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ABSTRACT

Runlength-limited (d, k) constraints and codes are widely used in digital data recording and transmission applications.
Generalizations of runlength constraints to two dimensions are of potential interest in page-oriented information
storage systems. However, in contrast to the one-dimensional case, little is known about the information-theoretic
properties of two-dimensional constraints or the design of practical, efficient codes for them.

In this paper, we consider coding schemes that map unconstrained binary sequences into two-dimensional,
runlength-limited (d,∞) constrained binary arrays, in which 1’s are followed by at least d 0’s in both the hori-
zontal and vertical dimensions. We review the derivation of a lower bound on the capacity of two-dimensional (d,∞)
constraints, for d ≥ 1, obtained by bounding the average information rate of a variable-to-fixed rate encoding scheme,
based upon a“bit-stuffing” technique.

For the special case of the two-dimensional (1,∞) constraint, upper and lower bounds on the capacity that are
very close to being tight are known. For this constraint, we determine the exact average information rate of the
bit-stuffing encoder, which turns out to be within 1% of the capacity of the constraint.

We then present a fixed-rate, row-by-row encoding scheme for the two-dimensional (1,∞) constraint, somewhat
akin to permutation coding, in which the rows of the code arrays represent “typical” rows for the constraint. It is
shown that, for sufficiently long rows, the rate of this encoding technique can almost achieve that of the variable-rate,
bit-stuffing scheme.

Keywords: Constrained arrays, holographic data storage, bit-stuffing encoder

1. INTRODUCTION

Many data storage systems, such as those based upon magnetic and optical recording technology, require the use
of constrained modulation codes. These codes efficiently, and invertibly, transform streams of arbitrary binary data
into binary sequences that satisfy certain pre-specified constraints. The ensemble of sequences from which the code
sequences may be drawn is referred to as a constrained system.

Historically, many digital recording applications have made use of codes over the binary alphabet {0, 1} called
runlength-limited (RLL) (d, k) codes. The parameters (d, k) represent, respectively, the minimum and maximum
admissible number of 0’s separating consecutive 1’s in any allowable sequence b = b0b1 . . .. With the advent of page-
oriented storage technologies, such as holographic storage, interest in constrained arrays in two or more dimensions
has arisen. Among the constraints of theoretical and possible practical interest are 2-D, RLL (d, k) constraints, in
which the 1-D RLL (d, k) constraint is satisfied both horizontally and vertically. In both one and two dimensions,
the relevant range of parameters is 0 ≤ d < k ≤ ∞.

In this paper, we consider coding schemes that map unconstrained binary sequences into 2-D, (d, k) = (1,∞)
constrained arrays. The exact capacity (maximum code rate) of this constraint is not known, but very tight upper and
lower bounds have been computed. We present a simple, variable-rate encoding scheme, based upon a “bit-stuffing”
technique, and precisely analyze the average code rate, which is shown to fall within 1% of the capacity.
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We then present a fixed-rate, row-by-row encoding scheme, somewhat akin to permutation coding, in which the
rows of the code arrays represent “typical” rows for the constraint. It is shown that, for sufficiently long rows, the
rate of this encoding technique can almost achieve that of the variable-rate, bit-stuffing scheme.

1.1. Capacity and code construction
The base-2 Shannon capacity1 C(S) of a one-dimensional (1-D) constrained system S reflects the growth rate of the
number N(n;S) of words of length n in S

C(S) = lim
n→∞

1
n

log2N(n;S).

The capacity represents a tight upper bound on the achievable rates of decodable, finite-state encoders from un-
constrained binary data to the system S. Specifically, the finite-state coding theorem2 states that, for any rate
p/q ≤ C(S), there exists a decodable, finite-state encoder that encodes a sequence of length-p input strings into a se-
quence of length-q codewords. Moreover, for a large class of constraints, the decoder can be made state-independent,
thereby limiting error-propagation. (For more details regarding 1-D constrained systems and codes, the reader is
referred to a recent exposition on this subject.2 )

The capacity of 1-D (d, k) constraints has been computed for a large range of parameters.3 The capacity, denoted
by C1(d, k), is given by

C1(d, k) = log2 λ

where λ is the largest real root of the polynomial

fd,k(x) = xk+1 − xk−d − xk−d−1 − · · · − x− 1, (1)

for k <∞, and
fd,∞(x) = xd+1 − xd − 1 (2)

for k =∞.

