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Abstract—Symbol-pair read channels, in which the outputs of
the read process are pairs of consecutive symbols, were recently
studied by Cassuto and Blaum. This new paradigm is motivated
by the limitations of the reading process in high density data stor-
age systems. They studied error correction in this new paradigm,
specifically, the relationship between the minimum Hamming dis-
tance of an error correcting code and the minimum pair distance,
which is the minimum Hamming distance between symbol-pair
vectors derived from codewords of the code. It was proved that
for a linear cyclic code with minimum Hamming distance dH ,
the corresponding minimum pair distance is at least dH + 3.

Our main contribution is proving that, for a given linear cyclic
code with a minimum Hamming distance dH , the minimum pair
distance is at least dH +

⌈
dH
2

⌉
. We also describe decoding al-

gorithms, based upon bounded distance decoders for the cyclic
code, whose pair-symbol error correcting capabilities reflects the
larger minimum pair distance. In addition, we consider the case
where a read channel output is a prescribed number, b > 2,
of consecutive symbols and provide some generalizations of our
results. We note that the symbol-pair read channel problem is
a special case of the sequence reconstruction problem that was
introduced by Levenshtein.

I. INTRODUCTION

The traditional approach in information theory to analyze

noisy channels is to parse the message into independent infor-

mation units, called symbols. Even though in many works the

error correlation and interference between the symbols is stud-

ied, the process of writing and reading each symbol is usually

assumed to be performed independently. However, in some of

today’s storage technologies as well as future ones, this is no

longer an accurate assumption and symbols can only be writ-

ten and read together. This brings us to study a model, recently

proposed by Cassuto and Blaum [1], for channels whose out-

puts are overlapping pairs of symbols.

The rapid progress in high density data storage technologies

paved the way for high capacity storage with reduced price.

However, since the bit size at high densities is so small, one

of the fundamental problems is to successfully read the indi-

vidual bits recorded on the storage medium; for more details,

see [1]. The channel model studied by Cassuto and Blaum [1],

and later by Cassuto and Litsyn [2], mimics the reading pro-

cess of such storage technologies. On each reading operation,

the value of two consecutive symbols is read, called a pair-
read symbol. This new model changes the requirement on the

error correction capability of error-correction codes. There is

already a significant amount of redundancy as every symbol

is read twice. Furthermore, the errors are no longer symbol

errors, but, rather, pair-symbol errors, where in a pair-symbol

error at least one of the symbols is erroneous. The main task

now becomes to combat these pair-symbol errors by designing

codes with large minimum pair distance.

The works in [1], [2] studied the case of pair-read sym-

bols. However, this model can be easily generalized such that

on every read operation, multiple, say b > 2, consecutive

symbols are read and thus every symbol is read b times. In

essence, we receive multiple estimations of the same stored

word. This connection brings us to the sequence reconstruc-

tion problem, which was introduced by Levenshtein [5]–[7].

In this model, the same codeword is transmitted over multiple

channels. Then, a decoder receives all channel outputs, which

are guaranteed to be different from each other, and outputs an

estimation of the transmitted word. The original motivation did

not come from storage systems but rather from other fields,

such as molecular biology and chemistry, where the amount

of redundancy in the information is too low and thus the only

way to combat errors is by repeatedly transmitting the same

message. This model is very relevant for storage technologies

we described above or any other storage where the stored in-

formation is read multiple times. Furthermore, we note that

the model by Levenshtein was recently studied and extended

in the context of associative memories [11].

In the channel model described by Levenshtein, all channels

are (almost) independent from each other as it is only guaran-

teed that the channel outputs are all different. If the transmitted

message c belongs to a code with Hamming distance dH and

the number of errors in every channel can be strictly greater

than � dH−1
2 �, then Levenshtein studied the minimum number

of channels that are necessary to construct a successful de-

coder. This value was studied in [6] for the Hamming metric

as well as other distance metrics and was later analyzed for

a distance metric over permutations, e.g. [3], [4], and error

graphs [8].

For the Hamming distance, the following result was proved

in [6]. Assume the transmitted word belongs to a code with

minimum Hamming distance dH and the number of errors, t,
in every channel is greater than � dH−1

2 �. Then, in order to

construct a successful decoder, the number of channels has to

be greater than

t−�dH/2�
∑
i=0

(
n− dH

i

) t−i

∑
k=i+dH−t

(
dH
k

)
.

