
5102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

Time–Space Constrained Codes for
Phase-Change Memories

Minghai Qin, Student Member, IEEE, Eitan Yaakobi, Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—Phase-change memory (PCM) is a promising non-
volatile solid-state memory technology. A PCM cell stores data
by using its amorphous and crystalline states. The cell changes
between these two states using high temperature. However, since
the cells are sensitive to high temperature, it is important, when
programming cells (i.e., changing cell levels), to balance the heat
both in time and in space. In this paper, we study the time–space
constraint for PCM, which was originally proposed by Jiang and
coworkers. A code is called an -constrained code if for
any consecutive rewrites and for any segment of contiguous
cells, the total rewrite cost of the cells over those rewrites
is at most . Here, the cells are binary and the rewrite cost is
defined to be the Hamming distance between the current and
next memory states. First, we show a general upper bound on
the achievable rate of these codes which extends the results of
Jiang and coworkers. Then, we generalize their construction for

-constrained codes and show another
construction for -constrained codes. Finally,
we show that these two constructions can be used to construct
codes for all values of , , and .

Index Terms—Constrained codes, phase-change memory, write-
once memory codes.

I. INTRODUCTION

P HASE-CHANGE memory (PCM) devices are a
promising technology for nonvolatile memories. Like a

flash memory, a PCM consists of cells that can be in distinct
physical states. In the simplest case, the PCM cell has two
possible states: an amorphous state and a crystalline state. Mul-

Manuscript received July 18, 2012; revised February 08, 2013; accepted Feb-
ruary 22, 2013. Date of publication April 12, 2013; date of current version July
10, 2013. This work was done while E. Yaakobi was with the Department of
Electrical and Computer Engineering, University of California, San Diego. This
work was supported in part by the International Sephardic Education Foun-
dation, the Lester Deutsch Fellowship, the University of California Lab Fees
Research Program under Award 09-LR-06-118620-SIEP, the National Science
Foundation under Grant CCF-1116739, and the Center for Magnetic Recording
Research at the University of California, San Diego. This paper was presented
in part at the 2011 IEEE Global Telecommunications Conference.
M. Qin and P. H. Siegel are with the Department of Electrical and Com-

puter Engineering and the Center for Magnetic Recording Research, University
of California, San Diego, La Jolla, CA 92093 USA (e-mail: mqin@ucsd.edu;
psiegel@ucsd.edu).
E. Yaakobi is with the Department of Electrical Engineering, California In-

stitute of Technology, Pasadena, CA 91125 USA, and also with the Center for
Magnetic Recording Research, University of California, San Diego, La Jolla,
CA 92093 USA (e-mail: yaakobi@caltech.edu).
Communicated by N. Kashyap, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2013.2257916

tiple-bit per cell PCMs can be implemented by using partially
crystalline states [4].
Whereas in a flash memory one can decrease a cell level only

by erasing the entire block of about cells that contains it,
in a PCM one can independently decrease an individual cell
level—but only to level zero. This operation is called a RESET
operation. A SET operation can then be used to change the cell
state to any valid level. Therefore, in order to decrease a cell
level from one nonzero value to a smaller nonzero value, one
needs to first RESET the cell to level zero, and then SET it to the
new desired level [4]. Thus, as with flashmemory programming,
there is a significant asymmetry between the two operations of
increasing and decreasing a cell level.
As in a flash memory, a PCM cell has a limited lifetime; the

cells can tolerate only about RESET operations be-
fore beginning to degrade [12]. Therefore, it is still important
when programming cells to minimize the number of RESET op-
erations. Furthermore, a RESET operation can negatively affect
the performance of a PCM in other ways. One of them is due to
the phenomenon of thermal crosstalk. When a cell is RESET,
the levels of its adjacent cells may inadvertently be increased
due to heat diffusion associated with the operation [4], [23].
Another problem, called thermal accumulation, arises when a
small area is subjected to a large number of program operations
over a short period of time [4], [23]. The resulting accumula-
tion of heat can significantly limit the minimum write latency
of a PCM, since the programming accuracy is sensitive to tem-
perature. It is therefore desirable to balance the thermal accumu-
lation over a local area of PCM cells in a fixed period of time.
Coding schemes can help overcome the performance degrada-
tion resulting from these physical phenomena. Lastras-Montaño
et al. [19] studied the capacity of a write-efficient memory [1]
for a cost function that is associated with the write model of
PCMs described earlier.
Jiang et al. [17] have proposed codes to mitigate thermal