Similarly, for a 2-D constrained system, the capacity C2(S) measures the growth rate of the number N(m,n;S)
of m× n arrays in S, and is given by :

C(S) = lim
m→∞,n→∞

1
mn

log2N(m,n : S).

For a class of 2-D constrained systems that includes the 2-D (d, k) constraints, it has been shown that, this limit
exists even as m → ∞ and n → ∞ independently.4–7 We will denote the capacity of the 2-D (d, k) constraint by
C2(d, k).

It is easy to see that C2(d, k) ≤ C1(d, k). However, the corresponding 1-D and 2-D capacities may be quite
different. For example,8 the capacity of the 1-D (d, k) = (1, 2) constraint satisfies C1(1, 2) ≈ 0.4057, whereas the
capacity of the corresponding 2-D constraint is C2(1, 2) = 0. In fact, any 2-dimensional (d, k) = (1, 2) array x = xi,j
containing the row x0,j = xj must satisfy either xi,j = xi−j for all i, j; or, xi,j = xi+j for all i, j. Thus, the
growth rate of such n × n arrays is only exponential in n, rather than exponential in n2. Recently, this result has
been generalized to a complete characterization of the (d, k) constraints in two dimensions and higher with zero
capacity.7,9 Specifically, Cn(d, k) = 0 if and only if d > 0 and k = d+ 1, for n ≥ 2.

The general determination of the capacity of 2-dimensional (d, k) constraints appears to be quite difficult, however.
The example of the (d, k) = (1,∞) constraint, or equivalently the (d, k) = (0, 1) constraint obtained by interchanging
the roles of 0 and 1, illustrates this point. The problem of computing the capacity of this constraint has arisen in
various forms in statistical mechanics and combinatorics, as well as in the information-theoretic context. Calkin and
Wilf10 used a transfer matrix method to derive close lower and upper bounds for the 2-D (d, k) = (1,∞) constraint,
namely

0.5879 ≤ C2(1,∞) ≤ 0.5883 (3)

These bounds were further improved by Weeks and Blahut,11 and further improved by Nagy and Zeger,12 who also
extended the technique to three dimensions. These lower and upper bounds now agree out to 9 decimal places

0.587891161775≤ C2(1,∞) ≤ 0.587891161868. (4)



Kato and Zeger7 used the bounds on C2(1,∞) to derive lower bounds on C2(d,∞), for d ≥ 2, and C2(0, k), for k ≥ 2.
(They noted that Talyansky13 and Talyansky, et al.14 described a construction that yields a lower bound on C2(0, k)
that is stronger that the Kato-Zeger bound for all k ≥ 8.)

The bounds on C2(d,∞) were obtained by constructing (d,∞) arrays from (1,∞) arrays, and the bounds on
C2(0, k) were obtained by constructing (0, k) arrays from (0, 1) arrays. The lower bounds on C2(0, k) were then used
to derive lower bounds on C2(d, k) for remaining cases where k 6= d+1. Upper bounds on C2(d,∞) and C2(0, k) were
also derived.7 Together with the lower bounds, they imply that, as d grows, C2(d,∞) converges to zero exactly at
the rate (log2 d)/d, and they give asymptotic bounds on how fast, as k grows, C2(0, k) converges to one.

Siegel and Wolf15 used a different approach to derive lower bounds on C2(d,∞), for d ≥ 1. They computed a
simple lower bound on the average information rate of a variable-rate, bit-stuffing encoding algorithm that creates
2-D (d,∞)-constrained arrays from a 1-D sequence produced by a possibly biased binary source. These lower bounds
were then optimized with respect to the 1-D binary source probability. The bit-stuffing approach is closely related
to one introduced by Lee16 and Bender and Wolf17 for 1-D, RLL, charge-constrained (d, k; c) sequences.3

For the case d = 1, the bit-stuffing bound is C2(1,∞) ≥ 0.5514, which is not as good as the previously cited
bounds. However, for a range of values of the parameter d, the lower bounds on C2(d,∞) are the best known.15

1.2. Outline of paper

In this paper, we concentrate upon coding techniques for the 2-D (d, k) = (1,∞) constraint. We determine precisely
the efficiency of the variable-rate bit-stuffing approach, as well a lower bound on the efficiency of a new fixed-rate
row-by-row encoding algorithm. The achievable rate of the variable-rate, bit-stuffing scheme is shown to fall within
1% of the capacity of the constraint. An asymptotic lower bound on the achievable rate of the fixed-rate scheme lies
within 1.2% of the capacity.

