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Abstract—Until the analysis of Repeat Accumulate codes by
Divsalar et al., few people would have guessed that simple rate-1
codes could play a crucial role in the construction of “good” binary
codes. In this paper, we will construct “good” binary linear block
codes at any rate 1 by serially concatenating an arbitrary
outer code of rate with a large number of rate-1 inner codes
through uniform random interleavers. We derive the average
output weight enumerator (WE) for this ensemble in the limit as
the number of inner codes goes to infinity. Using a probabilistic
upper bound on the minimum distance, we prove that long codes
from this ensemble will achieve the Gilbert–Varshamov bound
with high probability. Numerical evaluation of the minimum
distance shows that the asymptotic bound can be achieved with
a small number of inner codes. In essence, this construction
produces codes with good distance properties which are also com-
patible with iterative “turbo” style decoding. For selected codes,
we also present bounds on the probability of maximum-likelihood
decoding (MLD) error and simulation results for the probability
of iterative decoding error.

Index Terms—Random coding, rate-1 codes, serial concatena-
tion, turbo codes, uniform interleaver.

I. INTRODUCTION

SINCE the introduction of turbo codes by Berrou, Glavieux,
and Thitimajshima [2], iterative decoding has made it prac-

tical to consider a myriad of different concatenated codes, and
the use of “random” interleavers and recursive convolutional en-
coders has provided a good starting point for the design of new
code structures. Many of these concatenated code structures fit
into a class that Divsalar, Jin, and McEliece call “turbo-like”
codes [1]. Perhaps the simplest codes in this class are repeat ac-
cumulate (RA) codes, which consist only of a repetition code,
an interleaver, and an accumulator. Yet, Divsalaret al. prove
that the maximum-likelihood decoding (MLD) of RA codes has
vanishing word error probability, for sufficiently low rates and
any fixed signal-to-noise ratio (SNR) greater than a threshold,
as the block length goes to infinity. This demonstrates that pow-
erful error-correcting codes may be constructed from extremely
simple components.
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In this paper, we consider the serial concatenation of an ar-
bitrary binary linear outer code of rate with identical
rate- binary linear inner codes where, following the conven-
tion of the turbo-coding literature, we use the term serial con-
catenation to mean serial concatenation through a “random” in-
terleaver. Any real system must, of course, choose a particular
interleaver. Our analysis, however, will make use of theuni-
form random interleaver(URI) [3] which is equivalent to av-
eraging over all possible interleavers. We analyze this system
using a probabilistic bound on the minimum distance and show
that, for any fixed block length and large enough, the en-
semble contains some codes whose minimum distance achieves
the Gilbert–Varshamov bound (GVB) [4].

Our work is largely motivated by [1] and by the results of
Öberg and Siegel [5]. Both papers consider the effect of a simple
rate- “accumulate” code in a serially concatenated system. In
[1], a coding theorem is proved for RA codes, while in [5], the
“accumulate” code is analyzed as a precoder for the dicode mag-
netic recording channel. Benedettoet al. also investigated the
design and performance of double serially concatenated codes
in [6].

We also discuss some specific codes in this family, known as
convolutional accumulate- (CA ) codes, which were intro-
duced as generalized RA codes in [7] and [8]. A CAcode is a
serially concatenated code where the outer code is a terminated
convolutional code (CC) and the inner code is a cascade of
interleaved “accumulate” codes. These codes were studied in
some depth for by Jin in [9]. This paper focuses on the
case of , and gives a straightforward Markov chain based
analysis of the distance properties and MLD performance.

The outline of the paper is as follows. In Section II, we
review the weight enumerator(WE) of linear block codes
and the union bound on the probability of error for MLD.
We also review the average WE for the serial concatenation
of two linear block codes through a URI, and relate serial
concatenation to matrix multiplication using a normalized form
of each code’sinput–output WE(IOWE). In Section III, we
introduce our system, shown in Fig. 1, compute its average
output WE, and compare this WE to that of random codes.
In Section IV, we consider some properties of rate-codes
which affect the performance of our system. In Section V,
we discuss a probabilistic bound on the minimum distance of
any code, taken from an ensemble, in terms of the ensemble
averaged WE. Applying this bound to the WE from Section III
gives an expression that is very similar to the GVB and that is
asymptotically equal to the GVB for large block lengths. We
also evaluate this bound numerically for various CAcodes
and observe that three or four “accumulate” codes seem to be
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Fig. 1. Our system consists of any rater < 1 code followed bym rate-1 codes.

sufficient to achieve the bound derived for asymptotically large
. In Section VI, we evaluate the performance of those same

CA codes using bounds on the MLD error probability and
simulations for iterative decoding error probability. Finally,
in Section VII, we share some conclusions and discuss the
direction of our future work.

II. WEIGHT ENUMERATORS ANDSERIAL CONCATENATION

A. The Union Bound

In this section, we review the WE of a linear block code and
the union bound on error probability for MLD. The IOWE
of an block encoder is the number of codewords with
input Hamming weight and output Hamming weight, and
the WE is the number of codewords with any input weight
and output weight . Using these definitions, the MLD proba-
bility of word error is upper-bounded by

and the MLD probability of bit error is upper-bounded by

The parameter is known as the Bhattacharyya parameter, and
represents an upper bound on the pairwise error probability

between any two codewords differing inpositions [10, p. 88].
It can be computed for any memoryless channel, and for the
binary-input additive white Gaussian noise (AWGN) channel
it is , where is the SNR of the decision
statistic.

