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Abstract— The stopping redundancy of a linear code is defined
as the minimum number of rows in its parity-check matrix such
that the smallest stopping sets have size equal to the minimum
distance of the code. We derive new upper bounds on the stopping
redundancy of maximum distance separable (MDS) codes, and
show how they improve upon previously known results. The new
bounds are found by upper bounding the stopping redundancy
by a combinatorial quantity closely related to Turán numbers.
(The Turán number, T (v, k, t), is the smallest number of t-subsets
of a v-set, such that every k-subset of the v-set contains at least
one of the t-subsets.) Asymptotically, we show that the stopping
redundancy of MDS codes with length n and minimum distance
d > 1 is T (n, d − 1, d − 2)(1 + O(n−1)) for fixed d, and is at
most T (n, d − 1, d − 2)(3 + O(n−1)) for fixed code dimension
k = n − d + 1. For d = 2, 3, 4, we prove that the stopping
redundancy is equal to T (n, d − 1, d − 2). For d = 5, we show
that the stopping redundancy is either T (n, 4, 3) or T (n, 4, 3)+1.

I. INTRODUCTION

In a Tanner graph, a stopping set [1] is a set of variable
nodes all of whose neighbors are connected to the set at least
twice. In the context of a parity-check matrix, a stopping set
is a set of code coordinates such that the matrix formed by
the corresponding columns of the parity-check matrix does not
contain a row of weight one. Given a parity-check matrix H ,
let the size of the smallest nonempty stopping set be termed the
stopping distance [2] of the code with respect to H , denoted by
s(H). The relationship of s(H) to the performance of iterative
erasure decoding is similar to that of minimum distance to the
performance of maximum-likelihood (ML) decoding. Let C be
a linear code with minimum distance d. Since the support of
any codeword is a stopping set, s(H) ≤ d for all choices of H .
It is known [2], [3] that by proper choice of H , s(H) = d can
always be achieved. The stopping redundancy of C, denoted
by ρ(C), is the minimum number of rows in a parity-check
matrix H such that s(H) = d.

Stopping redundancy was introduced by Schwartz and
Vardy [2], [4], who derived general upper and lower bounds, as
well as more specific bounds for Reed-Muller codes, Golay
codes, and maximum distance separable (MDS) codes. The
stopping redundancy of Reed-Muller and related codes was
further studied by Etzion [5]. Weber and Abdel-Ghaffar [3]
studied the number of redundant parity checks required to
minimize the number of size-three stopping sets for binary
Hamming codes. Hollmann and Tolhuizen considered a similar
concept, termed generic (r,m)-correcting sets [6].

In this paper, we study the stopping redundancy of MDS
codes. In [2], Schwartz and Vardy pointed out a link between
the stopping redundancy of MDS codes and covering numbers.
This led to a number of lower bounds on ρ(C). We show that
the stopping redundancy of MDS codes is upper bounded by
another combinatorial quantity, which we shall define as the
single-exclusion number. Further results, both asymptotic and
for codes with specific (small) minimum distance, reveal a
strong connection between the stopping redundancy of MDS
codes and Turán numbers – combinatorial quantities closely
related to covering numbers to be defined later. We also
obtain new upper bounds on the stopping redundancy through
combinatorial constructions of single-exclusion systems, and
compare them to the upper bounds of [2].

In the discussion that follows, most of the proofs are omitted
due to limited space. The interested reader is referred to [7]
for details.

II. STOPPING REDUNDANCY OF MDS CODES

First, a few notes on notation. Let n, k be integers and A,
B be sets. Then

• |A| := Number of elements of A.
• A \ B := {x ∈ A : x /∈ B}.
• [n] := {1, 2, . . . , n}.
• [A]k := {X ⊆ A : |X| = k} is the set of k-subsets of A.
• [n]k := [[n]]k.

Also, a k-set is any set that has k elements. Particular to our
discussions, a k-set usually refers to a set of k codeword
coordinates, i.e. a k-subset of [n], if n is the length of the
code.

A Turán (v, k, t)-system is a set of t-subsets of a v-set,
called blocks, such that each k-subset of the v-set contains at
least one of the blocks. The smallest number of blocks in a
Turán (v, k, t)-system is known as the Turán number, and is
correspondingly denoted by T (v, k, t). For more information
on Turán numbers, the reader is referred to [8], and references
therein.

Consider an MDS code C of length n and minimum distance
d > 1. Then its dual code, C⊥, is an MDS code with minimum
distance d⊥ = n−d+2. Also, note that for all MDS codes with
minimum distance d, any set of d coordinates is the support
of at least one codeword. These properties (and many more)
can be found in MacWilliams and Sloane [9].



