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Abstract
Médard et al [1] suggest that any acyclic network coding problem can be reduced to

an equivalent Single-Transmitter-Single-Demand form, thus enabling consideration of a
structured subclass of networks without loss of generality.

We show that the prior construction for deriving STSD networks only holds when
information sources available to different transmitter nodes are independent. We complete
the proof of equivalence using the prior construction under this additional independence
condition. We propose a new construction for deriving STSD equivalent forms that works
for networks with arbitrarily correlated sources. Our results enable the application of
STSD equivalence to a larger class of network coding problems.

1 Introduction

Network coding concerns the theory and design of coding strategies carried out by nodes in a
network to achieve desired communication. For an introduction to network coding and network
information flow, the reader is referred to the book by Yeung [2], or papers [3] [4].

Médard et al. [1] argue that for any acyclic network coding problem there exists an equiva-
lent problem in Single-Transmitter-Single-Demand (STSD) form, such that the original prob-
lem is achievable if and only if the STSD problem is achievable. This enables us to study a
subset of structured networks without loss of generality. In [1], the STSD equivalent problem
is systematically constructed and its equivalence to the original problem argued.

In this paper, we show that the construction in [1] is limited to the case where information
sources available at different nodes are independent. We make clear this limitation by showing
an example where the construction breaks down due to source dependency and by filling in
the missing proof of equivalence between the derived STSD problem and the original, making
explicit use of the independency condition. We then propose a new construction for deriving
STSD form equivalent problem under general conditions, allowing arbitrary correlation among
information sources. We prove that the STSD form problem derived using the new construction
is equivalent to the original one, hence effectively expand the applicability of equivalent STSD
forms to a larger class of problems.

The paper is arranged as follows. We describe our system model and define STSD form in
Section 2. In Section 3 we review prior work, formulating the STSD equivalence result and the
construction used in [1]. Limitations of the prior construction are discussed in Section 4, and
the proposed construction is presented in Section 5. Section 6 concludes the paper.

∗This work was supported in part by a fellowship from Cal-(IT)2 (California Inst. for Telecom. & Info. Tech.).



2 System Model

We adopt a model much similar to that used in [1]. A network coding problem, or network, N ,
is denoted by the 5-tuple N = (G,R,K,S,D), where

• G = (V , E) is a directed graph or multigraph, where V is the set of vertices (a.k.a. nodes)
and E is the set of edges (a.k.a. links);

• R = [r(e)]e:e∈E with r : E �→ R+ defines edge capacities;

• K is the index set of information sources, which are denoted by Bk, k ∈ K;

• S = [s(k, v)]k∈K,v∈V and D = [d(k, v)]k∈K,v∈V are |K| × |V| matrices that describe the
communication scenario, where

s(k, v) =

{
1 if Bk is available at node v (for transmission)
0 otherwise

,

d(k, v) =

{
1 if Bk is demanded by node v (to be received)
0 otherwise

.

Unless otherwise stated, for the rest of this paper we make the following assumptions:

1. G is acyclic (in which case we shall also say that N is acyclic).

2. All information sources are independent1 binary Bernoulli(1/2) random sources with
information rate of 1 bit/time unit.

3. Over any edge e, transmission of information at rates no greater than r(e) is error-free,
while transmission at rates higher than r(e) is prohibited.

4. Without loss of generality, let K = {1, 2, . . . , K}, where K
def
= |K|.

5. ∀k ∈ K,
∑

v∈V d(k, v) > 0, and ∀k ∈ K,∀v ∈ V, s(k, v) + d(k, v) ≤ 1.

Since with the above assumptions K is implicitly known, in most cases we will skip writing it
out and refer to a network as N = (G,R,S,D).