crosstalk and heat accumulation effects in PCM. Under their
thermal crosstalk model, when a cell is RESET, the levels of
its immediately adjacent cells may also be increased. Hence,
if these neighboring cells exceed their target level, they also
will have to be RESET, and this effect can then propagate to
many more cells. In [17], they considered a special case of this
and proposed the use of constrained codes to limit the propa-
gation effect. Capacity calculations for these codes were also
presented.
The other problem addressed in [17] is that of heat accu-

mulation. In this model, the rewrite cost is defined to be the
number of programmed cells, i.e., the Hamming distance be-
tween the current and next cell-state vectors. A code is said to be

0018-9448/$31.00 © 2013 IEEE

QIN et al.: TIME–SPACE CONSTRAINED CODES FOR PHASE-CHANGE MEMORIES 5103

-constrained if for any consecutive rewrites and for
any segment of contiguous cells, the total rewrite cost of the
cells over those rewrites is at most . A specific code con-

struction was given for the -constraint
as well as an upper bound on the achievable rate of codes for
this constraint. An upper bound on the achievable rate was also
given for -constrained codes.
The work in [17] dealt with only a few instances of the pa-

rameters , , and . In this paper, we extend the code construc-
tions and achievable-rate bounds to a larger portion of the pa-
rameter space. In Section II, we formally define the constrained-
coding problem for PCM. In Section III, using connections to
2-D constrained coding, we present a scheme to calculate an
upper bound on the achievable rate for all values of , , and
. If the value of or is 1, then the 2-D constraint becomes a
1-D constraint and we calculate the upper bound on the achiev-
able rate for all values of . This result coincides with the result
in [17] for and .
We also derive upper bounds for some cases with parameters
satisfying using known results on the
upper bound of 2-D constrained codes. In Section IV, several
code constructions are given. First, we describe an elementary
construction for arbitrary values of , , and .We then show an
improved construction for -constrained
codes and extend the construction in [17] of
-constrained codes to arbitrary . Finally, we show how to ex-

tend the improved constructions to arbitrary values of , , and
.

II. PRELIMINARIES

In this section, we give a formal definition of the con-
strained-coding problem. The number of cells is denoted by
and the memory cells are binary. The cell-state vectors

are the binary vectors from . If a cell-state vector
is rewritten to another cell-state

vector , then the rewrite cost is
defined to be the Hamming distance between and , that is,

The Hamming weight of a vector is . The
complement of a vector is . For a vector

, we denote by the subvector
and for a sequence of vectors , , we
denote by the subvector , for

. The set is denoted by
for , and in particular, is denoted by

for an integer and real .
We will specify a code by an explicit construction of its en-

coding and decoding maps. On the th write, for , the
encoder

maps the new information symbol and the current cell-state
vector to the next cell-state vector. The decoder

maps the cell-state vector to the represented information
symbol. We denote the individual rate on the th write of a code
by . Note that the alphabet size of the messages on each write
does not have to be the same. The rate of a code is defined as

(1)

Remark 1: The limit exists: since the individual rates ,
, are bounded from above by 1, so are the average rates

, for all .
Definition 1: Let , , be positive integers. A code
satisfies the time–space constraint (or simply

-constraint) if for any consecutive rewrites and for
any segment of contiguous positions, the total rewrite cost of
those positions over those rewrites is at most . That is, if

, for , is the cell-state vector on the
th write, then for all and

or equivalently

We call such a code an -constrained code.