The authors of [2] noted the following.1

Theorem 1 Let C be an MDS code with length n and mini-
mum distance d > 1. Then

ρ(C) ≥ T (n, d − 1, d − 2). 2

Proof: Suppose H is a parity-check matrix for C and
s(H) = d. Note that each row of H is a codeword in C⊥, and
therefore has at most n − d⊥ = d − 2 zeros. Now, if ι is any
(d − 1)-set, then since ι is not a stopping set, there exists a
row of H with d − 2 zeros whose positions are contained in
ι. Since no (d − 1)-sets are stopping sets, the complements
of the supports of minimum-weight rows of H form a Turán
(n, d − 1, d − 2)-system.

This link between stopping redundancy and Turán numbers
immediately gives rise to a number of lower bounds on ρ(C)
for MDS codes. For example, it is simple to note T (v, k, t) ≥
(

v
k

)

/
(

v−t
k−t

)

=
(

v
t

)

/
(

k
t

)

. So we immediately obtain

ρ(C) ≥ T (n, d − 1, d − 2) ≥
1

d − 1

(

n

d − 2

)

(cf. [2]). Better bounds can be obtained by utilizing a stronger
lower bound on T (v, k, t).

Now, let us make the following definition and see how it
leads to an upper bound on the stopping redundancy of MDS
codes.

Definition 1 A single-exclusion (v, r)-system is a collection
of r-subsets of a v-set, called blocks, such that for all i, i =
1, . . . , r + 1, each i-subset of the v-set is covered by at least
one of the blocks. Here, an i-subset ι is covered by block β
if

|ι \ β| = 1.

The smallest number of blocks in a single-exclusion (v, r)-
system is called the single-exclusion number, and is denoted
by Γ(v, r). 2

Remark It is easy to see that [v]r is a single-exclusion (v, r)-
system, so Γ(v, r) is well-defined. 2

Let S be a single-exclusion (n, d−2)-system. For each β ∈
S, we can find c ∈ C⊥ such that the support of c is [n]\β. If we
use these codewords as rows to form matrix H , then s(H) =
d. Note that s(H) = d implies that H has a (d− 1)× (d− 1)
upper triangular submatrix (up to column permutations) and
hence rank(H) ≥ d − 1 = r(C⊥). Therefore, H is a parity-
check matrix. In summary, for every l-block single-exclusion
(n, d−2)-system, there exists an l-row parity-check matrix for
C that achieves maximum stopping distance. Hence, we have
the following result.

1In [2], the observation was made with respect to covering numbers rather
than Turán numbers. A (v, k, t) covering design is a set of k-subsets of a
v-set, such that each t-subset of the v-set is contained in at least one of the
k-subsets. The smallest size of a covering design is known as the covering
number, and is correspondingly denoted by C(v, k, t). It is simple to note that
a (v, k, t) covering design is a Turán (v, v− t, v−k)-system and vice versa.
Hence, C(v, k, t) = T (v, v − t, v − k). For more information on covering
designs and covering numbers, the reader is referred to [10].

Theorem 2 If C is an MDS code with length n and minimum
distance d > 1, then

ρ(C) ≤ Γ(n, d − 2). 2

We conjecture that equality holds always.

Conjecture 3 If C is an MDS code with length n and mini-
mum distance d > 1, then

ρ(C) = Γ(n, d − 2). 2

We now have bounded ρ(C) between two well-defined
combinatorial quantities, T (n, d−1, d−2) and Γ(n, d−2). To
upper bound ρ(C), it suffices to upper bound Γ(n, d− 2). We
will actually proceed in this way – in the rest of the paper, all
results we shall show for ρ(C) hold for Γ(n, d − 2) as well,
although it may not be made explicit.

We start by looking at how things work for d ≤ 5. If d = 2,
then ρ(C) = T (n, 1, 0) = Γ(n, 0) = 1. The results for d =
3, 4, 5 are summarized in Theorems 4, 5, 6, and Corollary 7.
Note that the case for d = 3 is quite trivial, and the result is
actually implied by the best upper and lower bounds on ρ(C)
given in [2].

Theorem 4 Let C be an MDS code with length n and mini-
mum distance d = 3. Then

ρ(C) = T (n, 2, 1) = n − 1. 2

Theorem 5 Let C be an MDS code with length n ≥ 6 and
minimum distance d = 4. Then

ρ(C) = T (n, 3, 2) =
⌊n

2

⌋ (⌈n

2

⌉

− 1
)

. 2

Theorem 6 Let C be an MDS code with length n and mini-
mum distance d = 5. Then

T (n, 4, 3) ≤ ρ(C) ≤ T (n, 4, 3) + 1.