Let Bn
k

def
= (Bk(1), Bk(2), . . . , Bk(n)) denote the first n samples of Bk and bn

k a realization
of Bn

k . For any e ∈ E , let e be incident from t(e) to h(e). We denote e as the ordered

pair (t(e), h(e)). Let We(t) be the random process transmitted on edge e. Define W n
e

def
=

(We(1), We(2), . . . , We(n)). Any realization of W n
e , wn

e , satisfies the capacity constraint of

edge e such that wn
e ∈ Wn

e
def
= {0, 1}nr(e). For any v ∈ V , let I(v) = {e : e ∈ E , h(e) = v}

and O(v) = {e : e ∈ E , t(e) = v} denote the sets of incoming and outgoing edges of v,
respectively. Since I(v) and O(v) are graph specific, we will write I(v,G) and O(v,G) where

confusion may arise. Define the sets of sources and demands of node v as Ks
v

def
= {k : k ∈

K, s(k, v) = 1} and Kd
v

def
= {k : k ∈ K, d(k, v) = 1}, respectively. Also, denote by Vs the set

of nodes with sources (transmitter nodes) and Vd those with demands (receiver nodes). That is,
Vs

def
= {v : v ∈ V,

∑K
k=1 s(k, v) > 0}, Vd

def
= {v : v ∈ V,

∑K
k=1 d(k, v) > 0}. Let Xv(t) be the

random process of all information available to node v, which consists of information received

from other nodes as well as those native to v. Define Xn
v

def
= (Xv(1), Xv(2), . . . , Xv(n)). Then

a realization of Xn
v can be expressed as xn

v = ((bn
k)k∈Ks

v
, (wn

e )e∈I(v)). Clearly, xn
v ∈ X n

v
def
=

{0, 1}n|Ks
v | × (Wn

e )e∈I(v).

1As will be noted later, our new construction does not require Bk’s to be independent.



Definition 2.1 (Block Code). A length-n block code for an acyclic network coding problem
N = (G,R,S,D) is the 2-tuple Cn = (fn, gn), where fn = {fn

e }e∈E , fn
e : X n

t(e) �→ Wn
e

describes encoding on each edge e ∈ E , and gn = {gn
k,v}1≤k≤K,v∈V , gn

k,v : X n
v �→ {0, 1}n

describes decoding at each node v for each of the K information sources. The code is applied
to N such that ∀e ∈ E ,

wn
e = fn

e (xn
t(e)) = fn

e

((
(bn

k)k∈Ks
t(e)

, (wn
ε )ε∈I(t(e))

))
, (1)

Please note that the recursive expression in (1) is not ambiguous since G is acyclic.

Definition 2.2 (Achievability). An acyclic network N is said to be achievable if there exists
n ≥ 1 and a length-n block code Cn = (fn, gn), such that ∀v ∈ V,∀k, 1 ≤ k ≤ K,

gn
k,v(x

n
v ) = d(k, v)bn

k , (2)

in which case we shall call Cn = (fn, gn) a solution to N .

Note that the above definition is non-trivial only for (k, v) such that d(k, v) = 1. For
d(k, v) = 0 one can simply define gn

k,v(x
n
v ) = 0n to satisfy (2).

Definition 2.3 (STSD). A network coding problem N = (G,R,S,D) is said to be of Single-
Transmitter-Single-Demand form, or STSD, if it satisfies that |Vs| = 1, and that ∀v ∈ Vd, |Kd

v| =
1, |I(v)| = 1, |O(v)| = 0 and

∑
e∈I(v) r(e) = 1.

In words, a STSD network is one such that there is only one transmitter node that has all
the information sources available, and each receiver node requests one source process and has
incoming degree 1 and incoming capacity of 1bit/time unit.

3 Prior Work

We briefly review related results in [1] to facilitate later discussion.
The motivation for considering STSD networks lies in the following theorem.

Theorem 3.1. For any acyclic network N , there exists an STSD network Ñ such that N is
achievable if and only if Ñ is achievable.

The construction used in [1] for deriving STSD equivalent networks is summarized below.