We assume that the number of writes is large and in the con-
structions we present there will be a periodic sequence of writes.
Thus, it will be possible to change any -constrained
code with varying individual rates to an -constrained
code with fixed individual rates such that the rates of the
two constrained codes are the same. This can be achieved by
using multiple copies of the code and in each copy of to
start writing from a different write within the period of writes.
Therefore, we assume that there is no distinction between the
two cases and the rate is as defined in (1), which is the average
number of bits written per cell per write.
The encoding and decoding maps can be either the same on

all writes or can vary among the writes. In the latter case, we
will need more cells in order to record the index of the write
number. However, arguing as in [28] and [29], it is possible to
show that these extra cells do not reduce the asymptotic rate and
therefore we assume here that the encoder and decoder know the
write number.
A rate is called an -achievable rate if there exists

a sequence of -constrained codes of increasing length
such that the rate of each code is . The -capacity of

the -constraint is denoted by and is defined
to be

where is an -achievable rate.
Our goal in this paper is to give lower and upper bounds on

the -capacity, , for all values of , , and
. Clearly, if , then . So we assume
throughout the paper that . Lower bounds will be in-
ferred from specific constrained code constructions, while the

5104 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

upper bounds will be derived analytically using tools drawn
from the theory of 1-D and 2-D constrained codes.

III. UPPER BOUND ON THE CAPACITY

In this section, we will present upper bounds on the
-capacity obtained using techniques from the anal-

ysis of 2-D constrained codes. There are a number of 2-D
constraints that have been extensively studied, e.g., 2-D

-runlength-limited (RLL) constraints [18], [25], the no
isolated bits (n.i.b) constraint [11], [13], and the family of
checkerboard constraints [22], [27]. Given a 2-D constraint ,
its capacity is defined to be

where is the number of arrays that satisfy the
constraint . The constraint of interest for us in this study is the
one where in each rectangle of size , the number of ones
is at most .
Definition 2: Let , , be positive integers. An

-array is
called an -array if in each subarray of of size ,
the number of 1’s is at most . That is, for all ,

The capacity of the constraint is denoted by .
Note that when , the -constraint coincides with

the square checkerboard constraint of order [27].
The connection between the capacity of the 2-D constraint

and the -capacity is the following.
Theorem 1: For all , , , .
Proof: Let be an -constrained code of length .

For any sequence of writes, let us denote by , for , the
cell-state vector on the th write, where is the all-zero vector.
The -array is defined to be

where the addition is a modulo-2 sum. That is, if and
only if the th cell is changed on the th write. Since is an

-constrained code, for all and

and therefore

Thus, is an -array of size .
Every write sequence of the code corresponds to an

-array, and thus, the number of write sequences of
length is at most the number of -arrays, which
is upper bounded by , for , large enough.
Hence, the number of distinct write sequences is at most

. However, if the individual rate on the th write
is , then the total number of distinct write sequences is

. We conclude that

and therefore

If goes to infinity, the rate of any -constrained code
satisfies

i.e., .
Theorem 1 provides a scheme to calculate an upper bound on

the -capacity from an upper bound on the capacity of
a 2-D constraint. Unfortunately, good upper bounds are known
only for some special cases of the values of , , , and in par-
ticular, when . More generally, finding the capacity of
2-D constrained systems, such as those mentioned previously,
is a difficult open problem that has attracted considerable atten-
tion over the past 20 years. However, accurate lower and upper
bounds on the capacity have been determined for some con-
straints, as discussed in [22], [26], and [27]. For instance, upper
bounds for some square checkerboard constraints are given in
[27], from which we can conclude that
and .
In the rest of this section, we discuss the cases where or
. In these cases, the 2-D -constraint of

Definition 2 reduces to a 1-D constraint on each row or column,
respectively. We consider first the case where , where the
corresponding 1-D constraint is described as follows.
Definition 3: Let , be two positive integers. A binary

vector satisfies the -window-weight-limited (WWL)
constraint if for any consecutive positions there are at most
’s. We denote the capacity of the constraint by .
According to Theorem 1, is an upper bound on

, the capacity of the time–space constraint.
Therefore, we are interested in determining the capacity of the
general -WWL constraint. Before addressing this ques-
tion, we consider some special cases.
We recall the definition of the -runlength-limited (RLL)

constraint, which requires that the number of 0’s between adja-
cent 1’s is at least and at most , and we denote the corre-
sponding capacity by (see, for example, [16] and
[30]). It is easy to see that the -WWL constraint is simply
the -RLL constraint. Therefore, is
an upper bound on , a result that was already shown
by Jiang et al. [17].
One can also see that the -WWL constraint is the

maximum-transition-run constraint, which limits
the maximum length of a run of 1’s to no more than
[21]. Interchanging the symbols 0 and 1 establishes a one-to-one
correspondence between the constraint and the

