the curve losaterations, depending on the particular code, and modest gains
some steepness at a WER of 10. These error floors are inter- are observed (but not shown) when the number of iterations is
esting because understanding the performance of these codé@scatased to 200. These results are compared with analytical
high SNR, where simulation is infeasible, is important for agzounds in Figs. 4—-6 and shown by themselves in Figs. 7 and 8.
plications where very low error rates are required. The discrepancies between the simulation results and MLD
bounds in Figs. 4-6 are very pronounced. While the MLD
bounds predict uniformly improving performance with in-
creasingn, itis clear that the performance of iterative decoding
In this subsection, we use computer simulation to evalualees not behave in this manner. The optimurdepends on the
the performance of iterative decoding for these codes. A singlesired error rate and the minimum distance of the outer code.
decoding iteration corresponds 2e. — 1 a posterioriproba- In general, it appears that increasingnoves the cliff region of
bility (APP) decoding operations of an “accumulate” code (#ne error curve to the right and makes the floor region steeper.

C. lIterative Decoding Performance



1436 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 2003

10 * : - 10 ‘ ;
—— K=1024 g —— K=1024
- % - K=2048 S0 , -* - K=2048
- K=4096 DA x- K=4096
. K=8192 N o K=8192
—— K=16384 1ol S\ | —— K=16384
1072k Capacity LB : .&\ N
o k \\\
10° %o
107 N «
107 :
10 ‘ . . l . ‘ X ‘ . ‘
25 3 35 4 5 55 6 65 3 35 4 55 6 6.5

() (b)

Fig. 8. Simulation results for rat8£9 PA* codes withk = 1024, 2048, 4096, 8192, 16 384 and 20 decoding iterations. (a) Word-error rate (WER). (b)
Bit-error rate (BER)

This seems reasonable because more Iratecoders (which the R2 code withn = 2 is clearly decreasing with block length.
have no coding gain) are applied before the outer code (with EilFig. 8, we see similar behavior for the interleaver gain of the
of the coding gain) is decoded. This results in a phenomenBA codes.

where the iterative decoder often does not converge, but rarely

makes a mistake when it does converge. VIl. CONCLUSION AND FUTURE WORK

The expurgated WE can also be used to detect the presenci% this paper, we introduce a new ensemble of binary linear

of bad codes which are chosen with low probability. If the MLD ades consisting of any rate< 1 outer code followed by aarge

tehxeplé?:étegfbtﬁigg Isatéeggg;Zar?atgebgg:er)ézldgzteiﬁ:lﬂfbtgg%ber of uniformly interleaved rateeodes. We show that this

. L . ensemble is very similar to the ensemble of uniform random
purgated bound s not shown when it coincides with the non ihear codes in terms of minimum distance and error exponent
purgated bound. In some cases, iterative decoding is performi P

better than the MLD expurgated bound (e.g., the R4 ensemBl8 racteristics. A key t(_)ol in the analy5|.s of thesg podes IS acor-
reSpondence between input—output weight transition probability

with m = 1). This may occur because the use of wc'all_de5|gn. WTP} matrices and Markov chains (MCs), which allows us
(e.g., S-random [20]) interleavers can provide a minimum dis- e
0 draw on some well-known limit theorems from MC theory.

tance which is better than that guaranteed by Lemma 1. : e o .
. . : . We derive a probabilistic bound on the minimum distance of
The interleaver gain exponent (IGE) conjecture is based on

. : : cades from this ensemble, and show it to be almost identical to
the observations of Benedetto and Montorsi [3] and is statﬁ1e Gilbert—Varshamov bound (GVB). In particular, our anal-
rigorously in [1]. It states that the probability of MLD decodin -np '

error for turbo-like codes will decay a8(n—"), wherev de- g&/sis implies that almost all long codes in the ensemble have a

pends on the details of the coding system. If the IGE conjectur}grmahzed minimum d|stan_ce meeting the GVB. .
Next, we consider a particular class of these codes, which

predicts that the bit-error rate (BER) (resp., WER) will dec% refer to as convolutional accumulate-(CA™) codes.