Further,

ρ(C) = T (n, 4, 3), for n = 6, . . . , 53. 2

Corollary 7 Let C be an MDS code with length n and
minimum distance d = 5. Then

ρ(C) =
⌊n

3

⌋

⌊

n − 1

3

⌋(

2

⌊

n − 2

3

⌋

+ 1

)

, for n = 6, . . . , 13.

2

We have seen that Γ(n, d− 2) (and hence ρ(C) of an MDS
code with the corresponding parameters) is almost the same
as T (n, d− 1, d− 2) for small values of d. We now show that
these results can be generalized in an asymptotic sense when
d is fixed.

Theorem 8 For fixed d, d > 1, as n → ∞,

Γ(n, d − 2) = T (n, d − 1, d − 2)(1 + O(n−1)). 2

Proof: We show that we can always add O(nd−3) blocks
to a Turán (n, d−1, d−2)-system to make it a single-exclusion
(n, d − 2)-system.



Let L = {1, . . . , d − 2}, and R = [n] \ L. Let T ′ = {β ∈
[n]d−2 : β ∩ L 6= ∅}. Clearly,

|T ′| =

d−3
∑

m=0

(

d − 2

d − 2 − m

)(

n − d + 2

m

)

= O(nd−3).

We show that blocks of T ′ cover all i-sets, i = 1, 2, . . . , d−2.
Let ι be an i-set and a ∈ ι be an arbitrary element. Take
ι \ {a}, adjoin to it the (d− i− 1) smallest elements of [n] \ ι
and call the resulting set β. It is easy to verify that β ∈ T ′

and |ι \ β| = 1.
Now, let T be a Turán (n, d − 1, d− 2)-system of smallest

size. Let S = T ∪T ′. Then S is a single-exclusion (n, d−2)-
system with T (n, d − 1, d − 2) + O(nd−3) blocks.

Finally, note that T (n, d − 1, d − 2) = Θ(nd−2), since

1

d − 1

(

n

d − 2

)

≤ T (n, d − 1, d − 2) ≤

(

n

d − 2

)

,

and the result follows.
With Theorem 1, Theorem 2 and Theorem 8, the following

result is immediate.

Theorem 9 Let {Ci}
∞
i=1 be a sequence of MDS codes with

strictly increasing code length {ni}
∞
i=1. If d(Ci) = d > 1 for

all i, then as i → ∞,

ρ(Ci) = T (n, d − 1, d − 2)(1 + O(n−1)),

where n = ni. 2

Katona, Nemetz and Simonovits [11] showed that
T (n, k, r)/

(

n
r

)

is non-decreasing in n and hence there exists
the limit

t(k, r) = lim
n→∞

T (n, k, r)
(

n
r

) .

Theorem 8 and Theorem 9 essentially tell us that for fixed d,
T (n, d − 1, d − 2), ρ(Ci), and Γ(n, d − 2) are all asymptotic
to t(d − 1, d − 2)

(

n
d−2

)

.
The value of t(r + 1, r), although unknown for r > 2, is

well-studied. The best known upper bound is t(r + 1, r) ≤
(1/2 + o(1)) ln r/r, due to Sidorenko ([8]). In contrast, the
bounds for MDS codes given in [2] are

1

d − 1
≤

ρ(C)
(

n
d−2

) ≤
max{d⊥, d − 1}

n
. (1)

Since d⊥ + d − 1 = n + 1, max{d⊥, d − 1}/n > 1/2. This
suggests room for improvement in the upper bound.

We will derive new upper bounds on the stopping redun-
dancy of MDS codes through constructions of single-exclusion
systems. First, consider the following construction of a Turán
(n, r + 1, r)-system due to Kim and Roush [12].

Construction 1 Partition [n] into l disjoint sets,
N0, . . . , Nl−1, with sizes as equal as possible. (For example,
let Ni := {k ∈ [n] : k ≡ i mod l}.) For any X ⊆ [n], define

w(X) :=

l−1
∑

i=0

i|X ∩ Ni|.

For j = 0, 1, . . . , l − 1, let

Bj := {B ∈ [n]r : ∃k,B ∩ Nk = ∅}

∪ {B ∈ [n]r : w(B) ≡ j mod l} .