Construction 3.2 (Médard, et al). Given an acyclic network N = (G,R,S,D), G = (V , E),
construct STSD network Ñ = (G̃, R̃, S̃, D̃) as follows:

1. Add a new node v0;

2. For each v ∈ Vs, add a directed edge from v0 to v and denote it as ev0,v;

3. For each v ∈ Vs ∪ Vd and each k ∈ Ks
v ∪ Kd

v , create a new node ṽk,v, and add a directed
edge from v to ṽk,v, which is denoted as ẽk,v;

4. Let V ′ = {v0}, E ′ = {ev0,v : v ∈ Vs}, V ′′ = {ṽk,v : v ∈ Vs ∪ Vd, k ∈ Ks
v ∪ Kd

v}, and
E ′′ = {ẽk,v : v ∈ Vs ∪ Vd, k ∈ Ks

v ∪ Kd
v}. Set Ṽ = V ∪ V ′ ∪ V ′′, Ẽ = E ∪ E ′ ∪ E ′′,
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Figure 1: Network not achievable due to contention on edge (4,5)

G̃ = (Ṽ , Ẽ). Set R̃ = [r̃(e)]e∈Ẽ , S̃ = [s̃(k, v)]1≤k≤K,v∈Ṽ , and D̃ = [d̃(k, v)]1≤k≤K,v∈Ṽ ,
where

r̃(e) =

⎧⎨
⎩

r(e) if e ∈ E∑K
k=1 s(k, h(e)) if e ∈ E ′

1 if e ∈ E ′′
,

s̃(k, v) =

{
1 if v = v0

0 otherwise
,

d̃(k, v) =

{
1 if v ∈ V ′′

0 otherwise
.

Proposition 3.3. Given an acyclic network N , let Ñ be the STSD network constructed from
N using Construction 3.2. Then N is achievable if and only if Ñ is achievable.

For a complete proof of Proposition 3.3 and hence of Theorem 3.1, please refer to [1].
Essentially, it is argued that a solution to N implies a solution to Ñ and vice versa.

We want to point out that in constructing the solution to N from a solution to Ñ , the proof
in [1] implicitly assumes that in Ñ , the information received by transmitter nodes of N only
depends on the respective sources that are available to them in N . This assumption, as we will
see, is generally not true, even for the case in which we shall show that Construction 3.2 holds.

4 Limitations of the Prior Construction

4.1 A Counter-Example

We give an example to demonstrate the idea of Construction 3.2 and to show that it may not
yield an equivalent network in certain cases.

Consider the network depicted in Figure 1. All links are of unit capacity. The availability of
information sources are marked beside the nodes, and so are the demands, which are denoted
in brackets. It is intuitively clear that this network does not have a solution due to contention
on edge (4,5). This is easily shown with an entropy argument. However, if we modify the
network using Construction 3.2, we obtain the STSD network shown in Figure 2. We see that
while the original problem is not achievable, the constructed STSD network is indeed solved
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Figure 2: STSD network constructed using Construction 3.2, now with a solution

by a simple length-1 code, also shown in Figure 2, with messages to be transmitted indicated
on each edge.

If we apply the proof in [1] to this example, we would assume that if the STSD network
is achievable there must exist a solution in which what node 2 receives from v0 is solely a
function of b1, so that the solution can be “emulated” in the original network. Conceivably,
such a solution does not exist here. On the other hand, we have an “unexpected” solution that
cannot be emulated.

If we think about how the sample solution we have shown is made possible, the key obser-
vation is that when information available to nodes in Vs are not independent, the total capacity
of edges in V ′ is over-provisioned, and this leaves open the possibility that a node like node
2 in this example can obtain knowledge of b1 through other inputs and receive extra informa-
tion from v0, which can be impossible to emulate in the original network. This observation
motivates our new STSD construction that will be described in Section 5.

4.2 Limited Applicability

We identify the condition under which Construction 3.2 holds.

Theorem 4.1. For an acyclic network N , let Ñ be the STSD network constructed from N
using Construction 3.2. If the following is satisfied,

Ks
u ∩ Ks

v = ∅, ∀u, v ∈ Vs, u �= v, (3)

then N is achievable if and only if Ñ is achievable.