B. Serial Concatenation Through a Uniform Interleaver

We now briefly review the serial concatenation of codes
through a URI. The introduction of the URI in the analysis
of turbo codes, by Benedetto and Montorsi [3], has made the
analysis of complex concatenated coding systems relatively
straightforward; using the URI for analysis is equivalent to
averaging over all possible interleavers. The important property
of the URI is that the output sequence distribution is a function
only of the input weight distribution. More precisely, given
that the input to a URI has weight, each output sequence of
weight will be observed with equal probability and all other
output sequences will have zero probability.

Consider any block encoder with IOWE pre-
ceded by a URI. We will refer to such a code as auniformly in-
terleaved code(UIC). The probability of the com-
bined system mapping an input sequence of weightto an
output sequence of weightis

(1)

Now we can consider the ensemble of block codes
formed by first encoding with an outer code with IOWE

, permuting the output bits with a URI, and finally en-

coding again with an inner code with IOWE . The
ensemble averaged IOWE is given by

(2)

The average IOWE for the serial concatenation of two codes
may also be written as the matrix product of the IOWE for the
outer code and a normalized version of the IOWE for the inner
code. Let us define, for any code, theinput–output weight tran-
sition probability(IOWTP) as the probability that an input
sequence of weight is mapped to an output sequence of weight

. From (1), we can see that . Substituting
(1) into (2), we have

where is a matrix product and the matrix representa-
tions are defined by

and

Using induction, it is easy to verify that matrix multiplication by
an arbitrary number of IOWTP matrices results in the average
IOWE, , of the overall serial concatenation. It is also easy
to verify, using (1), that all IOWTP matrices are stochastic.

C. A Simple Example—The Accumulate Inner Code

We compute the IOWE and IOWTP of the rate-“accumu-
late” code [1]. The “accumulate” code is a block code formed by
truncating, after symbols, the recursive rate-CC with gener-
ator matrix . The generator matrix for this
block code is an matrix with all ones in the upper triangle
and all zeros elsewhere. For the case , the generator ma-
trix is

Using Table I, we see that the uniformly interleaved “accumu-
late” code maps an input of weightto an output of weight
or each with probability . So the row of the IOWTP
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TABLE I
INPUT–OUTPUT SEQUENCES ANDWEIGHT MAPPINGS FOR THEn = 3

“A CCUMULATE” CODE

matrix is . The matrix representations of the
IOWE and IOWTP are given by

III. M ULTIPLE RATE- SERIAL CONCATENATIONS

A. The Input–Output Weight Enumerator

Now, we consider the average IOWE, , of the
linear block encoder formed by first encoding with any
linear block encoder and then encoding with a cascade of
identical interleaved rate-block encoders. Let the outer en-
coder be defined by the generator matrix and the
inner code be defined by the generator matrix . The
serial concatenation of linear block codes is achieved by multi-
plying their generator matrices, so the generator matrix of any
code in this ensemble can be written as

(3)

where each is an permutation matrix. Our ensemble
of encoders, denoted by , can be defined suc-
cinctly by a probability distribution over all generator ma-
trices. In theory, this distribution can be computed by counting
the number of distinct ways each generator matrix can be written
in the form of (3), but the large number of generator matrices
makes this infeasible. Instead, we focus on computing the av-
erage IOWE of this ensemble. Let be the IOWE associ-

ated with the generator matrix and let be the IOWE

associated with the generator matrix . Let be the IOWTP
matrix associated with , then the average IOWE of
this ensemble is

(4)

The linearity of the code guarantees that inputs of weight zero
will always be mapped to outputs of weight zero and inputs of
weight greater than zero will always be mapped to outputs of
weight greater than zero, so the matrixwill be block diagonal
with two blocks. Let the first block be the submatrix as-
sociated with and the second block be the
submatrix formed by deleting the first row and column of. In
general, we will refer to the second block as thesubmatrix of
the IOWTP matrix, and we write

Multiplication acts independently on the components of a block-
diagonal matrix, so we can also write

If is a finite-dimensional stochastic matrix, then we can as-
sociate it with a finite-state Markov chain (MC) with state transi-
tion matrix . In this case, both and are finite-dimensional
stochastic matrices and the association matches states in the
MC with input–output weights of the rate-UIC. Using some
well-known definitions from the theory of MCs, we say that

is a stationary state distribution of the MC
with transition probability matrix if and .
This allows us to associate a stationary state distributionof
the MC with a stationary weight distribution of the rate-UIC.
If the average WE, , of a code ensemble is not changed by
encoding every code in the ensemble with the same rate-UIC,
then is a stationary WE of that rate-UIC. Using (2), it is
easy to verify that this occurs when

which makes a stationary state dis-
tribution of the MC associated with state transition matrix.
Recall also that an MC, with state transition matrix, is irre-
ducibleif and only if, for all , there exists a positive such
that [11, p. 18].

Definition 1: A rate- UIC is irreducible if the submatrix
of its IOWTP matrix can be associated with an irreducible
MC.

We now draw upon some well-known theorems from the
theory of nonnegative matrices and MCs [11, p. 119].

Theorem 1 (Perron–Frobenius):An irreducible MC has a
unique positive stationary state distribution.

Proposition 1: Let be the IOWTP matrix of an irreducible
rate- UIC with block length . The infinite family of stationary
state distributions, , of is defined
by

Finally, the unique stationary distribution for inputs of nonzero
weight is given by .