We remark that the (1,∞) arrays produced by these efficient encodings, and the (0, 1) arrays obtained by
interchanging the symbols 0 and 1, can be used to construct arrays satisfying other 2-D (d, k) constraints.7

The remainder of the paper is organized as follows. In Section 2, we review the bit-stuffing algorithms for the 2-D
(d,∞) constraints and the derivation of the lower bounds on their achievable rates.15 In Section 3, we determine
the exact value of the average information rate of the bit-stuffing encoder for the 2-D (d, k) = (1,∞) constraint. In
Section 4, we describe a fixed-rate encoding algorithm for the 2-D (d, k) = (1,∞) constraint and present a lower
bound on the efficiency of this method. Section 5 concludes the paper.

2. BIT STUFFING LOWER BOUNDS ON C2(d,∞)

Lee16 described a variable rate algorithm for creating one-dimensional binary sequences that satisfied the (0, k; c)
constraint by stuffing binary digits into an unconstrained data binary sequence. Bender and Wolf17 generalized this
algorithm to create one-dimensional binary (d, k; c) sequences. This generalization was shown to be optimal – in
the sense that it created sequences with average rate equal to the capacity of the constrained sequence – for the
1-dimensional (d,∞;∞) , (d, d+ 1,∞), and (2c−2,∞; c) constraints, and nearly optimal for the other 1-dimensional
(d, k; c) constraints. Siegel and Wolf15 showed that a similar technique can be applied to generate certain 2-D
constrained arrays, leading to a lower bound for the capacity of the 2-D constraint, as we now review.

In order to apply bit-stuffing techniques to 2-D constraints, we first specify the order by which binary digits are
inserted into the 2-dimensional array, which we represent as follows. A parallelogram ∆m,n is a subset of the integer
plane defined by

∆m,n = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ i+ j < n}
(see Fig. 1). Row i in ∆m,n consists of all locations (i, j) such that −i ≤ j < n−i. Diagonal d consists of all locations
(i, d−i) such that 0 ≤ i < m. Row 0 will be denoted by ∆(h)

n and will be referred to as the horizontal boundary of
∆m,n. Similarly, Diagonal 0, denoted ∆(d)

m , will be referred to as the diagonal boundary of ∆m,n. Those boundaries
are depicted as thick lines in Fig. 1.

We write the binary digits along 45 degree diagonals from top right to bottom left. (We may want to initialize
the boundary values.18) The binary data sequence is first converted by a distribution transformer E to a sequence
of statistically independent binary digits with the probability of a 1 equal to p and the probability of a 0 equal to
(1−p). This conversion occurs at a rate penalty of H2(p), where H2(p) = −p log2(p)−(1−p) log2(1−p) is the binary
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Figure 1. Parallelogram ∆m,n.

entropy function. The purpose of creating an unbalanced sequence will be to write more 0’s than 1’s. The optimal
value of p will be chosen later. We now write the unbalanced sequence (without further coding) down successive
diagonals, skipping all positions that contain “stuffed” 0’s, which arise in a manner which will now be explained.
Whenever a 1 in the unbalanced source sequence is written, d 0’s are inserted – or “stuffed”– in the d positions to
the right of it and in the d positions below it. It will sometimes occur that a 0 has already been stuffed in some of
the positions to the right of the 1, in which case it is not necessary to stuff another 0. In writing the unbalanced
sequence down diagonals, any position already filled by a previously stuffed 0 is skipped.

Decoding the array is accomplished by reading down diagonals in a similar manner. The unbalanced binary digits
are read successively from the array, with certain 0 bits being ignored. Specifically, whenever a 1 is read from the
array, the stuffed 0’s to the right of it and below it are normally deleted. It may occur that the stuffed 0’s to the
right of the 1 have already been deleted, in which case only the stuffed 0’s below it are deleted. This procedure
reproduces the encoded unbalanced sequence. The original binary data is then obtained from the unbalanced stream
by the inverse of the mapping used to create the unbalanced stream of bits.