2

Theorem 10 For all j, Bj as defined in Construction 1 is a
single-exclusion (n, r)-system if l ≥ n/(n − r − 1). 2

It is not hard to show that (cf. [12])

min
0≤j≤l−1

|Bj | ≤ l

(

n −
⌊

n
l

⌋

r

)

+
1

l

(

n

r

)

.

Therefore, we arrive at the following upper bound on Γ(n, r).

Theorem 11 For all integers l ≥ n/(n − r − 1),

Γ(n, r) ≤ l

(

n −
⌊

n
l

⌋

r

)

+
1

l

(

n

r

)

. 2

This immediately leads to an upper bound on ρ(C).

Theorem 12 Let C be an MDS code with length n and
minimum distance d > 1. For all integers l ≥ R−1, where
R = (n − d + 1)/n is the code rate of C,

ρ(C) ≤ l

(

n −
⌊

n
l

⌋

d − 2

)

+
1

l

(

n

d − 2

)

. 2

Let’s consider the upper bound of Theorem 11 and Theo-
rem 12 as n → ∞, and compare it to (1).

1) d is fixed:
By choosing l = d(d − 2)/(2 ln(d − 2))e (assume d >
3), one can show that the upper bound of Theorem 12
is asymptotically better than 1+2 ln(d−2)

d−2

(

n
d−2

)

, while the
upper bound of (1) is asymptotic to

(

n
d−2

)

.
2) d/n = δ < 1 is fixed:

Choosing l = d(d − 2)/(2 ln(d − 2))e, we see that the
upper bound of Theorem 12 is O

(

ln n
n

(

n
d−2

)

)

, which is

better than Θ
(

(

n
d−2

)

)

, given by (1).
3) k = n − d + 1, the dimension of C, is fixed:

Theorem 12 requires that l ≥ n/k. If k ≥ 4, we can
choose l such that l ∈ (n

3 − 1, n
3 ]. Then the bound of

Theorem 12 becomes, asymptotically,

ρ(C) ≤ l

(

n −
⌊

n
l

⌋

d − 2

)

+
1

l

(

n

d − 2

)

≤ l

(

n − 3

n − k − 1

)

+
1

l

(

n

n − k − 1

)

= O(nk−1) +
3

n

(

1 + O

(

1

n

))(

n

k + 1

)

= O(nk−1) +
3

k + 1

(

n

k

)

.

The bound above is asymptotic to 3
k+1

(

n
k

)

. For com-
parison, (1) implies an upper bound that is asymptotic
to

(

n
k+1

)

, and a lower bound of 1
k+1

(

n
k

)

.
The last case is interesting in its own right and it turns

out that the upper bound holds for k = 1, 2, 3 as well.



We summarize it as follows. (Note that the discussion above
applies to Γ(n, d − 2) = Γ(n, n − k − 1) as well as ρ(C).)

Theorem 13 For fixed k, as n → ∞,

1

k + 1
≤

Γ(n, n − k − 1)
(

n
k

) ≤
3

k + 1
+ O

(

n−1
)

. 2

Theorem 14 Let {Ci}
∞
i=1 be a sequence of MDS codes with

strictly increasing code length {ni}
∞
i=1. If the dimension of Ci

is k for all i, then as i → ∞,

1

k + 1
≤

ρ(Ci)
(

n
k

) ≤
3

k + 1
+ O

(

n−1
)

,

where n = ni. 2

Previously, we have seen a close connection between
Γ(n, d − 2) and T (n, d − 1, d − 2) for fixed d. Theorem 13
and Theorem 14 lead to a similar result for fixed k.

Theorem 15 For fixed k, as n → ∞,

Γ(n, n − k − 1) ≤ T (n, n − k, n − k − 1)(3 + O(n−1)). 2

Theorem 16 Let {Ci}
∞
i=1 be a sequence of MDS codes with

strictly increasing code length {ni}
∞
i=1. If the dimension of Ci

is k for all i, then as i → ∞,

ρ(Ci) ≤ T (n, d − 1, d − 2)(3 + O(n−1)),

where n = ni, d = d(Ci) = ni − k + 1. 2

Next, consider the following construction of a Turán
(n, r + 1, r)-system, due to Frankl and Rödl [13].

Construction 2 Partition [n] into l disjoint sets,
N0, . . . , Nl−1, with sizes as equal as possible. For all
X ⊆ [n], define S(X) := {i : X ∩ Ni 6= ∅} and
s(X) := |S(X)|. So s(X) is the number of partitions that X
intersects. Also, define

w(X) :=

l−1
∑

i=0

i|X ∩ Ni|.