For example, if t = � dH−1
2 �+ 1, i.e., only one more than the

error correction capability, then the number of channels has to

be at least (2t
t ) + 1. If t > � dH−1

2 �+ 1 then this number is

even a function of the message length. This disappointing re-

sult is a consequence of the arbitrary errors that may occur in

every channel. In practice, especially for storage systems, we

can take advantage of the fact that the errors are constrained.
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In the symbol-pair read channel, there are in fact two chan-

nels. If the stored information is x = (x0, . . . , xn−1), then the

pair-read vector of x is

π(x) = [(x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)],

and the goal here is to correct a large number of the so-called

symbol-pair errors. The pair distance, dp(x, y), between two

pair-read vectors x and y is the Hamming distance between

their pair read vectors, that is, dp(x, y) = dH(π(x), π(y)).
Accordingly, the minimum pair distance of a code C is defined

as dp(C) = minx,y∈C ,x �=y{dp(x, y)}. In [1], it was shown

that for a linear cyclic code with minimum Hamming distance

dH , its minimum pair distance, dp, satisfies dp � dH + 3. Our

main contribution in this work is proving that

dp � dH +

⌈
dH
2

⌉
.

According to [1], this permits correction of �3dH/4� − 1
symbol-pair errors. Thus, in contrast to Levenshtein’s results

on independent channels, on the symbol-pair read channel

we can correct a large number of symbol-pair errors. In or-

der to establish this result, we explicitly construct a decoder

that can correct this number of symbol-pair errors.

The rest of the paper is organized as follows. In Section II,

we review the symbol-pair read channel and some basic prop-

erties. In Section III, we show that cyclic codes can correct

a large number of symbol-pair errors and in Section IV, de-

coders for such codes are given. Section V generalizes some

of the results on the symbol-pair read channel to channels that

sense b consecutive symbols on each read, where b > 2. Fi-

nally, Section VI concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

In this section, we briefly review the model and definition of

the symbol-pair read channel. If a length-n vector is stored in

the memory then its pair-read vector is also a length-n vector,

while every entry consists of two consecutive symbols of the

stored vector. More formally, if x = (x0, . . . , xn−1) ∈ Σn is

a length-n vector over some alphabet Σ, then the symbol-pair
read vector of x, denoted by π(x), is defined to be

π(x) = [(x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)].
We will focus in this work on binary vectors, so Σ = {0, 1}.

Note that π(x) ∈ (Σ× Σ)n, and for x, y ∈ Σ, π(x + y) =
π(x) + π(y). Unless stated otherwise, in this paper, all in-

dices are taken modulo n. The Hamming distance between

two vectors x and y is denoted by dH(x, y). Similarly, the

Hamming weight of a vector x is denoted by wH(x). The

pair distance between x and y is denoted by dp(x, y) and is

defined to be

dp(x, y) = dH(π(x), π(y)).
Accordingly, the pair weight of x is wp(x) = wH(π(x)).
A symbol-pair error in the i-th symbol of π(x) changes at

least one of the two bits (xi , xi+1). Note that the following

connection between the pair distance and pair weight holds.

Proposition 1. For all x, y ∈ Σn, dp(x, y) = wp(x + y).

A first observation on the connection between the Hamming

distance and pair distance was proved in [1].

Proposition 2. For x, y ∈ Σn, let 0 < dH(x, y) < n be the

Hamming distance between x and y. Then,

dH(x, y) + 1 � dp(x, y) � 2dH(x, y).

For a code C, we denote its minimum Hamming distance

by dH(C). The symbol-pair code of C is the code

π(C) = {π(c) : c ∈ C}.
Then, similarly, the minimum pair distance of C, dp(C), is the

minimum Hamming distance of π(C), i.e.,

dp(C) = dH(π(C)).
From Proposition 2, the following connection between dH(C)
and dp(C) is established [1]

dH(C) + 1 � dp(C) � 2dH(C).
The goal in constructing codes for the pair-read channel is

to achieve high minimum pair distance with respect to the min-

imum Hamming distance. It was shown in [1] that interleaving

two codes with minimum Hamming distance dH generates a

code with the same minimum Hamming distance dH but with

minimum pair distance is 2dH . Even though this construction

generates codes with the largest possible minimum pair dis-

tance with respect to their minimum Hamming distance, it is

less attractive as, in general, the interleaving method suffers

from a poor Hamming distance relative to its resulting code-

word length.