Define

Rd(p) =
H2(p)

1 + 2dp
.

The following lemma proves that, for d > 0 and any 0 < p < 1, Rd(p) is a lower bound for C2(d,∞).

Lemma 2.1. For d > 0 and any 0 ≤ p ≤ 1, C2(d,∞) ≥ Rd(p).
Sketch of proof: The information rate of the array will be H2(p) times the ratio of the number of unbalanced
binary digits to the total number of binary digits written (unbalanced digits and stuffed digits). We call this ratio
Q and our goal is to estimate Q as a function of p. Assume that we have written a long diagonal of length n. It
should contain about Qn unbalanced binary digits and about (1 − Q)n stuffed 0’s. But the (1 − Q)n stuffed 0’s
were caused by at least [(1 − Q)n]/2 unbalanced 1’s written on the previous d − 1 diagonals. Assuming that the
proportion of unbalanced binary digits written on the previous d − 1 diagonals is also Q (which can be ensured by
proper initialization of the boundary of the array18), it follows that the number of unbalanced 1’s written on the
previous d− 1 diagonals should be, for large n, about pQdn. Thus we have that

pQdn >
(1−Q)n

2
,

or
Q >

1
1 + 2dp

.

The resulting lower bound on the entropy of the 2-D (d,∞) constraint is then given by

C2(d,∞) = H2(p)Q >
H2(p)

1 + 2dp
= Rd(p).

This completes the derivation.



The following proposition determines the value of p that maximizes the lower bound of Lemma 2.1.

Proposition 2.2. For d > 0 and any 0 ≤ p ≤ 1, C2(d,∞) ≥ C1(2d,∞).

Proof: To determine the value of p that maximizes this lower bound, we differentiate Rd(p) with respect to p and
set the result equal to 0. The result shows that the optimal value p∗ satisfies the equation

p∗ = (1− p∗)2d+1. (5)

Setting λ∗ = (1− p∗)−1, (5) can be rewritten as

λ2d+1
∗ − λ2d

∗ − 1 = 0.

The corresponding maximum value of the lower bound is given by

Rd(p∗) = − log2 (1− p∗). (6)

Referring to (2), we conclude from (6) that the corresponding lower bound Rd(p∗) is precisely the capacity C1(2d,∞)
of the 1-dimensional (2d,∞) constraint. This completes the proof.

Table 1 shows the lower bound Rd(p∗) = C1(2d,∞) for small values of d.

Table 1. Bit-stuffing lower bounds for C2(d,∞)

d C1(2d,∞)
1 0.5514
2 0.4057
3 0.3282
4 0.2788
5 0.2440

Referring to the bound on C2(1,∞) we conclude that the simple bit-stuffing encoder for the 2-D (1,∞) constraint
achieves an efficiency at least 0.937. In Section 3, we calculate precisely the average information rate of this bit-
stuffing encoder, and conclude that its efficiency is, in fact, in excess of 99%.

3. EXACT ANALYSIS OF THE 2-D (1,∞) ENCODER

In this section, we determine the exact value of the average information rate of the bit-stuffing encoder for the 2-D
(1,∞) constraint, as described in Section 2. We first establish some notation and terminology. Fig. 2 depicts the
four possible configurations for a consecutive pair of diagonal entries in the array. Let D1 denote the event that
two consecutive entries on a diagonal, xi−1,j and xi,j−1 both equal 1. Let D2 denote the event that they satisfy
xi−1,j = 1, xi,j−1 = 0. Let D3 correspond to the event xi−1,j = 0, xi,j−1 = 1, and, finally, let D4 denote the event
that xi−1,j = xi,j−1 = 0.

Suppose that the biased source generates a 1 with probability p, and a 0 with probability q = 1 − p. Over the
ensemble of the 2-D arrays in the image of the bit-stuff encoder, let x = Pr(D1), y = Pr(D2) = Pr(D3), and
z = Pr(D4). Note that Pr(D2) = Pr(D3) by symmetry properties of the family of 2-D (1,∞) constrained arrays.

The following proposition gives the exact information rate R(p) of the bit-stuffing encoder for the 2-D (1,∞)
constraint with specified biasing probability 0 < p < 1.

Proposition 3.1.