Proof: The matrix is block diagonal
with the first block equal to the scalarand the second block
equal to the matrix . It is easy to verify that has exactly
two irreducible components because a scalar is irreducible and

is irreducible by Definition 1. The stationary distribution of
the scalar component is the unit vector associated with inputs
of weight zero because a linear code always maps the all-zero
input to the all-zero output.

Now, we consider the stationary distribution of theirre-
ducible component. The matrix represents the action of a
rate- linear code on the set of all nonzero sequences, which is
simply a permutation of these sequences. Therefore, a uniform
distribution on the set of nonzero sequences will be stationary
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under this mapping. Now, we can simply calculate the weight
distribution associated with a uniform distribution on the set of
nonzero sequences. Simple combinatorics gives the answer

for .
Any stationary distribution of can be written as the convex

combination of these two unique stationary distributions (one
for each irreducible component). Restricting our attention to in-
puts of nonzero weight has the effect of making the stationary
distribution unique and equal to the stationary distribution of the

component.

Example 1: The rate- code from Section II-C is irreducible,
and applying Proposition 1 gives

An MC with state transition matrix is primitive if and only
if there exists a positivesuch that for all . This
is equivalent to the state transition matrixhaving a unique
eigenvalue of maximum modulus. The following theorem from
the theory of MCs characterizes the asymptotic behavior of a
primitive matrix taken to a large power [11, p. 119].

Theorem 2 (Perron–Frobenius):If is the state transition
matrix of a primitive MC, with unique stationary distribution,
then

...

Moreover, the convergence is uniform and geometric. Specifi-
cally, if we let be the eigenvalue with second largest magni-
tude, then , for any satisfying

.

Definition 2: An irreducible rate- UIC is primitive if the
MC associated with the submatrix of its IOWTP matrix is
primitive.

Corollary 1: If is the IOWTP matrix of a primitive rate-
UIC with block length , then

if

if and

otherwise.

(5)

Example 2: The rate- code from Section II-C is also prim-
itive, and applying Theorem 2 confirms that

B. A Large Number of Concatenations

We now use (4) and Theorem 2 to compute the average WE
of any rate outer code serially concatenated with
primitive rate- UICs, in the limit as goes to infinity. The
intriguing part of this result is that this average WE is indepen-
dent of the particular outer encoder and inner encoder chosen.
Using the notation from Section III-A, we let be the
generator matrix of the invertible outer code and be the

generator matrix of the primitive rate-inner code, and
we let denote the ensemble of codes withse-
rial concatenations. Since this sequence of ensembles may not
approach a well-defined limit as goes to infinity, we avoid
discussing properties of the infinite-ensemble. Instead, we
say that a property holds for if there exists a fi-
nite such that the property holds for all , for

.

Remark 1: An interesting open question is whether the
ensemble contains all invertible linear codes,
for sufficiently large . Using the generator matrix definition
(3), it is possible to give a sufficient condition for this. Let

be the set of all permutation matrices and define
. Since is invertible by assumption

and all permutation matrices are invertible, it is clear thatis
a subset of the multiplicative group of invertible binary
matrices denoted . Let

and assume that there exists an such that .
In this case, will contain all invertible linear
codes for all . Furthermore, the limit

exists and is equal to the ensemble of all invertible
linear codes under the uniform distribution. For example, when

is the “accumulate” code, we have verified that this occurs
for with .

Theorem 3: Let be the average output WE of the
ensemble , where is the generator
matrix of the outer code and is the generator matrix
of the primitive rate- inner code. If we define to
be , then we have

if

if
(6)

Furthermore, for any , there exists an such that

for all .
Proof: Starting with (4) gives

Applying (5) gives



PFISTER AND SIEGEL: THE SERIAL CONCATENATION OF RATE-1 CODES THROUGH UNIFORM RANDOM INTERLEAVERS 1429

and the double sum is independent of the outer code and equal
to the number of codewords (excluding the all-zeros codeword),
so

For the second statement, we start with

and then we separate the terms and apply Theorem 2 to get

Although the term is possibly quite large, it is a
constant with respect to , so this expression is still .
Since , it follows that, for any , there exists an
such that, for all , the inequality

holds.

Let us define the uniform ensemble of linear codes as the en-
semble generated by the set of all generator binary ma-
trices. This is equivalent to the ensemble formed by letting each
entry of a random generator matrix be chosen independently and
equiprobably from the set . For nonzero input weights,
the average WE is computed by simply noting there are
input sequences, each of which will be mapped to a weight-
codeword with probability . Of course, the all-zero input
is always mapped to the all-zero output. Therefore, the average
WE of the uniform ensemble is given by

for

for
(7)

Since the average number of weight-zero codewords is larger
than one, there will always be some codes in this ensemble
which are not invertible.

It turns out that the WE is almost identical to the
average WE of the uniform ensemble of random linear codes.
The main difference between these two ensembles is that all of
the codes in are invertible, while the uniform
ensemble contains a small percentage of noninvertible codes.
The following corollary of Theorem 3 explicitly compares the
average WE of the ensemble, , with the average
WE of the uniform ensemble of random codes.

Corollary 2: Let be the average WE of the en-
semble , as defined in Theorem 3. For any

and , there exist integers and such that

for all .
Proof: Using the fact that , it is easy to verify that,

for any , there exists an such that

for all . Using Theorem 3, it is also easy to verify that,
for any , there exists an such that

for all . Combining these two bounds completes the
proof.