Condition (3) requires that no information source be available at more than one node. Es-
sentially, it requires that information available to different transmitter nodes be independent.

In order to prove Theorem 4.1, we first introduce some terminology and notation. Given a
directed graph G = (V , E), define the parent set P (v) for v ∈ V as P (v) = {u : u ∈ V, (u, v) ∈



E}. If G is acyclic, we can impose a partial ordering on V such that for any u, v ∈ V , u ≺ v if
and only if there is a directed path from u to v. This partial ordering enables us to label nodes
in Vs as Vs = {v1, v2, . . . , v|Vs|} with the property that if vi ≺ vj then i < j. In the discussion
that follows, we assume that such a labelling is already in place.

Now, suppose Ñ is achievable and a solution C̃n = (f̃n, g̃n) has been applied. For v ∈ Vs,
consider its received message from edge ev0,v, W n

ev0,v
= f̃n

ev0,v
(Bn

1 , Bn
2 , . . . , Bn

K). We now
show that ∀vi ∈ Vs, W n

ev0,vi
is a function of (Bn

k )k∈Ks
vi

and (W n
e )e∈I(vi,G) by the following two

lemmas.2

Lemma 4.2. Let Ñ be constructed from N using Construction 3.2. If N satisfies condition (3)
and Ñ is achievable, then for any C̃n that solves Ñ , the random variables W n

ev0,v
, v ∈ Vs are

independent with entropies H(W n
ev0,v

) = n|Ks
v|.

Proof. Since in Ñ information sources are only available at v0 and with C̃n all Bn
k ’s are recon-

structed, (Bn
k )K

k=1 must effectively be a function of (W n
ev0,v

)v∈Vs . Therefore,

nK = n
∑
v∈Vs

|Ks
v| ≥

∑
v∈Vs

H(W n
ev0,v

) ≥ H((W n
ev0,v

)v∈Vs) ≥ H((Bn
k )K

k=1) = nK (4)

So equality holds throughout, such that
∑

v∈Vs
H(W n

ev0,v
) = H((W n

ev0,v
)v∈Vs) = nK, and

H(W n
ev0,v

) = n|Ks
v|. Hence we conclude that W n

ev0,v
, v ∈ Vs are independent, and H(W n

ev0,v
) =

n|Ks
v|.
Please note that the first equality in (4) is due to condition (3).

Lemma 4.3. Let Ñ be constructed from N using Construction 3.2. If N satisfies condition (3)
and Ñ is achievable, then for any C̃n that solves Ñ , W n

ev0,vi
is a function of (Bn

k )k∈∪i
j=1Ks

vj
for

all vi ∈ Vs.

Proof. We will prove this by induction.
First we show that W n

ev0,v1
is a function of (Bn

k )k∈Ks
v1

. Consider nodes in the parent set of
v1 in the original network N . There cannot be any directed path from nodes in Vs to those in
P (v1), because v1 ⊀ v,∀v ∈ P (v1), and by definition vi ⊀ v1, i = 2, . . . , |Vs|. Since in Ñ the
only incoming edges added with respect to V are {ev0,v : v ∈ Vs}, we instantly conclude that
in Ñ there is no directed path from v0 to any node in P (v1). Therefore, nodes in P (v1) are not
sending any messages to v1, which implies that (Bn

k )k∈Ks
v1

must be a function of W n
ev0,v1

since

Bn
k = g̃n

k,ṽk,v1
(f̃n

ẽk,v1
(Xn

v1
)) = g̃n

k,ṽk,v1
(f̃n

ẽk,v1
(W n

ev0,v1
, (W n

e )e∈I(v1,G))).