R(p) = H2(p)
(4− 3q) +

√
(4− 3q)2 − 4(1− q)(4− 3q)
2(1− q)(4− 3q)

. (7)

Proof: It is easy to see that the average information rate of the bit-stuff encoder, R(p), is given by

R(p) = H2(p)Pr(D4) = H2(p)z. (8)



1

1

D1

j

irow

column

2

0

1

D

0

1

3

0

0

4D D

Figure 2. Configurations of consecutive diagonal entries.

a

d

e

column

row i c

b

f

j

Figure 3. Array configuration.

We now develop a set of relations among the quantities x, y, and z, involving the source parameter p. From these,
we will derive an expression for z in terms of p, leading to (7). We first note that

Pr(xi,j = 1) = x+ y, (9)

and, therefore,
Pr(xi,j = 0) = 1− (x+ y). (10)

Since any consecutive pair of diagonal entries belongs to exactly one of the disjoint events D1, D2, D3, D4, we have
the relation

x+ 2y + z = 1. (11)

For convenience, denote the array entries xi−2,j , xi−1,j−1, xi,j−2, xi−1,j , xi,j−1, and xi,j by a, b, c, d, e, and f , respec-
tively, as depicted in Fig. 3. Under suitable boundary conditions on the array, we can assume that the entries along
diagonals form a first-order Markov process.18 Using the implied independence of entries separated by 2 positions
along a diagonal, we can deduce another relation involving x, y, z and p. Specifically, noting that z = Pr(d = e = 0),
we can write

z = Pr(b = 1) + Pr(b = 0) · [Pr(a = 1|b = 0)Pr(c = 1|b = 0) + Pr(a = 0|b = 0)Pr(c = 1|b = 0)q
+Pr(a = 1|b = 0)Pr(c = 0|b = 0)q + Pr(a = 0|b = 0)Pr(c = 0|b = 0)q2

]
. (12)

This relation can be rewritten using the following expression for the constituent conditional probabilities

Pr(a = 1|b = 0) =
Pr(a = 1, b = 0)

Pr(b = 0)
=

y

1− (x+ y)
, (13)



Pr(c = 1|b = 0) =
Pr(a = 1, b = 0)

Pr(b = 0)
=

y

1− (x+ y)
, (14)

and
Pr(a = 0|b = 0) = Pr(c = 0|b = 0) =

z

1− (x+ y)
. (15)

Substituting (9), (10), (13), (14), (15) into (12) yields:

z = x+ y +
(y + zq)2

1− (x+ y)
. (16)

Now, referring again to Fig. 3, we can see that

Pr(f = 0) = Pr(d = e = 1) + Pr(d = 1, e = 0) + Pr(d = 0, e = 1) + Pr(d = e = 0)q, (17)

or, equivalently, from (10)
1− x− y = x+ 2y + zq. (18)

Using (11), we conclude that
x+ y = z − zq. (19)

Substitution of (19) into (16), followed by some straightforward algebraic manipulations, yields

y2 + (2zq)y + z(z − 1)q = 0. (20)

From (11), we know
x+ y = 1− y − z (21)

and substitution of this into (19) yields the relation

y = 1 + zq − 2z. (22)

Combining (22) with (20) yields an equation which is quadratic in z, namely

z2(1− q)(4− 3q)− z(4− 3q) + 1 = 0. (23)

Solving (23) for z via the quadratic formula, we get

z =
(4− 3q) +

√
(4− 3q)2 − 4(1− q)(4− 3q)
2(1− q)(4− 3q)

. (24)

Combining (24) and (8) yields (7), completing the proof.

We numerically determined the value of q = 1 − p that maximizes the average information rate R(p) = H2(p)z
of the bit-stuff encoder. The optimal value qopt ≈ 0.644400 yields the information rate R(qopt) ≈ 0.583056, which,
referring to the bounds in (4), is within 1% of the capacity C2(1,∞).