IV. PROPERTIES OFRATE- CODES

A. Conditions for Primitivity

In this subsection, we consider the conditions under which
a rate- linear code is primitive. Theorem 4 gives a sufficient
condition by showing that the rate-block code formed by trun-
cating any rate- CC is primitive. Surprisingly, this also in-
cludes nonrecursive CCs, which are seldom considered in prac-
tical turbo coding systems.

Theorem 4: Let be the semi-infinite im-
pulse response of a nontrivial, causal, rate-convolutional
code. To avoid degenerate cases, assume that . Define

to be the smallest positive integer such that . Then, the
rate- block code formed by truncating this convolutional code,
to any length , is primitive.

Proof: This proof is given in the Appendix.

Proposition 2 establishes a simple necessary condition for
primitivity. In fact, we conjecture that this condition is also suf-
ficient.

Proposition 2: A primitive rate- linear code must have at
least one row of even weight in its generator matrix.

Proof: Assume that all rows of the generator matrix have
odd weight. It is easy to see that any linear combination of an
even (odd) number of rows will have even (odd) weight. So even
(odd) weight inputs will map only to even (odd) weight outputs
and there will be no weight paths from odd weights to even
weights andvice versa. Therefore, the MC associated with this
code is reducible into at least two components and the rate-
code is not primitive.

Now, we discuss two exceptional classes of rate-codes
which are not primitive. Remember that a rate-code cannot be
primitive if its associated MC is reducible. First, consider any
rate- code whose generator matrix is an permutation
matrix. All of these codes map inputs of weightto outputs
of weight and, therefore, their associated MCs are reducible
into components. Next, for even, consider any rate-
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code whose generator matrix is the complement of an
permutation matrix. For inputs of even weight, this maps
inputs of weight to outputs of weight . For inputs of odd
weight, this maps inputs of weight to outputs of weight

. Therefore, the MC associated with any of these codes is
reducible into roughly components.

In fact, we have been unable to construct a rate-code that is
not primitive and that still has at least one row of even weight.
This leads us to conjecture that the necessary condition implied
by Proposition 2 is also sufficient.

Remark 2: Suppose the MC associated with a rate-code
breaks into exactly two components based on parity (cf. the
Proof of Proposition 2). In this case, a variant of Theorem 3
will still apply. This is because the code will preserve the odd
or even parity of its inputs. Since the outer code is linear, ei-
ther none of the codewords will have odd weight or exactly half
of the codewords will have odd weight. If exactly half have odd
weight, then the average WE will be identical to (6). If none have
odd weight, then the even-weight terms of the overall code will
be roughly doubled while the odd-weight terms will be exactly
zero. For this reason, this type of reducibility based on parity is
essentially irrelevant in terms of minimum distance and perfor-
mance.

B. Recursive Versus Nonrecursive Rate-CCs

If we consider the average WE of the ensemble
, for finite , then there is a distinct dif-

ference between using a generator matrix, , derived from
a recursive rate- CC and one derived from a nonrecursive
rate- CC. This difference manifests itself in the convergence
rate of the matrix product to its limiting value for large

. This is very much related to the convergence rate, in, of
the average WE of the ensemble to the value
predicted by Theorem 3. Since the WE predicted by Theorem 3
has almost no codewords of small output weight, we compare
these two ensembles by considering the number of cascaded
rate- UICs required to map an input of small weight to an
output whose weight grows linearly with the block length.

Consider the nonrecursive CC with generator .
It is easy to verify that the output weight of this code will be at
most twice the input weight. If the desired output weight is
and the input weight is, then the minimum number of encod-
ings required is . More generally, for any nonrecursive
CC with an impulse response of weight, the minimum number
of encodings is . Therefore, for fixed and asymptoti-
cally large , there will be no mappings from input weightto
output weight . So, for any finite , we expect this ensemble
to have low-weight codewords.

Now consider the recursive CC with generator
It is easy to verify that this encoder maps an input

of weight at position to an output weight of
. Moreover, most inputs of small weight are mapped

to outputs of large weight. If we view this code simply as
the inverse of the previous code, then it is clear that if one
code maps input sequences from weight to weight
then the other code maps the same number of sequences from
weight to weight . So, for fixed and asymptotically large

, the interleaved cascade of recursive rate- CCs has no
paths from weight to weight . In practice, recursive CCs
are preferred because this is a much more desirable property
for error-correcting codes. In fact, the results of Section V-B
imply that many codes with relatively small still have large
minimum distance.

Remark 3: Another way to see the difference between recur-
sive and nonrecursive rate-CCs is in the second largest eigen-
value of the submatrix of the IOWTP matrix. Numerical
observations suggest that the magnitude of this eigenvalue for
the code is while for the

code, it is . It is well known that
the convergence of the matrix product to its limiting value
is very sensitive to the magnitude of (cf. Theorem 2). More-
over, we believe this behavior may be characteristic of all recur-
sive and nonrecursive codes, and if this is true, then it is another
factor which favors recursive CCs over nonrecursive CCs.

V. BOUNDS ON THEMINIMUM DISTANCE

A. The Minimum-Distance Distribution

In this subsection, we examine minimum-distance properties
of the ensemble . We make use of a general
upper bound on the probability that any code in some ensemble
has minimum distance less than . The key property of this
bound is that it can be computed using only the average WE of
the ensemble. The bound, a simple corollary of the Markov in-
equality [12, p. 114], has been used previously by Gallager [13]
and by Kahale and Urbanke [14]. For convenience and com-
pleteness, we now explicitly state and prove this bound.