Now, for j ∈ {0, . . . , l − 1}, let

Bj :={B ∈ [n]r : (w(B) + j) mod l

∈ {0, 1, . . . , l − s(B)}}. 2

Theorem 17 If n ≥ l(r + 1), then for all j, Bj constructed
according to Construction 2 is a single-exclusion (n, r)-
system. 2

It can be shown that ([8])
l−1
∑

j=0

|Bj | =

(

n

r

)

+ l

(

n −
⌊

n
l

⌋

r

)

.

Therefore,

min
j

|Bj | ≤
1

l

l−1
∑

j=0

|Bj | =
1

l

(

n

r

)

+

(

n −
⌊

n
l

⌋

r

)

.

Thus, we have the following theorems.

Theorem 18 For all positive integers l ≤ n/(r + 1),

Γ(n, r) ≤
1

l

(

n

r

)

+

(

n −
⌊

n
l

⌋

r

)

. 2

Theorem 19 Let C be an MDS code with length n and
minimum distance d > 1. Then for all positive integers
l ≤ (1−R)−1, where R = (n − d + 1)/n is the code rate of
C,

ρ(C) ≤
1

l

(

n

d − 2

)

+

(

n −
⌊

n
l

⌋

d − 2

)

. 2

The requirement that l be no greater than (1 − R)−1 turns
out to be too restrictive for most cases and makes the upper
bound less useful when R is not close to 1. To mitigate the
problem, we can get rid of this requirement by adding some
more blocks to Bj . For clarity, we first assume l | n.

Construction 3 Arrange elements of [n] into a n
l × l matrix

(in an arbitrary way). The columns of this matrix partition
[n] into l disjoint sets with equal size which we denote by
N0, . . . , Nl−1. With N0, . . . , Nl−1, let Bj be defined the same
way as described in Construction 2. Now, the rows of this
matrix also partition [n]. We denote them by M0, . . . ,Mn

l
−1.

For all X ⊆ [n], define

w′(X) :=

n

l
−1

∑

i=0

i|X ∩ Mi|.

For t = 0, . . . , n
l − 1, let

Mt :=
{

B ∈ [n]r : w′(B) ≡ t mod
n

l

}

.

Finally, for all j, t, let

Bj,t := Bj ∪Mt. 2

We show that Bj,t as defined in Construction 3 is a single-
exclusion (n, r)-system for all l, as stated in the following
theorem.

Theorem 20 For all l, j, and t, Bj,t as defined in Construc-
tion 3 is a single-exclusion (n, r)-system. 2

If l - n, we can define M0, . . . ,Mbn

l
c−1 by applying

Construction 3 to the first bn/lcl elements of [n] and letting
Mbn

l
c−1 include the extra (n mod l) elements. All reasoning

in the proof remains valid.
Clearly,

bn

l
c−1

∑

t=0

|Mt| =

(

n

r

)

.

Hence,

min
t

|Mt| ≤
1

bn/lc

(

n

r

)

.

By the union bound, |Bj,t| ≤ |Bj |+ |Mt|, hence we arrive
at the following bounds.
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Theorem 21 For all integers l, 1 ≤ l ≤ n,

Γ(n, r) ≤

{ (

n−bn/lc
r

)

+ 1
l

(

n
r

)

if l ≤ n
r+1

(

n−bn/lc
r

)

+
(

1
l + 1

bn/lc

)

(

n
r

)

if l > n
r+1

2

Theorem 22 Let C be an MDS code with length n and
minimum distance d > 1. Then for all integers l, 1 ≤ l ≤ n,

ρ(C) ≤

{ (

n−bn/lc
d−2

)

+ 1
l

(

n
d−2

)

if l ≤ (1 − R)−1

(

n−bn/lc
d−2

)

+
(

1
l + 1

bn/lc

)

(

n
d−2

)

if l > (1 − R)−1

where R = (n − d + 1)/n is the code rate of C. 2

Note that when l is chosen such that l > (1−R)−1, the upper
bound is never better than 2√

n

(

n
d−2

)

. So the strength of the
bound above lies in the regime of high rate codes.

In Fig. 1 through Fig. 3, the upper bounds of Theorem 12
and Theorem 22 (minimized over l) are compared to the
previously known bounds of (1). All bounds are normalized
with respect to

(

n
d−2

)

. We see that both proposed upper bounds
are tighter than (1) in a variety of situations, with the one
based on Construction 1 outperforming the one based on
Construction 3 for all but very high code rate scenarios.
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