Thus, we have

H(W n
ev0,v1

|(Bn
k )k∈Ks

v1
) = H(W n

ev0,v1
, (Bn

k )k∈Ks
v1

) − H((Bn
k )k∈Ks

v1
)

= H(W n
ev0,v1

) − H((Bn
k )k∈Ks

v1
)

= n|Ks
v1
| − n|Ks

v1
|

= 0

Now for the general case of vi ∈ Vs, it is straightforward to extend the observation we made
for v1 to conclude that what vi can receive from its incoming edges in E is always a function

2As we commented before, even when condition (3) is satisfied, it is not generally true that Wn
ev0,vi

is a
function of (Bn

k )k∈Ks
vi

only.



of (W n
ev0,vj

)i−1
j=1 as a consequence of the partial ordering. That is, (W n

e )e∈I(vi,G) is a function of

(W n
ev0,vj

)i−1
j=1, which in turn is a function of (Bn

k )k∈∪i−1
j=1Ks

vj
by the induction assumption. This

implies that (W n
e )e∈I(vi,G) and W n

ev0,vi
are independent because of Lemma 4.2. It also implies

that (W n
e )e∈I(vi,G) and (Bn

k )k∈Ks
vi

are independent because of condition (3). Finally, noting that

(Bn
k )k∈Ks

vi
is a function of W n

ev0,vi
and (W n

e )e∈I(vi,G) since C̃n is a solution to Ñ , we have

H(W n
ev0,vi

|(Bn
k )k∈Ks

vi
, (W n

e )e∈I(vi,G))

= H(W n
ev0,vi

, (Bn
k )k∈Ks

vi
, (W n

e )e∈I(vi,G)) − H((Bn
k )k∈Ks

vi
, (W n

e )e∈I(vi,G))

= H(W n
ev0,vi

, (W n
e )e∈I(vi,G)) − H((Bn

k )k∈Ks
vi
, (W n

e )e∈I(vi,G))

= H(W n
ev0,vi

) + H((W n
e )e∈I(vi,G)) − H((Bn

k )k∈Ks
vi

) − H((W n
e )e∈I(vi,G))

= n|Ks
vi
| − n|Ks

vi
|

= 0.

Therefore, W n
ev0,vi

is a function of (Bn
k )k∈Ks

vi
and (W n

e )e∈I(vi,G), which in turn implies that
W n

ev0,vi
is a function of (Bn

k )k∈∪i
j=1Ks

vj
.

Corollary 4.4. Let Ñ be constructed from N using Construction 3.2. If N satisfies condition
(3) and Ñ is achievable, then for any C̃n that solves Ñ , W n

ev0,vi
is a function of (Bn

k )k∈Ks
vi

and
(W n

e )e∈I(vi,G) for all vi ∈ Vs.

Proof. This is a direct consequence of the proof of Lemma 4.3.

With the above developments we are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Given a solution Cn to N , it is straightforward to construct a solution
to Ñ by providing the transmitter nodes of N with their respective sets of information sources
through edges in E ′, reusing the edge encoders of Cn for all edges in E and forwarding (de-
coded) information bits to nodes in V ′′. (For a more complete statement please refer to [1].)

We now show that if Ñ is achievable then so is N . Let C̃n = (f̃n, g̃n) be a solution to Ñ .
We want to find a solution Cn = (fn, gn) for N . We have shown that when C̃n is applied to
Ñ , W n

ev0,vi
is a function of (Bn

k )k∈Ks
vi

and (W n
e )e∈I(vi,G) for all vi ∈ Vs. Denote this functional

relation as
W n

ev0,vi
= h̃n

vi
((Bn

k )k∈Ks
vi
, (W n

e )e∈I(vi,G)).

For N , define

fn
e (xn

t(e)) =

{
f̃n

e (h̃n
t(e)(x

n
t(e)), (w

n
ε )ε∈I(t(e))) if t(e) ∈ Vs

f̃n
e (xn

t(e)) otherwise
,

gn
k,v(x

n
v ) =

{
g̃n

k,ṽk,v
(f̃n

ẽk,v
(xn

v )) if d(k, v) = 1

0n otherwise
.