Lemma 1: The probability that a code, randomly chosen
from an ensemble of linear codes with average WE has

is bounded by

(8)

Proof: Let be a random variable equal to the number
of codewords with weight in a code randomly chosen from
an ensemble of codes with average WE. We can bound the
probability that a code in the ensemble has minimum distance
less than with

Since takes only positive integer values, we can apply the
union bound and then the Markov inequality to get

Now, we use Lemma 1 to compare the minimum-distance dis-
tribution of the uniform ensemble with that of .
Both of these are also compared to the well-known GVB.
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Fig. 2. Encoder for a CA code with the block size indicated at each stage.

Using the counting argument of Gilbert [15], it is easy to show
that there exists at least one code withcode bits, information
bits, and minimum distance if

(9)

Varshamov derives a slightly better bound by considering only
linear codes, and the similarity between the two permits one to
refer to them jointly as the GVB [4]. Let be the
largest which satisfies (9) for a particular and . This is the
largest minimum distance which is guaranteed to be achievable
by the GVB.

Consider the bound which results from applying Lemma 1 to
the average WE of the uniform ensemble of linear codes, given
in (7). For this ensemble, we find

where

Let be the largest such that . No-
tice that the inequality (9) is actually equivalent to the inequality,

. Therefore, this bound contains the GVB as a
special case and .

Now, we apply Lemma 1 to the average WE
given in (6). In this case, we get

where

Proposition 3: The inequality
holds for all , , and .

Proof: Notice that the difference
is given by the expression

which can be simplified to

Notice that this expression is negative for , strictly in-
creasing with , and equal to zero for . Therefore,

this expression is negative for and
.

Let be the largest such that and
notice that Proposition 3 implies that .
Recall that the WE of the ensemble can be
made arbitrarily close to by increasing . Since

, this shows that there exists an
such that, for all , the minimum distance guaran-
teed by Lemma 1 for is greater than or equal
to . Qualitatively, it is interesting to note that this
proves (independently of the GVB) that there exists at least one
code satisfying .

The asymptotic form of the GVB says that, in the limit as
goes to infinity, there exists a code with rate and

normalized minimum distance if

(10)

where is the binary
entropy function [4]. Let be the largest which
satisfies (10) for a particular block length and rate. This is the
largest normalized minimum distance which is guaranteed to be
achievable by the GVB.

Now, we can define similar normalized distance bounds for
the uniform ensemble and for the ensemble . Let

be the largest such that

and let be the largest such that

Following the approach taken by Pierce in [16], it is easy to
verify that

for any .

B. Convolutional Accumulate- CA Codes

Now, we apply Lemma 1 to get some numerical results for
the minimum distance of specific CAcodes. Recall that CA
codes are the serial concatenation of a terminated CC and
interleaved rate- “accumulate” codes. The encoder for CA
codes is shown in Fig. 2. We note that the MLD performance of
RA codes and some other CAcodes with was reported
in [9]. Generalizations to were introduced in [7] and
a coding theorem for these codes was given in [8]. Now, we
give results pertaining to the minimum distance of CAcodes
using a few examples. For simplicity, our examples use CCs
with memory , which may also be viewed as repeated block
codes [7].

In order to apply Lemma 1 to a specific ensemble, we must
compute the ensemble averaged WE and choose an. Let
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(a) (b)

(c) (d)

Fig. 3. Probabilistic bound on the minimum distance of various CAcodes. (a)m = 1, (b)m = 2, (c)m = 3, (d)m = 4.

be a sequence of code ensembles withinformation bits and
code bits such that the rate is fixed. We de-

fine as the largest minimum distance guaranteed, with
probability , by applying Corollary 1 to the ensemble aver-
aged WE of . In the following results, we look at the sequence

using numerically averaged WEs for various code
ensembles. This means that at least half of the codes in each en-
semble have a minimum distance of at least . We
consider 16 ensembles formed by choosing one of four outer
codes and the number of “accumulate” codes .
Each outer code is referred to in shorthand: repeat by 2 (R2), re-
peat by 4 (R4), rate– single parity check (P9), and the
extended Hamming code (H8). The results, over a range of code-
word lengths, are shown in Fig. 3.

We compare these code ensembles to the uniform ensemble
by focusing on the rate at which the minimum distance grows
with the block length. It is important to note that, at a fixed rate,
a “good” code is defined by a minimum distance which grows
linearly with the block length. When examining these results,

we will focus on whether or not the minimum distance appears
to be growing linearly with block length and on how close the

is to the GVB. For ensembles of CAcodes with
, it is known that the minimum distance of almost all of

the codes grows like , where is the free dis-
tance of the outer terminated CC [14]. Examining Fig. 3 for

, we see that the minimum distance grows slowly for
R4 and H8 (which have ) and not at all for R2 and P9
(which have ). For , the growth rate of the min-
imum distance for R4, H8, and R2 appears distinctly linear. It
is difficult to determine the growth rate of P9 with from
these results. With , all of the codes appear to have a min-
imum distance growing linearly with the block length. In fact,
the apparent growth rates are very close to . Finally,
with , the bounds on minimum distance and
are almost indistinguishable. These results are very encouraging
and suggest that, over a range of rates, even a few “accumulate”
codes are sufficient to approach the behavior of an asymptoti-
cally large number.
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C. Expurgated Ensembles

One of the problems with average WEs is that some terms
may be dominated by the probability of choosing very bad
codes. For example, at large enough SNR, the ensemble
averaged probability of error will always be dominated by the
code with smallest minimum distance even if the probability of
choosing that code is extremely small. Now, suppose we could
remove all of the codes with minimum distance from
a particular ensemble. Then, every code in the newexpurgated
ensemblemust have minimum distance . Note that we
must choose carefully, otherwise there may be no codes left
in the new ensemble. Suppose that we chooseand together
such that the total probability of picking a code with
from the original ensemble is exactly .