Yet another interesting family of codes that was analyzed

in [1] are the linear cyclic codes. It was proved that for a lin-

ear cyclic code C with minimum Hamming distance dH , its

minimum pair distance is at least dH + 2. Using the Hartmann-

Tzeng bound, this lower bound was improved to dH + 3, when

the code length is a prime number. Our main goal in the next

section is to show an improved lower bound on the minimum

pair distance of linear cyclic codes.

III. THE PAIR DISTANCE OF CYCLIC CODES

The goal of this section is to show that linear cyclic codes

have high minimum pair distance. In order to do so, we first

give a method to calculate the pair weight of x. In fact, a

similar property was proved in [1] (Theorem 2) but using a

different notation.

The key idea to notice is that if xi = 1 then there are two

non-zero symbols in π(x), the i-th and (i − 1)-st symbol.

However if xi−1 = 1, then the (i − 1)-st symbol is already

non-zero as a result of xi−1 = 1. Hence, if (xi−1, xi) = (0, 1)
we have two non-zero symbols in π(x) as a result of xi and

if (xi−1, xi) = (1, 1) we have only a single non-zero sym-

bol in π(x). Therefore, in order to determine the weight of

π(x), one needs to count the number of (0, 1) sequences in

the vector x, which we now show how to calculate.

For x = (x0, x1, . . . , xn−1), we define

x′ = (x0 + x1, x1 + x2, . . . , xn−1 + x0).
The next lemma shows how to calculate the pair weight of a

vector x.

Lemma 3. For any x ∈ Σn, wp(x) = wH(x) + wH(x′)/2.
Proof: Let

S0 = {i : (xi , xi+1) �= 0 and xi = 1},
S1 = {i : (xi , xi+1) �= 0 and xi = 0, xi+1 = 1}.
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Hence, |S0| = wH(x), S0 ∩ S1 = ∅, and wp(x)=|S0|+ |S1|.
For all 0 � i � n− 1, i ∈ S1 if and only if xi+1 = 1 and

xi = 0. Thus, xi + xi+1 = 1 or x′i = 1, where xi = 0. Hence,

we get

|S1| = |{i : xi+1 = 1 and xi = 0}| .
Note that for any x ∈ Σn,

|{i : xi+1 = 1 and xi = 0}| = |{i : xi+1 = 0 and xi = 1}| ,
and the sum of the cardinality of the two sets is wH(x′).
Hence, |S1| = wH(x′)

2 and

wp(x) = |S0|+ |S1| = wH(x) +
wH(x′)

2
.

Using the property we proved in Lemma 3, we are now

ready to show an improved lower bound on the minimum pair

distance of linear cyclic codes.

Theorem 4. Let C be a linear and cyclic code of dimension

greater than one. Then,

dp(C) � dH(C) +
⌈

dH(C)
2

⌉
.

Proof: Let x = (x0, . . . , xn−1) be a codeword in C. As-

sume that x is not the all-ones vector. Since the code is cyclic

then (x1, . . . , xn−1, x0) ∈ C and thus x′ ∈ C. The weight of

x′ is even and hence wH(x′) � 2 �dH(C)/2�. Furthermore,

wH(x) � dH(C). Together, these facts imply that

wp(x) = wH(x) + wH(x′)/2 � dH(C) +
⌈

dH(C)
2

⌉
.

We conclude by noting that if x = 1, the all-ones vector,

then the inequality above is easily verified. This completes

the proof.

Theorem 4 shows that linear cyclic codes are attractive for

symbol-pair read channels as their minimum pair distance is

large, allowing the correction of a large number of symbol-pair

errors. An interesting problem which thus arises is to construct

efficient decoders for these codes.

IV. DECODING

After finding codes with large minimum pair distance we

now show an efficient decoder for such codes. Given a linear

cyclic code C, with minimum distance dH(C) = 2t + 1, we

assume it has a decoder DC that can correct up to t errors.