-RLL constraint. Thus, by Theorem 1,
is an upper bound on .
The capacity of -RLL constraints is well known and can

be elegantly described as the logarithm of the largest real root

QIN et al.: TIME–SPACE CONSTRAINED CODES FOR PHASE-CHANGE MEMORIES 5105

of a polynomial that depends explicitly on the parameters and
. (We again refer the reader to [16] and [30].) However, we
have not yet found a comparable formulation of the capacity of
the general -WWL constraint. Therefore, to compute these
capacities, we use the general approach that is described in [20].
Definition 4: A merge of two vectors and of the same

length is a function

If the last bits of are the same as the first bits of
, the vector is the vector concatenated with the last
bit of ; otherwise, .
Definition 5: Let , be two positive integers. Let denote

the set of all vectors of length having at most ’s. That
is, . The size of the set

is . Let be an ordering of
the vectors in . The transition matrix for the -WWL
constraint, , is defined as follows:

if and
otherwise

Example 1: The following illustrates the construction of the
transition matrix associated with the (3, 2)-WWL con-
straint. Note that

The merge of and for , , 2, 3, 4 determines the
matrix . For example, , ;

, ; ,
. This shows that the matrix is not necessarily symmetric.

Finally, , and since (1, 1, 1) does
not satisfy the (3,2)-WWL constraint

Definition 6: A matrix is irreducible if
for all , , there exists some such that

. Note that can be a function of and .
Lemma 1: For positive integers , , the transition matrix
is irreducible.
Proof: From the construction of , it is clear that

is the number of vectors of length starting
with , ending in , and satisfying the -WWL constraint,
where and are as described in Definition 5. Therefore,

is irreducible if for every pair , there exists a vector
of length that starts with and ends in . Such a vector
is obtained by inserting a sufficient number of 0’s between
and . This proves the irreducibility of .
Referring to Theorem 3.9 in [20], we have the following char-

acterization of .
Theorem 2: The capacity of the -WWL constraint is

given by

Fig. 1. Upper bound on .

where is the largest real eigenvalue of .
Proof: See Theorem 3.9 in [20].

Fig. 1 shows , the upper bound on , for
and , 2, 3, 4. As noted previously, the lowest curve

corresponds to the capacity of the -RLL constraint.
Remark 2: The construction of the transition matrix

translates into a graph presentation of the -WWL con-
straint in the form of a labeled, directed graph. The states in
the graph correspond to the vectors in the set , and the di-
rected edges correspond to the nonzero entries in the matrix

. Specifically, if the entry is nonzero, then there is a
directed edge from state to state , with label , the last
bit in . Sequences satisfying the -WWL constraint are
generated by reading off the labels along directed paths in the
graph. The graph produced by this construction can be identi-
fied with a subgraph of the de Bruijn graph on states. Fig. 2
illustrates the graph that generates the (7, 2)-WWL constraint.
Remark 3: According to Theorem 1, the capacity of the
-WWL constraint, , is an upper bound on

the capacity of the time–space constraint, .
Jiang et al. [17] proposed an upper bound on the rate of an

-constrained code with fixed block length and mul-
tiple cell levels. In our numerical experiments, their upper
bound for binary cells appears to converge to our upper bound
as .

IV. LOWER BOUND ON THE CAPACITY

In this section, we give lower bounds on the capacity of the
-constraint based upon specific code constructions. We

first present an elementary construction that achieves rate .
We then show how to improve the bound for the -and

-constraints. In this section, we assume that for all pos-
itive integers and , the value of belongs to the
group via the correspondence

.
The idea of Construction 1 is to partition the set of cells

into subblocks of size . Suppose , where
and . The encoding process has a period

of writes. On the first writes, all cells in each subblock
are programmed with no constraint imposed. On the th write,

5106 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

Fig. 2. Labeled graph that generates the (7, 2)-WWL constraint.

the first cells in each subblock are programmed with no con-
straint and the rest of the cells are not programmed (staying at
level 0). From the st write to the th write, no cells are
programmed. The details of the construction are as follows.
Construction 1: Let , , be positive integers.We construct

an -constrained code of length as follows. To sim-

plify the construction, we assume that . Let ,

, where . For all , on the th write, the
encoder uses the following rules.
1) If , bits are written to the cells.
2) If , are written in all cells
such that .