We can bound the ensemble averaged IOWE of the expur-
gated ensemble, which only contains codes with , by
dividing the original ensemble into two disjoint sets. Let
be the average IOWE for the ensemble with , which
has probability , and let be the average IOWE for the
ensemble with , which has probability . We can
write the original average IOWE as

and solving for gives

Dropping the term gives the upper bound

Up to this point, we have assumed thatis known exactly. It is
sufficient, however, to have an upper bound onwhich is less
than . Applying Lemma 1 to this end gives

It is also clear, from the definition of , that for
all and .

It is important to note that this result allows one to derive per-
formance bounds which can be much tighter for typical codes
in the ensemble. For example, suppose that all of the codes in
the ensemble with small minimum distance have a small total
probability so that the rest of the codes, which have very good
minimum distance, have a large total probability. Performance
bounds based on the average WE will always have an error floor
based upon and the small minimum distance, while bounds
based on the expurgated ensemble will represent the perfor-
mance of the typical codes, which have large minimum distance.

VI. PERFORMANCE

A. The Error Exponent

In this subsection, we draw on a generalization of Gallager’s
derivation of the error exponent [17] due to Shulman and Feder
[18]. This generalization allows one to upper-bound the proba-
bility of MLD error, using Gallager’s random coding error expo-

nent, for any binary linear code. Applying Theorem 1 from [18]
to (6) shows that, for any symmetric memoryless channel with
binary inputs and discrete outputs, the ensemble
has nearly the same error exponent as the Shannon ensemble of
random codes. A Shannon random code is generated by picking
the codewords uniformly from the possible binary se-
quences with replacement, and the Shannon ensemble is the
set of possible codes chosen in this manner with their asso-
ciated probabilities. Since the Shannon ensemble achieves the
capacity of any symmetric discrete memoryless channel, this
proves that the ensemble can operate at rates
arbitrarily close to capacity.

Theorem 5 (Shulman–Feder):The probability of word error
for a family of linear codes, transmitted over a

symmetric memoryless channel with binary inputs and discrete
outputs, is upper-bounded by

(11)

where is the error exponent of the channel and

Corollary 3: Consider the ensemble with
code bits and information bits for . Let be
the average probability of word error when a code is randomly
chosen from the ensemble and used on some channel with MLD.
There exists an such that, for all , we have

where is the error exponent of the channel.
Proof: Using Theorem 5, we must simply show that the

constant for the ensemble remains essentially
constant as increases. Using the formula forand Theorem
3, we find that

Since can be made arbitrarily small by increasing(from
Theorem 3), we choose such that

for all . This gives the upper bound ,
and now we can estimate using

This completes the proof.

Remark 4: Since the constant is proportional to for
some , this proof actually requires the value of to
grow linearly with . This is because the probability that a poor
code is chosen from the ensemble decays very slowly. Nonethe-
less, we believe that almost all of the codes in the ensemble will
achieve the error exponent as long asgrows faster than log-
arithmically in .
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(a) (b)

Fig. 4. Analytical and simulation results for a rate–1=2 RA code withk = 1024 andm = 1; 2; 3. Simulations are completed using 50 decoding iterations
and the left plot shows the word-error rate (WER) while the right plot shows the bit-error rate (BER). The label XVV signifies the Viterbi–Viterbi (VV)bound
applied to the expurgated ensembles.

(a) (b)

Fig. 5. Analytical and simulation results for a rate 1/4 RAcode withk = 1024 andm = 1; 2; 3. Simulations are completed using 50 decoding iterations and
the left plot shows the WER while the right plot shows the BER. The label XVV signifies the VV bound applied to the expurgated ensembles.

B. MLD Performance

In Section V-B, we applied (4) to compute the averaged
WEs for several CA code ensembles. Using the WEs and
the Viterbi–Viterbi (VV) bound [19], we calculated upper
bounds on the probability of MLD error for some of these
ensembles. The results for the R2, R4, and P9 ensembles are
given in Figs. 4, 5, and 6, respectively. These figures also
show the results of iterative decoding simulations which will
be discussed in the next section. At high SNR, these bounds
are dominated by the probability of picking a code with small
minimum distance, as reflected in the pronounced error floors
of the nonexpurgated ensembles in Figs. 4, 5, and 6. For
this reason, we also considered the expurgated ensembles, as
described in Section V-C, with .

The results of applying the Viterbi–Viterbi (VV) bound to
these ensembles have some characteristics worth mentioning.

In all cases, increasing , the number of “accumulate” codes,
seems to improve the performance both by shifting the cliff re-
gion to the left and by lowering the error floor. We also see that,
in some cases, the effect of expurgation is negligible, which im-
plies that almost all of the codes in the ensemble have small
minimum distance. As we saw in Section V-B, the minimum
distance of the expurgated ensemble depends on the outer code
and the number of “accumulate” codes. The minimum distance
of the outer code does not seem to completely explain the be-
havior though, because the P9 ensemble requires one more “ac-
cumulate” code than the R2 ensemble in order for expurgation to
make a significant difference. Of course, at longer block lengths
this may change.