We will show how to use this decoder in order to construct a

decoder for the code π(C) which corrects up to t0 = � 3t+1
2 �

symbol-pair errors.

We define the decoder DC as a map DC : Σn → C ∪ {F}
and the notation DC(y) = ĉ indicates that the decoder’s input

is a received word y and its output is a decoded codeword ĉ or

the decoder failure symbol F. If c ∈ C is the transmitted word

and dH(c, y) � t, then it is guaranteed that ĉ = c. However,

if dH(c, y) > t, then either ĉ = F, indicating that more than

t errors have occurred, or ĉ is a codeword different from c ,

whose Hamming distance from the received word y is at most

t, i.e., dH(ĉ, y) � t.
Let us introduce another code that will serve us in this

decoder construction. The double-repetition code of C is the

code C2 = {(c, c) : c ∈ C}.
Note that its length is 2n and its minimum Hamming distance

satisfies dH(C2) = 2dH(C). The code C2 can correct up to 2t
errors and we assume that it has a decoder DC2 : Σn × Σn →

Σn ∪ {F} having the same properties as the decoder DC . Ev-

ery codeword in C2 consists of two identical codewords from

C and thus, for simplicity of notation, we assume that the de-

coder DC2 returns only one copy of the decoded codeword

from C. We will address at the end of the section the problem

of constructing the decoder DC2 .

Let c ∈ C and let π(c) ∈ π(C) be its symbol-pair vector.

Let y = π(c) + e be a received word, where e ∈ (Σ× Σ)n

is the error vector and wH(e) � � 3t+1
2 � = t0. We will show

a decoder Dπ : (Σ× Σ)n → {0, 1}n which receives the word

y and returns ĉ.

We denote the received vector by

y =
(
(y0,0, y0,1), (y1,0, y1,1), . . . , (yn−1,0, yn−1,1)

)
and define the following three vectors

yL = (y0,0, . . . , yn−1,0),
yR = (y0,1, . . . , yn−1,1),
yS = (y0,0 + y0,1, . . . , yn−1,0 + yn−1,1).

Since the vector y suffers at most t0 pair-symbol errors,

the vectors yL and yR each have at most t0 errors as well.

Note that the vector yS has at most t0 errors with respect to

the codeword c′ = (c0 + c1, . . . , cn−1 + c0). In general, the

knowledge of the codeword c′ does not uniquely determine

the value of c. However, in this scenario it does. This ob-

servation, which we will use of in the decoder algorithm, is

proved in the following lemma.

Lemma 5. If the codeword c′ ∈ C is successfully decoded then

we can recover the codeword c.

Proof: The codeword c satisfies ci = c0 +∑i−1
j=0 c′j. Hence

if we define c̃ = [c̃0, . . . , c̃n−1] by c̃i = ∑i−1
j=0 c′j then the code-

word c is either c̃ or c̃ + 1, depending on the value of c0. The

distance between yL and c is at most t0 and dH(c̃, c̃+ 1) = n.

Hence, if dH(yL, c̃) < dH(yL, c̃ + 1) then c = c̃ and other-

wise c = c̃ + 1. In any case, we can recover the codeword c.

According to Lemma 5, it is possible to recover the code-

word c from the codeword c′. By abuse of notation, we denote

by c′∗ an operator that calculates, as explained in Lemma 5,

the codeword c from c′, and so c′∗ = c.

The number of symbol-pair errors in the vector y is at most

t0. Each symbol-pair error corresponds to one or two bit error

in the symbol-pair. We let E1 be the number of single-bit pair-

symbol errors and E2 be the number of double-bit pair-symbol

errors, where E1 + E2 � t0. Thus, the number of errors in yS
is E1 and the number of errors in (yL, yR) is E1 + 2E2. An-

other property which we will use in the decoder construction

is proved in the next lemma.

Lemma 6. If c ∈ C, y = π(c) + e, and wH(e) � t0, then

either DC(yS) = c′ or DC2((yL, yR)) = c.

Proof: If E1 � t then the decoder DC(yS) is successful.