Clearly Cn = (fn, gn) emulates C̃n and is therefore a solution to N .

We have shown that if condition (3) is not satisfied, then Construction 3.2 may not preserve
achievability of a network. However, as will be clear with our new construction, this condition
is not necessary for Theorem 3.1 to hold.



5 New STSD Construction

Construction 5.1 (New STSD Construction). Given an acyclic network N = (G,R,S,D),
G = (V , E), construct STSD network Ñ = (G̃, R̃, S̃, D̃) as follows:

1. Add the following nodes: v0, v1, v2, . . . , vK , ν1, ν2, . . . , νK , and vk,v, ∀v ∈ Vd, k ∈ Kd
v .

2. Add the following edges: ek = (v0, vk), 1 ≤ k ≤ K, εk = (vk, νk), 1 ≤ k ≤ K,
ek,v = (vk, v), ∀v ∈ Vs, k ∈ Ks

v, and ek,v = (v, vk,v) ∀v ∈ Vd, k ∈ Kd
v .

3. Define V1 = {v0}, V2 = {vk}K
k=1, V3 = {νk}K

k=1, V4 = {vk,v : v ∈ Vd, k ∈ Kd
v},

E1 = {ek}K
k=1, E2 = {εk}K

k=1, E3 = {ek,v : v ∈ Vs, k ∈ Ks
v}, and E4 = {ek,v : v ∈

Vd, k ∈ Kd
v}. Set Ṽ = V ∪V1 ∪V2 ∪V3 ∪V4, Ẽ = E ∪ E1 ∪ E2 ∪ E3 ∪ E4, R̃ = [r̃(e)]e∈Ẽ ,

S̃ = [s̃(k, v)]1≤k≤K,v∈Ṽ , and D̃ = [d̃(k, v)]1≤k≤K,v∈Ṽ , where

r̃(e) =

{
r(e) if e ∈ E
1 otherwise

,

s̃(k, v) =

{
1 if v ∈ V1

0 otherwise
,

d̃(k, v) =

{
1 if v ∈ V3 ∪ V4

0 otherwise
.

The idea of Construction 5.1 is to have v0 as the single transmitter and nodes in V3 and V4

carry single demands. The main difference between Construction 5.1 and Construction 3.2 is
that rather than connecting v0 to the transmitter nodes of N directly we add intermediate nodes
{vk}K

k=1 which act as “virtual sources” for each Bk.

Theorem 5.2. Given any acyclic network N , let Ñ be the STSD network constructed from N
using Construction 5.1. Then N is achievable if and only if Ñ is achievable.

Proof. If N is achievable, then there exists a length-n block code Cn = (fn, gn) such that

gn
k,v(x

n
v ) = d(k, v)bn

k , ∀v ∈ V,∀k, 1 ≤ k ≤ K.

We find a solution to Ñ by “embedding” (fn, gn) into the larger network. Define

f̃n
e (xn

t(e)) =

⎧⎪⎪⎨
⎪⎪⎩

bn
k if e = ek ∈ E1

xn
t(e) if e ∈ E2 ∪ E3

gn
k,t(e)(x

n
t(e)) if e = ek,v ∈ E4

fn
e (xn

t(e)) otherwise

,

g̃n
k,v(x

n
v ) =

{
xn

v if v = νk ∈ V3 or v = vk,u ∈ V4

0n otherwise
,

In words, the single transmitter sends the k-th information source to vk, which forwards this
information to νk as well as to every node that has Bk available in the original network, so that
the same edge encoding can be done in the modified STSD network for all e ∈ E . Any former
receiver node then uses the decoding functions of the original solution to send the decoded k-
th information source to the corresponding child node (vk,v), which simply picks up its input.
Clearly, since (fn, gn) is a solution to N , (f̃n, g̃n) must be a solution to Ñ , i.e.

g̃n
k,v(x

n
v ) = d̃(k, v)bn

k , ∀v ∈ Ṽ ,∀k, 1 ≤ k ≤ K.