The axes of the figures were chosen to show details of the
performance curves, but in many cases the error floor of the ex-
purgated ensemble is too low to be shown. Consider the R2 en-
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(a) (b)

Fig. 6. Analytical and simulation results for a rate 8/9PA with k = 1024 andm = 1; 2; 3. Simulations are completed using 50 decoding iterations and the
left plot shows the WER while the right plot shows the BER. The label XVV signifies the VV bound applied to the expurgated ensembles.

(a) (b)

Fig. 7. Simulation results for rate–1=2 RA codes for 30 decoding iterations withm = 1; 2 andk = 1024; 2048; 4096; 8192; 16384. (a) Word-error rate
(WER). (b) Bit-error rate (BER)

semble with ; the word-error rate (WER) of the expur-
gated ensemble remains steep until around 10where it flat-
tens somewhat. The expurgated R2 ensemble with has
a WER which remains steep until well below the numerical ac-
curacy of our computations. The expurgated P9 ensemble with

also shows no error-floor region, but the curve loses
some steepness at a WER of 10. These error floors are inter-
esting because understanding the performance of these codes at
high SNR, where simulation is infeasible, is important for ap-
plications where very low error rates are required.

C. Iterative Decoding Performance

In this subsection, we use computer simulation to evaluate
the performance of iterative decoding for these codes. A single
decoding iteration corresponds to a posterioriproba-
bility (APP) decoding operations of an “accumulate” code (a

backward/forward pass through all “accumulate” encoders) and
a single APP decoding operation of the outer code. It is worth
noting that the complexity of iterative decoding is linear in both

and , making it quite feasible to implement. All simula-
tion results were obtained using between 20 and 50 decoding
iterations, depending on the particular code, and modest gains
are observed (but not shown) when the number of iterations is
increased to 200. These results are compared with analytical
bounds in Figs. 4–6 and shown by themselves in Figs. 7 and 8.

The discrepancies between the simulation results and MLD
bounds in Figs. 4–6 are very pronounced. While the MLD
bounds predict uniformly improving performance with in-
creasing , it is clear that the performance of iterative decoding
does not behave in this manner. The optimumdepends on the
desired error rate and the minimum distance of the outer code.
In general, it appears that increasingmoves the cliff region of
the error curve to the right and makes the floor region steeper.
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(a) (b)

Fig. 8. Simulation results for rate–8=9 PA codes withk = 1024; 2048; 4096; 8192; 16384 and 20 decoding iterations. (a) Word-error rate (WER). (b)
Bit-error rate (BER)

This seems reasonable because more rate-decoders (which
have no coding gain) are applied before the outer code (with all
of the coding gain) is decoded. This results in a phenomenon
where the iterative decoder often does not converge, but rarely
makes a mistake when it does converge.

The expurgated WE can also be used to detect the presence
of bad codes which are chosen with low probability. If the MLD
expurgated bound is better than the nonexpurgated bound, then
the effect of these bad codes has been reduced. The MLD ex-
purgated bound is not shown when it coincides with the nonex-
purgated bound. In some cases, iterative decoding is performing
better than the MLD expurgated bound (e.g., the R4 ensemble
with ). This may occur because the use of well designed
(e.g., S-random [20]) interleavers can provide a minimum dis-
tance which is better than that guaranteed by Lemma 1.

The interleaver gain exponent (IGE) conjecture is based on
the observations of Benedetto and Montorsi [3] and is stated
rigorously in [1]. It states that the probability of MLD decoding
error for turbo-like codes will decay as , where de-
pends on the details of the coding system. If the IGE conjecture
predicts that the bit-error rate (BER) (resp., WER) will decay
with the block length, then we say that the system has BER
(resp., WER) interleaver gain. It is easy to verify that WER in-
terleaver gain implies BER interleaver gain. The IGE and the
MLD expurgated bound are quite closely connected. If a system
has WER interleaver gain, the probability of picking a code
with codewords of fixed weight must decay to zero as the block
length increases. Therefore, one would expect the MLD expur-
gated bound to beat the nonexpurgated bound. On the other
hand, if a system has only BER interleaver gain, then it is likely
that the MLD expurgated bound will equal the nonexpurgated
bound.

Finally, the IGE conjecture predicts that the R2 code will have
no WER interleaver gain (i.e., ) for , but
that it will have WER interleaver gain (i.e., ) for

. In Fig. 7, the WER of the R2 code with does
indeed appear to be independent of block length and the WER of

the R2 code with is clearly decreasing with block length.
In Fig. 8, we see similar behavior for the interleaver gain of the
P9 codes.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce a new ensemble of binary linear
codes consisting of any rate outer code followed by a large
number of uniformly interleaved rate-codes. We show that this
ensemble is very similar to the ensemble of uniform random
linear codes in terms of minimum distance and error exponent
characteristics. A key tool in the analysis of these codes is a cor-
respondence between input–output weight transition probability
(IOWTP} matrices and Markov chains (MCs), which allows us
to draw on some well-known limit theorems from MC theory.
We derive a probabilistic bound on the minimum distance of
codes from this ensemble, and show it to be almost identical to
the Gilbert–Varshamov bound (GVB). In particular, our anal-
ysis implies that almost all long codes in the ensemble have a
normalized minimum distance meeting the GVB.

Next, we consider a particular class of these codes, which
we refer to as convolutional accumulate- CA codes.
These codes consist of an outer terminated convolutional code
followed by uniformly interleaved “accumulate” codes. We
evaluate the minimum distance bound for a few specific CA
codes for and observe that these relatively small

values may be sufficient to approach the GVB. Finally, we
use computer simulation to evaluate the bit-error rate (BER)
and word-error rate (WER) performance of these CAcodes
with iterative decoding and compare this to the performance
predicted by union bounds for MLD.