Otherwise, E1 � t + 1 and E2 � t0 − (t + 1), so the number

of errors in (yL, yR) satisfies

E1 + 2E2 � t0 + t0 − (t + 1) = 2
⌊

3t + 1
2

⌋
− (t + 1) � 2t,

and therefore the decoder DC2((yL, yR)) is successful.
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According to the last lemma we know that at least one

of the two decoders succeeds. However, we cannot determine

easily which one of them does and the main task of the de-

coder construction for π(C) is to find the successful decoder.

The decoder’s output Dπ (y) = ĉ is calculated as follows:

Step 1. c1 = DC(yS), e1 = dH(c1, yS).
Step 2. c2 = DC2

(
(yL, yR)

)
, e2 = dH((c2, c2), (yL, yR)).

Step 3. If c1 = F or wH(c1) is odd then ĉ = c2.

Step 4. If e1 � � t+2
2 �, then ĉ = c∗1 .

Step 5. If e1 > � t+2
2 �, let e1= � t+2

2 �+ a, (1 � a � � t
2 �− 1)

a) If e2 � t0 + a then ĉ = c2,

b) Otherwise, ĉ = c∗1 .

The correctness of the decoder is proved in the next theorem.

Theorem 7. The decoder output satisfies Dπ (y) = ĉ = c.

Proof: According to Lemma 6, at least one of the two de-

coders in Steps 1 and 2 succeeds. Steps 3–5 help to determine

which of the two decoders succeeds.

Step 3: Since yS is a noisy version of the codeword c′, in

the decoding operation on the first step we try to decode the

codeword c′. Remember that the weight of c′ is even. Hence,

if c1 = F or the Hamming weight of c1 is odd, then this de-

coding operation fails and thus the decoder in Step 2 succeeds.

If we reach Steps 4 and 5 then wH(c1) is even.

Step 4: Here we show that if e1 � � t+2
2 �, then E1 � � t+2

2 �
as well and the decoder in step 1 succeeds. Assume to the con-

trary that there is a miscorrection in Step 1. Then the word yS
is miscorrected to some codeword of even weight. The weight

of the error vector found in Step 1, e1, is at most � t+2
2 �. Since

the minimum distance of the code C is 2t + 1, the number E1
of actual errors in yS satisfies

E1 � 2t + 2−
⌊

t + 2
2

⌋
=

⌈
3t
2

⌉
+ 1 > t0,

which is a contradiction as the number of errors in yS is at

most t0. Therefore, in this case the decoding operation c1 =
DC(yS) = c′ succeeds, and according to Lemma 5, we get

ĉ = c∗1 = c′∗ = c.
Step 5: We are left with the case where e1 > � t+2

2 �. Since

e1 � t, let e1 = � t+2
2 �+ a, where 1 � a � � t

2 � − 1.

Assume the decoding in Step 2 fails. According to

Lemma 6, the decoding operation c1 = DC(yS) succeeds,

E1 = e1 =

⌊
t + 2

2

⌋
+ a.

The value of E2 satisfies

E2 � t0−
(⌊

t + 2
2

⌋
+ a

)
=

⌊
3t + 1

2

⌋
−
⌊

t + 2
2

⌋
− a � t− a.

The total number of errors in (yL, yR) is

E1 + 2E2 � t0 + t− a =

⌊
5t + 1

2

⌋
− a.

Since the decoder DC2((yL, yR)) fails and the minimum dis-

tance of C2 is 4t+ 2, we get that the weight of the error vector

in Step 2, e2, would have to satisfy

e2 � 4t + 2− (E1 + 2E2) � 4t + 2−
(⌊

5t + 1
2

⌋
− a

)

�
⌊

3t + 1
2

⌋
+ a + 1 = t0 + a + 1.

Hence, we conclude that if e2 � t0 + a then necessarily the

decoder in Step 2 succeeds.

Assume the decoding in Step 1 fails. As in Step 4, since

DC(yS) fails, the number of errors E1 in yS is at least

E1 � 2t+ 2−
(⌊

t + 2
2

⌋
+a

)
=

⌈
3t
2

⌉
−(a− 1) = t0−(a−1).