with the block length, then we say that the system has B . . :
. . . i . These codes consist of an outer terminated convolutional code
(resp., WER) interleaver gain. It is easy to verify that WER in- . : w ,
s : : ollowed by m uniformly interleaved “accumulate” codes. We
terleaver gain implies BER interleaver gain. The IGE and the . . o
. evaluate the minimum distance bound for a few specific"CA

MLD expurgated bound are quite closely connected. If a system .
codes form =1, ..., 4 and observe that these relatively small

has WER interleaver gain, the probability of picking a codé values may be sufficient to approach the GVB. Finally, we

with codewords of fixed weight must decay to zero as the block : . :
length increases. Therefore, one would expect the MLD expﬁ'rs—e computer simulation to evaluate the bit-error rate (BER)
. ' nd word-error rate (WER) performance of these"Cé@odes

gated bound to beat the nonexpurgated bound. On the Otﬁ?t iterative decoding and compare this to the performance
hand, if a system has only BER interleaver gain, then it is likely 9 P P

that the MLD expurgated bound will equal the nonexpurgat éed'Cted by union bounds for MLD.

bound. Remark 5: An MLD coding theorem for CA' codes can
Finally, the IGE conjecture predicts that the R2 code will havge found in [8], with humerical estimates of the corresponding

no WER interleaver gain (i.eRy = O(n~1)) for m = 1, but noise thresholds. Also given there are the thresholds which re-

that it will have WER interleaver gain (i.el; = O(n~1)) for  sult from applying density evolution [21] to the iterative de-

m = 2. In Fig. 7, the WER of the R2 code witlh = 1 does coding of these codes. Finally, a comprehensive treatment of

indeed appear to be independent of block length and the WERboth of these subjects can be found in [22].
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APPENDIX Likewise, foreachs = 2, ..., n, the inputh = [1°—1, 0"~2, 1]
PROOF OFTHEOREM 4 has weight and produces an outpat= [1°~1, 0»~*+1] which
has weight—1. Now consider any vertex, labelédn the graph

The generator matrix’,, of the lengthn block code is . . . . )
g )T g G ... These input—output pairs establish that there is a directed

ho hi hy - hay edge from the vertex labeledo the vertex labeled + 1 and
ho hy o s to the vertex labeled — 1, if those vertices exist. So there is
T, = ho - : . a directed path from any vertex to any other vertex, @npgdis
ho hy irreducible. The inpub = [0"~!, 1] produces the output =
ho [0n=1, 1] which establishes that the vertex labeleldas a self-

For simplicity of notation, we define: = [ + 1. By hypoth- 100p- So the grapt,,, is also aperiodic, and therefore primitive.
esis, the generator matrix of this code will be the identity matrix NOW we assume tha,, is primitive for somen > m, and
for anyn < m, making the code trivial. We will show that theUSe this to prove tha,,.,., is primitive. We start by proving the
block code of length. > m is primitive by first establishing "eSult mentioned abovés,, is a subgraph ot ;. Consider
that the lengthm block code is primitive, then showing that the2NY inputb, to the ratet block code with generator matri,..
lengthn+ 1 block code is primitive if the length code is primi-  The output will bebT',, and the weight mapping graygh, will
tive, and finally using induction to extend the proof to arbitrarilj@ve an edge from the vertex labelgfito the vertex labeled
largen. |bT..|. In_ facj[, all edges_ of7,, are enumerated by C(_)n5|der|ng