3) If , no information is written to the cells.
The decoder is implemented in a very similar way.
Example 2: Fig. 3 shows a typical writing sequence of an

-constrained code of length 15 based on
Construction 1. The th row corresponds to the cell-state vector
before the th write. The cells in the box in the th row are the
only cells that can be programmed on the th write. It can be
seen that the rate of the code is the ratio between the number of
boxed cells and the total number of cells, which is .
Theorem 3: The code constructed in Construction 1 is an

-constrained code and its rate is .
Proof: We show that for all and ,

the rewrite cost of the cells over the writes
, is at most . For all such that

, all of the cells can be written and
since there are such values, the rewrite cost on these writes
is at most . For , such that , at

Fig. 3. Sequence of writes of a (3, 3, 2)-constrained code.

most out of these cells are programmed, and therefore, the
rewrite cost is at most . For all other values of , no other cells
are programmed. Therefore, the total rewrite cost is at most

The total number of bits written on these writes is ,
and hence, the rate of the code is

A. Space Constraint Improvement

In this section, we improve upon the lower bound on
obtained from the elementary construction. Let

be the set of all -WWL vectors of length . We
refer to a subset of as a -WWL code of

QIN et al.: TIME–SPACE CONSTRAINED CODES FOR PHASE-CHANGE MEMORIES 5107

length . If the size of the code is , then it is specified
by an encoding map and a
decoding map , such that for
all , .
The problem of finding -WWL codes that approach or

achieve the capacity is of independent interest and
we address it next. Cover [7] provided an enumerative scheme
that can be used to calculate the lexicographic order of any se-
quence in the constrained system. For the special case of ,
corresponding to RLL block codes, Datta and McLaughlin [8],
[9] proposed enumerative methods for binary -RLL codes
based on permutation codes. For -WWL codes, we find
enumerative encoding and decoding strategies with linear com-
plexity enumerating all -WWL vectors. We present the
coding schemes and the complexity analysis in Appendix A. In
the sequel, we will simply assume that there exist such codes
with rate arbitrarily close to the capacity as the block length goes
to infinity for all positive integers and . The next construc-
tion uses -WWL codes to construct -constrained
codes.
Construction 2: Let , be positive integers such that .

Let be a -WWL code of length and size .
Let and be its encoding and decoding maps. A

-constrained code of length
and its encoding map and decoding map are constructed as
follows.
1) The encoding map
is defined for all to be

, where
a)
b)
c) .

2) The decoding map is defined
for all to be

Example 3: Here is an example of an
code with for the first 4 writes. The message set has size

(see the definition of in Definition 7 in Appendix
A). The length of the memory is . Suppose on
the second write, the message is . Since lexicographically
the seventh element in is (0110), the encoder will copy
the previous left block (1011) to the right block and flip the
second and the third bits in the left block

Theorem 4: The code is a -constrained code.
If the rate of the code is , then the rate of the code

is . Both the encoder and decoder of
have complexity .
Proof: Let be the cell-state vector in Construction 2.

1) For , encoder step a) guarantees that the positions of
rewritten cells satisfy the -WWL constraint. So there

are at most reprogrammed cells in any consecutive cells
in .

2) For , three consecutive writes should be examined.
Let , , be the cell-state vectors before the th, st,

nd writes, . Encoder step a) means that
, where is the message

to encode on the th write. Since encoder step c) guarantees
that and , we have

. This proves that satisfies the
constraint.

3) For , the cell levels are always set to be 0, which
ensures that no violation of the constraint happens between

and .
On each write, one of messages is encoded as a vector of

length . Hence, the rate is

.
The encoder and decoder come directly from and

, which have complexity both in time and in space.
Therefore, and both have linear complexity in time and in
space.
Corollary 1: Let , be two positive integers such that
; then

Corollary 1 provides a lower bound that is achieved by prac-
tical coding schemes. In fact, following similar proofs in [3],
[5], and [6], we can prove the following theorem using proba-
bilistic combinatorial tools [2].
Theorem 5: Let , be positive integers such that .