Since E1 + E2 � t0, the value of E2 satisfies 0 � E2 � a− 1,

and E1 + 2E2, the total number of errors in (yL, yR), satisfies

t0 − (a− 1) � E1 + 2E2 = (E1 + E2) + E2 � t0 + a− 1.
Thus, the decoding operation DC2((yL, yR)) succeeds, and

t0 − (a− 1) � e2 � t0 + a− 1.
Hence, if e2 > t0 + a then the decoder in Step 1 succeeds.

That explains a) and b) of Step 5.

To complete this section, let us go back to the construction

of the decoder DC2 . This decoder receives two vectors y1 =
(y1,0, . . . , y1,n−1), y2 = (y2,0, . . . , y2,n−1). Each is a noisy

version of some codeword c ∈ C, and the goal is to correct

a total of 2t errors in the two vectors. We define the vector

ŷ = (ŷ0, . . . , ŷn−1) such that for all 0 � i � i− 1, ŷi = y1,i
if y1,i = y2,i, and otherwise ŷi =? to indicate an erasure. If

the number of errors in ŷ is τ and the number of erasures is

ρ, then we have 2τ +ρ � 2t = d(C)− 1, which is within the

error and erasure correcting capability of C. We are left only

with the problem of defining a decoder that corrects errors and

erasures for cyclic codes. For that, we refer to [9], [10].
we extend some of our results on the symbol-pair read chan-

nel to the case where more than two symbols are sensed on

each read

V. EXTENSIONS FOR ARBITRARY b
In this section, we extend some of our results on the symbol-

pair read channel to the case where more than two symbols

are sensed on each read. For b � 3, the b-symbol read vector
of x = (x0, x1, . . . , xn−1) ∈ Σn is defined to be

πb(x) = [(x0, . . . , xb−1), . . . , (xn−1, x0, . . . , xb−2)] ∈
(
Σb)n.

The b-distance between x and y is denoted by db(x, y) and

is defined to be db(x, y) = dH(πb(x), πb(y)). In analogy to

Proposition 2, it is possible to show that

dH(x, y) + b− 1 � db(x, y) � b · dH(x, y),
and db(x, y) = wb(x + y).

Our main goal here is to generalize Lemma 3 for arbitrary

b � 3. For a vector x, let us define the vector x̂ by inverting

every sequence of less than b− 1 zeros in x. More formally, if

(xi , xi+1, . . . , xi+k, xi+k+1) = (1, 0, . . . , 0, 1) for some 0 �
i � n− 1 and k � b− 2, then x̂ j = 1 for i + 1 � j � i + k.

For all other values of j, x̂ j = xj.

Lemma 8. For any x ∈ Σn and positive integer b � 3

wb(x) = wH(x̂) + (b− 1) · wH(x̂′)
2

.
Proof: Let us first show that wb(x) = wb(x̂). Consider

a sequence of k � b− 2 consecutive zeros,
(xi , xi+1, . . . , xi+k, xi+k+1) = (1, 0, . . . , 0, 1).

The zero bits xi+1, . . . , xk appear in the j-th symbol of πb(x)
for i − b + 2 � j � i + k. Since xi = xi+k+1 = 1, in this

range of values of j, πb(x) j �= 0 and πb(x̂) j �= 0. For all

other values of j, the corresponding bits of xi and x̂i are the

same and thus πb(x) j �= 0 if and only if πb(x̂) j �= 0.
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Next, we find the value of wb(x̂), making use of the fact
that any run of zeros in x̂ is of length at least b− 1. Let

S0 = {i : (x̂i , . . . , x̂i+b−1) �= 0, x̂i = 1},
S1 = {i : (x̂i , . . . , x̂i+b−1) �= 0, x̂i = 0, x̂i+1 = 1},

...

Sb−2= {i : (x̂i , . . . , x̂i+b−1) �= 0, x̂i=· · ·= x̂i+b−3= 0, x̂i+b−2= 1},
Sb−1= {i : (x̂i , . . . , x̂i+b−1) �= 0, x̂i=· · ·= x̂i+b−2= 0, x̂i+b−1= 1}.

Therefore, wH(x̂) = |S0|; Sj ∩ S� = ∅, for all 0 � j < � �
b− 1; and wb(x̂) = | ∪b−1

i=0 Si| = ∑b−1
i=0 |Si|.