One can also consider more sophisticated bit-stuffing encoders, in which two distribution transformers E0 and
E1 are used. These transformers take sequences of independent, equiprobable bits and convert them into sequences
of independent bits with the probability of a 0 equal to q0 and q1, respectively. These conversions occurs at a rate
penalty of H2(q0) and H2(q1), respectively. When the bit-stuffing encoder is preparing to write a bit into the open
diagonal position i, j (which implies xi−1,j = xi,j−1 = 0), it conditions the choice of the transformer from which
the bit to be written will be selected upon the value xi−1,j+1, the preceding bit in the diagonal being written.
This enhanced encoding algorithm generalizes the bit-stuffing encoder that we analyzed above, which corresponds
to the case q0 = q1. The determination of the average information rate of this enhanced bit-stuffing encoder is
rather involved,18 but the result implies that the maximum encoding rate is obtained by setting q0 ≈ 0.671833 and
q1 ≈ 0.566932. These biasing probabilities yield an average rate R(q0, q1) ≈ 0.587277, which is within 0.1% of the
capacity C2(1,∞).

Remark: Forchhammer and Justesen19 and Justesen and Shtarkov20 have also studied the entropy of 2-D constrained
random fields with simple structure on rows/columns/diagonals. Some of their results pertain to the C2(1,∞)
constrained system investigated in this paper.



4. FIXED-RATE ENCODER FOR THE 2-D (1,∞) CONSTRAINT

In this section, we describe a fixed-rate coding scheme into rectangular arrays satisfying 2-D (1,∞) constraints and
we state an asymptotic lower bound on the achievable rate of the encoder, which is within 1.2% of the capacity.18

Denote by Bm,n the rectangle defined as the following subset of the integer plane

Bm,n = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}. (25)

A Bm,n–array is an assignment of binary digits to entries in the rectangle Bm,n. A Bm,n–array x = (xi,j) is called
circular with respect to the (1,∞) constraint if x satisfies the constraint and for every 0 ≤ i < m, the entries xi,0 and
xi,n−1 are not both 1. In other words, every cyclic shift of the columns of x results in a Bm,n–array that satisfies
the constraint. We denote the set of all Bm,n–arrays that are circular with respect to the (1,∞) constraint by S◦m,n.

We now present a fixed-rate coding scheme into S◦m,n. The circular property is not necessary for the coding, but
it simplifies the analysis of the scheme. The Bm,n–arrays generated by the encoder will have the property that all
rows in all of the arrays have the same Hamming weight δn for a value of δ ∈ [0, 1] specified below.

Let x be in S◦m,n and assume that for some i in the range 1 ≤ i < m, row i−1 in x has weight t. Let j1, j2, . . . , jt
be the indexes j for which xi−1,j = 1. Then, it follows that xi,jk = 0 for every 1 ≤ k ≤ t. We define the words

x
(k)
i = xi,jk+1xi,jk+2 . . . xi,jk+1−1, 1 ≤ k < t,

and
x

(t)
i = xi,jt+1 . . . xi,n−1xi,0 . . . xi,j1−1.

We refer to x(k)
i as the kth phrase of row i in x. Row i can be obtained by shifting the word

0 x(1)
i 0 x(2)

i 0 . . . 0x(t)
i

cyclically j1 entries to the right. We refer to the length of x(k)
i as the kth phrase length in row i of x. Denoting that

length by lk, the list of phrase lengths (l1, l2, . . . , lt) is called the phrase profile of row i in x. It is immediate that
lk = jk+1 − jk − 1, where jt + 1 is defined to be j1. Thus, the phrase profile of row i is completely determined by
row i− 1 and

∑t
k=1 lk = n− t.

For a positive integer `, let S` = S1,` denote the set of all words of length ` that satisfy the one-dimensional
(1,∞)-RLL constraint. Similarly, we define S◦` = S◦1,`. Also, denote by S`(r) (respectively, S◦` (r)) the set of words
in S` (respectively, S◦` ) of weight r. It is easy to see that a Bm,n–array x ∈ Sm,n is in S◦m,n if and only if every row
in x is in S◦n.

Let x and y be two words in Sn. We say that x is consistent with y if x and y form the rows of an array in S2,n.
In other words, x and y do not have 1’s in the same position.

Define

K(n, t) =
t−1∑
s=0

2s ·
(
t−1
s

)
· |Sn−3t+2(t−s)| . (26)

The following lemma gives a lower bound on the number of words in S◦n(t) that are consistent with a specified
word x.

Lemma 4.1. For every word x ∈ S◦n(t) there are at least K(n, t) words y ∈ S◦n(t) that are consistent with x.