Then

Proof: See Appendix B.

B. Time Constraint Improvement

Jiang et al. constructed in [17] an -constrained code.
Let us explain their construction as it serves as the basis for
our construction. Their construction uses write-once memory
(WOM) codes [24]. A WOM is a storage device consisting of
cells that can be used to store any of values. In the binary case,
each cell can be irreversibly changed from state 0 to state 1. We
denote by a -write WOM code such
that the number of messages that can be written to the memory
on its th write is , and the sum-rate of the WOM code
is defined to be . The sum-capacity is
defined as the supremum of achievable sum-rates. The code is
specified by pairs of encoding and decoding maps, ,
where . Assuming that the cell-state vector be-
fore the th write is , the encoder is a map

such that for all

5108 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

TABLE I
3-CELL 2-WRITE WOM CODE

where the relation “ ” is defined in Definition 7. The decoder

satisfies

for all .
It has been shown in [14] that the sum-capacity of a -write

WOM is .
Example 4: Table I shows the encoding and decoding maps

of a 2-writeWOM code using three cells, where on each write, 2
bits are written [24]. Suppose all cells are initialized as 0. If the
written messages are 1 and 3 on the first and the second write,
respectively, then the cell-state vector is changed as

; if on both writes, message 2 is written, then the
cell-state vector is changed as .

The constructed -constrained code has a period of
writes. On the first writes of each period, the encoder

simply writes the information using the encoding maps of the
-write WOM code. Then, on the st write, no informa-
tion is written but all the cells are increased to level one. In the
following writes, no information is written and the cells
do not change their levels; that completes half of the period. On
the next writes, the same WOM code is again used; however,
since now all the cells are in level one, the complement of the
cell-state vector is written to the memory on each write. On the
next write, no information is written and the cells are reduced
to level zero. In the last writes, no information is written
and the cells do not change their values. We present this con-
struction now in detail.
Construction 3: Let be a positive integer and let be an

-write WOM code. Let be
the th encoder of , for , . An

-constrained code is constructed as follows. For
all , let , where .
The cell-state vector after the th write is denoted by . On the
th write, the encoder uses the following rules.
1) If , write such that

2) If , no information is written and the cell-state
vector is changed to the all-one vector , i.e., .

3) If , no information is written and the
cell-state vector is not changed.

4) If , write
such that

5) If , no information is written and the
cell-state vector is changed to the all-zero vector , i.e.,

.
6) If , no information is written
and the cell-state vector is not changed.

Remark 4: This construction is presented differently in [17].
This results from the constraint of having the same rate on each
write which we can bypass in this work. Consequently, in our
case, we can have varying rates, and thus, the code can
achieve a higher rate.
Theorem 6: The code is an -constrained code.

If the -write WOM code is sum-rate optimal, then the rate
of is .

Proof: In every period of writes, every cell is
programmed at most twice: once in the first writes and once
in the first writes of the second part of the write-period.
After every sequence of writes, the cell is not programmed
for writes. Therefore, the rewrite cost of every cell among
consecutive rewrites is at most 1.
If the rate of the WOM code is , then are

written in every period of writes. Hence, the rate of
is . If is sum-rate optimal, the rate of

is therefore .
The next table shows the highest rates of -constrained

codes based on Construction 3 for

Next, we would like to extend Construction 3 in order to con-
struct -constrained codes for all . For simplicity
of the construction, we will assume that is an even integer;
the required modification for odd values of will be immedi-
ately clear. We choose such that and the
period of the code is . On the first writes of each period,
the encoder uses the encoding map of the -write WOM code.
In the following writes, it uses the bitwise complement of a
WOM code as in Construction 3. This procedure is repeated for
times; this completes the first writes in the period. On the

st write, no new information is written and the cell-state
vector is changed to the all-zero vector. During the nd
to th writes, no information is written and the cell-state
vector is not changed. That completes one period of writes.
Remark 5: If is odd, then on the st write, no new

information is written and the cell-state vector is changed to
the all-one vector. It is not changed until the th write to
complete a period. Now the cell-state vector is an all-one vector.
For the next period of writes, the encoder uses the bitwise
complement of the first period and the cell-state vector returns
to all-zero state afterward.
Construction 4: Let , , be positive integers

such that and is even. Let be an
-write WOM code. For ,

let be its encoding map on the th write, where
. An -constrained code is

constructed as follows. For all , let ,

QIN et al.: TIME–SPACE CONSTRAINED CODES FOR PHASE-CHANGE MEMORIES 5109

where , . The
cell-state vector after the th write is denoted by . On the th
write, the encoder uses the following rules.
1) If and , write
such that

2) If and , write
such that

3) If , no information is written and the cell-state
vector is changed to , i.e., .