Conversely, if Ñ has a solution C̃n = (f̃n, g̃n), first we argue that W n
ek

= f̃n
ek

(Xn
v0

) =

f̃n
ek

(Bn
1 , Bn

2 , . . . , Bn
K) must be a function of Bn

k only. Noting that Bn
k = g̃n

νk
(f̃n

εk
(Xn

vk
)) =

g̃n
νk

(f̃n
εk

(W n
ek

)), we have

n ≥ H(W n
ek

) ≥ H(g̃n
νk

(f̃n
εk

(W n
ek

))) = H(Bn
k ) = n,

This implies that H(W n
ek

) = n, and consequently

H(W n
ek
|Bn

k ) = H(W n
ek

, Bn
k ) − H(Bn

k ) = H(W n
ek

) − H(Bn
k ) = n − n = 0,

i.e. W n
ek

is a function of Bn
k . In other words, the “extra” inputs that a transmitter node v of N

receives in a solution to Ñ through edges in E3 must be a function of (Bn
k )k∈Ks

v
. Therefore, it

is possible to emulate C̃n in N by treating the extra codings of C̃n as mappings internal to N ’s
transmitter and receiver nodes. With slight abuse of notation we now write f̃n

ek
(Bn

k ) in place of
f̃n

ek
(Bn

1 , Bn
2 , . . . , Bn

K) and define

fn
e (xn

t(e)) =

{
f̃n

e ((f̃n
ek,t(e)

(f̃n
ek

(bn
k)))k∈Ks

t(e)
, (wn

ε )ε∈I(t(e))) if t(e) ∈ Vs

f̃n
e (xn

t(e)) otherwise
,

gn
k,v(x

n
v ) =

{
g̃n

k,v(f̃
n
ek,v

(xn
v )) if d(k, v) = 1

0n otherwise
,

Clearly, (fn, gn) emulates (f̃n, g̃n) in the original network. Since (f̃n, g̃n) is a solution to Ñ ,
(fn, gn) is a solution to N .

Note that not only does the above proof not require condition (3) to hold, but it actually
makes no assumption about correlation among the Bk’s at all. Therefore, with Construction 5.1
and Theorem 5.2 we have shown that Theorem 3.1 holds in general for any acyclic network,
where information sources can be arbitrarily correlated.

We apply Construction 5.1 to the example given in Section 4.1 to give more intuition. The
resulting network is shown in Figure 3. The idea of the new construction is clearly illustrated:
demands from receiver nodes ν1 and ν2 force v1 and v2 to act as virtual information sources
for B1 and B2, respectively, making a clear equivalence in achievability between the modified
problem and the original one.

Before we close this section, we note, as an example of application, that with Construc-
tion 5.1 and Theorem 5.2 the following result is obtained straightforwardly as a generalization
of Theorem III.1 of [5], where the same conclusion is drawn for multicast networks.

Theorem 5.3. Every acyclic network with at most two information sources that has a length-1
solution has a length-1 linear3 solution.

We finally note that a somewhat similar construction was used in [6] in proving results for
certain constrained classes of network coding problems.

6 Conclusion

We have considered the problem of reducing acyclic network coding problems to equivalent
Single-Transmitter-Single-Demand form, first discussed in [1]. We have shown that the prior

3In the sense that f1
e ’s and g1

e ’s are all linear functions over F2.
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Figure 3: Example: STSD problem constructed using Construction 5.1. Not achievable.

construction does not always yield an equivalent network and requires that information avail-
able to different transmitter nodes be independent. We have proposed a new construction and
proved that it preserves achievability for any acyclic network. The new construction does not
require additional conditions to hold, but works in general for arbitrarily correlated sources.
Examples have been shown to support and illustrate the ideas.

The STSD equivalence result enables us to focus on STSD networks without loss of gen-
erality. The constraints imposed by the STSD form often make discussions easier. Our results
make it possible to apply STSD equivalence to a larger set of network coding problems.
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