Let tmax = tmax(n) be the value of a nonnegative integer t for which K(n, t) is maximized. The following result
is a direct corollary of Lemma 4.1.

Proposition 4.2.

log2 |S◦m,n|
mn

≥ log2 K(n, tmax)
n

.

Given n, m, and t (e.g., t = tmax(n)), Lemma 4.1 suggests a coding scheme at a fixed rate (log2K(n, t))/n into
the set S◦m,n as follows. For i = 0, 1, . . . ,m−1, we select row i from S◦n(t) so that it is consistent with row i−1 (for



the case i = 0, we can assume a particular word from S◦n(t) to serve as a ‘phantom’ row −1). Lemma 4.1 guarantees
that we have at least K(n, t) words in S◦n(t) that can be selected for row i.

The effective computation of row i can be done by enumerative coding, as we now briefly describe.18 Let
(`1, `2, . . . , `t) be the phrase profile of row i as induced by row i−1. For this particular phrase profile, denote
by Mk,s the number of possible assignments for the first k phrases of row i so that their overall weight is s, 0 ≤ s ≤ t.
Also define T`,r = |S`(r)|.

The enumerative coding algorithm of row i proceeds as follows. The unconstrained input stream to be coded into
row i is regarded as an integer p in the range 0 ≤ p < K(n, t), and the phrase profile of row i is also assumed to
be available. The main loop of the algorithm computes the phrases of row i, in reverse order, starting with the tth
phrase. In each iteration of the main loop, the variable η determines the weight of the kth phrase, and s equals the
overall weight of the first k−1 phrases. It can be easily verified by descending induction on k that each loop iteration
starts with a value of p in the range 0 ≤ p < Mk,s, the induction base following from 0 ≤ p < K(n, t) ≤ Mt,t.
Similarly, the value of θ at the end of each loop iteration lies in the range 0 ≤ θ < T`k,η = |S`k(η)|. The mapping
from θ into a word in S`k(η) assumes an ordering on the elements of each set S`(r). If the standard lexicographic
ordering is used, then such a mapping can be efficiently implemented by a second level of enumerative coding, using
recurrence relations for T`,r.

We obtain an asymptotic estimate for K(n, t) which enables us to compute an asymptotic lower bound on
(log2K(n, tmax))/n. Let δ = t/n. Then, the resulting bound18 is given by

lim sup
n→∞

(1/n) · log2K(n, δn) ≥ sup
ρ
F (δ, ρ) , (27)

where
F (δ, ρ) = δ · [1 + h((1/δ − 3)ρ)] + (1−3δ) · [(1−ρ) · h(ρ/(1−ρ))− ρ] ,

and the supremum in the right-hand side of (27) is taken over all rational ρ in the range 0 ≤ ρ ≤ min{δ/(1−3δ), 1/2}.
In fact, the bound (27) is tight, and, since the function F (δ, ρ) is continuous, the supremum in (27) can be replaced
by a maximum over all real ρ ∈ [0,min{δ/(1−3δ), 1/2}].

By taking partial derivatives of F (δ, ρ) with respect to δ and ρ, we get the equations

(23δ − 4)(29δ − 4)(8357δ5 − 8357δ4 + 3098δ3 − 518δ2 + 38δ − 1) = 0

and

ρ =
δ · (369δ2 − 101δ + 4)

1469δ3 − 682δ2 + 95δ − 4
.

The maximum is attained for (δmax, ρmax) = (0.216594, 0.248986), implying that

lim sup
n→∞

(1/n) · log2K(n, tmax(n))

≥ max
(δ,ρ)

F (δ, ρ) = F (δmax, ρmax) = 0.581074,

and it can be shown that the inequality can be replaced by equality. Thus, the asymptotic code rate lies within 1.2%
of C2(1,∞).

5. CONCLUSIONS

In this paper, we have addressed problems pertaining to efficient coding for 2-dimensional runlength-limited (d, k)
constrained arrays. Following a discussion of bounds on the Shannon capacity of these constrained systems, we
presented and analyzed two efficient coding algorithms for the (d, k) = (1,∞) constraint: a variable-rate scheme
based upon bit-stuffing, and a fixed-rate enumerative coding scheme that generates rows of equal Hamming weight.
Both schemes are shown to be extremely efficient, asymptotically achieving code rates that are within 1% and 1.2%
of the capacity, respectively.
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