Let us show that for all 2 � � � b − 1, |S1| = |S�|. If

i ∈ S1 then (x̂i , x̂i+1) = (0, 1). Since there is no sequence of

less than b− 2 consecutive zeros

(x̂i−(b−2), . . . , x̂i , x̂i+1) = (0, . . . , 0, 1)
and thus i− (�− 1) ∈ S�. Hence, |S�| � |S1|. For the oppo-

site inequality, note that if i ∈ S�, then

(x̂i , x̂i+1, . . . , x̂i+�−1, x̂i+�) = (0, . . . , 0, 1).
Therefore (x̂i+�−1, x̂i+�) = (0, 1), so i + �− 1 ∈ S1 and we

get |S1| � |S�|. Hence, |S1| = |S�| for all 2 � � � b− 1. As

in the proof of Lemma 3, |S1| = wH(x̂′)
2 , and finally we get

wb(x̂) =
b−1

∑
�=0
|Si| = wH(x̂) + (b− 1) · wH(x̂′)

2
.

We would next like to construct codes with large b-distance.

As in the case of symbol-pair codes, we define the b-symbol
read code of C as the code πb(C) = {πb(c) : c ∈ C}, and

the minimum b-distance of C, db(C), as db(C) = dH(πb(C)).
The interleaving scheme given in [1] constructs codes C

that satisfy dp(C) = 2dH(C). This construction can be ex-

tended for arbitrary b. It can be shown that the interleaving of

b codes, all with minimum distance dH , generates a code C
with minimum Hamming distance dH(C) = dH and minimum

b-distance db(C) = b · dH(C).
A decoder for the interleaving construction works very sim-

ilarly to the one given for the interleaving scheme for pair-

symbols in [1]. The majority decoder is a decoder which out-

puts for every bit its majority value among its b received val-

ues, or ? in case of equality between the number of zeros and

ones. Then, it is possible to decode every interleaved code-

word independently.

The following two lemmas show properties of some special

codes. In the first lemma, the code is Σn, so its minimum dis-

tance is one. The second lemma analyzes the Hamming code.

Lemma 9. If C = Σn, then for b � 3 the minimum b-distance

satisfies db(C) = b and it is possible to correct � b−1
2 � symbol

errors by the majority decoder.

Proof: Assume x is a non-zero word which is not the

all-ones vector. Then, we have x̂ �= 0 and thus wH(x̂) � 1
and wH(x̂′) � 2. According to Lemma 8, we get wb(x) �
1 + (b− 1) · 2

2 = b. In case x = 1, then wb(x) = n and the

inequality above holds as well.

If there are � b−1
2 � symbol errors, then every bit of the vec-

tor x is in error in πb(x) at most � b−1
2 � times. Thus, the

majority decoder succeeds.

Lemma 10. If C is the cyclic Hamming code of length n =
2m − 1 then db(C) = 2b + 1, where b + 2 � m.

Proof: Let x ∈ C be a non-zero codeword and assume

that x̂ �= 1. Hence, wH(x̂) � 3. If wH(x̂′) � 4, then accord-

ing to Lemma 8, we get wb(x) � 3 + (b− 1) · 4
2 = 2b + 1.

Now assume that wH(x̂′) = 2, so x̂ has a single continuous

run of ones, and assume it has length �. We notice that � � m.

Otherwise, the non-zero entries of the codeword x are confined

to at most m− 1 locations. If g(x) is a generator polynomial

of degree m for the cyclic Hamming code, then there exists a

non-zero polynomial of degree at most m− 1 which is a mul-

tiple of g(x). Thus, we get a contradiction. Therefore, in this

case, we get wb(x̂) � m+ (b− 1) · 2
2 = m+ b− 1 � 2b+ 1.

To conclude this part of the proof, note that if x̂ = 1, then

wb(x̂) = n � 2b + 1.
To show that the minimum distance is 2b + 1, we see that

if we take a codeword of weight three with two consecutive

ones, then its b-weight is exactly 2b + 1.

VI. CONCLUSION

In this paper, we studied the symbol-pair read channel. Af-

ter reviewing the channel model and basic properties, we then

showed that linear cyclic codes are very effective in correcting

symbol-pair errors. The main part of the paper was devoted to

the construction of an effective decoding algorithm for such

codes. Finally, we extended the model and some of the results

to the b-symbol read channel, where b > 2.
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