Recall that a rate-block code is primitive if the MC asso- &l Possible inputs. Notice that the generator maifix, can
ciated with theQ submatrix of the code’s IOWTP matrix is P Written as
primitive. Let @Q,, be the@ submatrix of the length block ho| h1 -+ hy,
code’s IOWTP matrix. It is easy to verify thg@,,];. ; is greater
than zero iff the corresponding component of the IOWE of the
length+: block codeAE_"j is greater than zero. Thinking of the : T,
latter as an adjacency matrix, we associate to the lendtlock
code a directed grap@¥,,, which we call theweight-mapping
graph The vertices of7,,, which are labeled, 2, ..., n, cor- This implies thaf0 b]T,1 = [0 bT,] and proves, for each
respond to the Hamming weights of input and output sequende#hat the weight mapping gragh, ., also has a directed edge
of the code. Denote the Hamming weight of a binary veetorfrom the vertex labele¢b| to the vertex labele¢bT',|. So, for
by |v|. For each binary input to the code= by, by, ..., b,, ©€very directed edge i,, connecting two labeled vertices, there
there is a directed edge from the vertex labelé¢do the vertex is a directed edge i, 1, connecting two vertices with the
labeled|e| if the input vectorb produces the output vecter Same labels. The vertices 6, are also a subset of the vertices
This implies that the grapt¥,, will have a directed edge from of Gy.41, SOG, is a subgraph of7,, ;.
vertexi to vertexj iff A{") > 0. Therefore, the grapt, has T prove that the grapty’,, is irreducible, it now suffices
the same connectivity as the MC associated \@th and we 0 show thai,, ., has a directed edge from the vertex labeled
have reduced the problem to showing that edghforn > m, n + 1 t0 some vertex with label # n + 1, as well as a di-
is primitive. rected edge from some such vertex to vemex 1. Consider

We will prove that eactt,, is primitive by establishing that b = [1"*'], the only input of weight. + 1, and notice that
it is both irreducible and aperiodic. By definition, a graph i€ mth column ofT’, ., has exactly two ones. Therefore, the
irreducible if there is a directed path from each vertex to evefyth element obT',, ., must be zero anbll',, 1 # b. This im-
other vertex. A graph is aperiodic if the greatest common divisBlies that an input of weight + 1 produces an output of weight
of the lengths of all its cycles (i.e., paths which start and end ir< 7+ 1. Therefore(7,, ., has a directed edge from the vertex
the same state) is one. Therefore, for aperiodicity, it is sufficieldPeledn + 1 to a vertex labeled wherei < n + 1. Next, we
to exhibit a single vertex with a self-loop (i.e., a directed eddtice thafl’,, ., is upper triangular and has all ones on the main
from a vertex back to itself). The verification of these properticdagonal, which makes it invertible. This means that there must
for G, will be simplified by the fact, proved below, thét, is b€ & unique inpul’ which is mapped to the outplit= [1"+1].

a subgraph of7,, 1. We know that this input must obey the eguathSTnH =b,
For the primary case, corresponding to length= m, the and sincebT',,;, # b, we also know thab” # b. Sinceb is
generator matrix of the code is the only lengthtn + 1) sequence of weight + 1, we conclude
10 0 1 that[b'| < n + 1. This implies that there is an input of weight
1 0 0 0 i = |b'| < n + 1 which produces an output of weight+- 1.
Therefore(F,,+1 has a directed edge from a vertex labelgdr
T = (1] somei < n + 1, to the vertex labeled + 1. We conclude that

0 Gn41 is irreducible.

1 The aperiodicity ofG,,+1 follows immediately from the fact
Consider strings of the forij1®, 0"~*] and[1*~!, 0"~*, 1], that the subgraptV,, C G, contains a self-loop at vertex
wherea’ refers to a string of repeated symbols. For each This completes the proof thét, . ; is primitive, and, therefore,
s=1,...,n—1,the inputb = [1%, 0"~ *] has weights and the proof that the raté-block code of lengtl + 1 is primitive,

produces an outpet= [1%, 0"~*~! 1] which has weight+1. as desired. O
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Fig. 9. The weight mapping grap&:., with theG; subgraph drawn in solid

lines.
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(3]

(4]

(5]

(6]

We illustrate the proof technique using the “accumulate” code 7]
example from Section II-C. The impulse responkeof the
“accumulate” code is the infinite sequence of ones,= 1,

for ¢

and theG3 subgraph is drawn with solid lines. It is easy to

> 0. The weight mapping grapy, is shown in Fig. 9

(8]

see that7; is both irreducible and aperiodic; in particular, note [9]
the self-loop at the vertex labeled 1. There is an edgdrom
vertex 4 to vertex 2, corresponding to the weighiput vector
b = [1%], and a directed edge from vertex 1 to vertex 4, cor{11]
responding to the weight-input vectorb’ = [1, 03]. Together
with the irreducibility ofG'3, this implies thati, is irreducible.
The self-loop at vertex 1 ensures the aperiodicity and, thereforg3]
the primitivity of G4.
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