Remark 5: An MLD coding theorem for CA codes can
be found in [8], with numerical estimates of the corresponding
noise thresholds. Also given there are the thresholds which re-
sult from applying density evolution [21] to the iterative de-
coding of these codes. Finally, a comprehensive treatment of
both of these subjects can be found in [22].
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APPENDIX

PROOF OFTHEOREM 4

The generator matrix, of the length block code is

...
...

For simplicity of notation, we define . By hypoth-
esis, the generator matrix of this code will be the identity matrix
for any , making the code trivial. We will show that the
block code of length is primitive by first establishing
that the length- block code is primitive, then showing that the
length block code is primitive if the length code is primi-
tive, and finally using induction to extend the proof to arbitrarily
large .

Recall that a rate-block code is primitive if the MC asso-
ciated with the submatrix of the code’s IOWTP matrix is
primitive. Let be the submatrix of the length- block
code’s IOWTP matrix. It is easy to verify that is greater
than zero iff the corresponding component of the IOWE of the
length- block code is greater than zero. Thinking of the
latter as an adjacency matrix, we associate to the length-block
code a directed graph , which we call theweight-mapping
graph. The vertices of , which are labeled , cor-
respond to the Hamming weights of input and output sequences
of the code. Denote the Hamming weight of a binary vector
by . For each binary input to the code, ,
there is a directed edge from the vertex labeledto the vertex
labeled if the input vector produces the output vector.
This implies that the graph will have a directed edge from
vertex to vertex iff . Therefore, the graph has
the same connectivity as the MC associated with, and we
have reduced the problem to showing that each, for ,
is primitive.

We will prove that each is primitive by establishing that
it is both irreducible and aperiodic. By definition, a graph is
irreducible if there is a directed path from each vertex to every
other vertex. A graph is aperiodic if the greatest common divisor
of the lengths of all its cycles (i.e., paths which start and end in
the same state) is one. Therefore, for aperiodicity, it is sufficient
to exhibit a single vertex with a self-loop (i.e., a directed edge
from a vertex back to itself). The verification of these properties
for will be simplified by the fact, proved below, that is
a subgraph of .

For the primary case, corresponding to length , the
generator matrix of the code is

...
...

Consider strings of the form and ,
where refers to a string of repeated symbols. For each

, the input has weight and
produces an output which has weight .

Likewise, for each , the input
has weight and produces an output which
has weight . Now consider any vertex, labeled, in the graph

. These input–output pairs establish that there is a directed
edge from the vertex labeledto the vertex labeled and
to the vertex labeled , if those vertices exist. So there is
a directed path from any vertex to any other vertex, andis
irreducible. The input produces the output

which establishes that the vertex labeledhas a self-
loop. So the graph is also aperiodic, and therefore primitive.

Now we assume that is primitive for some , and
use this to prove that is primitive. We start by proving the
result mentioned above: is a subgraph of . Consider
any input, , to the rate- block code with generator matrix .
The output will be and the weight mapping graph will
have an edge from the vertex labeledto the vertex labeled

. In fact, all edges of are enumerated by considering
all possible inputs. Notice that the generator matrix can
be written as

...

This implies that and proves, for each
, that the weight mapping graph also has a directed edge

from the vertex labeled to the vertex labeled . So, for
every directed edge in connecting two labeled vertices, there
is a directed edge in connecting two vertices with the
same labels. The vertices of are also a subset of the vertices
of , so is a subgraph of .

To prove that the graph is irreducible, it now suffices
to show that has a directed edge from the vertex labeled

to some vertex with label , as well as a di-
rected edge from some such vertex to vertex . Consider

, the only input of weight , and notice that
the th column of has exactly two ones. Therefore, the

th element of must be zero and . This im-
plies that an input of weight produces an output of weight

. Therefore, has a directed edge from the vertex
labeled to a vertex labeled where . Next, we
notice that is upper triangular and has all ones on the main
diagonal, which makes it invertible. This means that there must
be a unique input which is mapped to the output .
We know that this input must obey the equation ,
and since , we also know that . Since is
the only length- sequence of weight , we conclude
that . This implies that there is an input of weight

which produces an output of weight .
Therefore, has a directed edge from a vertex labeled, for
some , to the vertex labeled . We conclude that

is irreducible.
The aperiodicity of follows immediately from the fact

that the subgraph contains a self-loop at vertex.
This completes the proof that is primitive, and, therefore,
the proof that the rate-block code of length is primitive,
as desired.



1438 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 2003

Fig. 9. The weight mapping graph,G , with theG subgraph drawn in solid
lines.

We illustrate the proof technique using the “accumulate” code
example from Section II-C. The impulse response,, of the
“accumulate” code is the infinite sequence of ones, ,
for . The weight mapping graph is shown in Fig. 9
and the subgraph is drawn with solid lines. It is easy to
see that is both irreducible and aperiodic; in particular, note
the self-loop at the vertex labeled 1. There is an edgefrom
vertex 4 to vertex 2, corresponding to the weight-input vector

, and a directed edge from vertex 1 to vertex 4, cor-
responding to the weight-input vector . Together
with the irreducibility of , this implies that is irreducible.
The self-loop at vertex 1 ensures the aperiodicity and, therefore,
the primitivity of .
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