4) If , no information is written and the
cell-state vector is not changed.

Example 5: Suppose , , and in Construc-
tion 4 and is the WOM code in Example 4. The period of
Construction 4 is . Suppose all cells are initialized as 0
and the messages to write are on the first 4 writes, and
no information is written on the fifth write. Then the cell-state
vector is changed as

.
Theorem 7: The code is an -constrained code.

If the -write WOM code is sum-rate optimal, then the rate
of is .

Proof: This is similar to the proof of Theorem 6, so we
present here only a sketch of the proof. In every period of
writes, each cell is rewritten at most times. In particular, the
first rewrite happens before the st write. After that, the cell
is rewritten at most times until the st write and then
not programmed for writes. Therefore, each cell
is rewritten at most times on
writes. This proves the validity of the code.
If the rate of the WOM code is , then are

written during each period of writes since the WOM code
is used times. Hence, the rate of is . If

is sum-rate optimal, the rate of is .
Remark 6: In Construction 4, we required that

and, in particular, . If , we can simply use

Construction 4 while taking , i.e., the period of
writes is now and we construct a -constrained
code, which is also an -constrained code. The rate of the
code is , where is the rate of the WOM code .
The next corollary provides lower bounds on .
Corollary 2: Let , be positive integer such that .

Then

where

Fig. 4 shows the rates of -constrained codes
obtained by selecting the best for each pair of . Note that
the curve for is obtained by implementing the ideas in [17]

Fig. 4. Lower bound on .

and there is a slight improvement over the rates listed in [17]
for , the reason for which is discussed in Remark
4. In comparison to the codes in Construction 1, whose rates
are shown by the dashed lines, our construction approximately
doubles the rates. Our lower bounds achieve approximately 78%
of the corresponding upper bounds on .

C. Time–Space Constraint Improvement

In this section, we are interested in combining the improve-
ments in time and in space to provide lower bounds on the ca-
pacity of -constraints.
Theorem 8: For all , , positive integers

Proof: An -constrained code can be constructed in
two ways.
1) Let be a -constrained code of rate and length

. We construct a new code with the same number of
cells. New information is written to the memory on all th
writes, where , simply by using the th
write of the code . Then, the code is an -con-
strained code and its rate is . Therefore, we conclude
that .

2) Let be an -constrained code of rate and
length . We construct a new code for cells:

. The code uses the same encoding and
decoding maps of the code , while using only the cells
such that . Then, the code is an

-constrained code and its rate is . Therefore,
we conclude that .

The capacity must be greater than or equal to the maximum
of the two lower bounds.

APPENDIX A

In this section, we show an enumerative encoding and
decoding strategy with linear complexity for the set of

-WWL vectors.
Definition 7: Let be a set of distinct

binary vectors, , . Let denote
the decimal representation of a vector . For ,

, we say (or) if and only if

5110 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

(or). The order of the element in is defined
as

Let be an ordering of the elements in
, where . The encoder and de-

coder of a -WWL code give a one-to-one mapping
between and , namely
where and ,
for all . Now the problem is to calcu-
late given . Let be the ordering
of the vectors in introduced in Definition 5, where

. Let

where is the number of -WWL vectors of length
that have the vector as a prefix, where denotes the trans-
pose of .

Lemma 2: The vectors , , satisfy the first-
order recursion

Proof: See [27].
The encoder and decoder have access to a matrix

, where the th row of is
, . For simplicity, is written

as if no confusion can occur. We denote by the
entry in the th row and th column of and we define

, to be the th row vector, th column vector
of , respectively, i.e.,
and . From Lemma
2, can be calculated efficiently with time complexity

.
1) Decoder: Based on , we present an enumerative

method to calculate the order of each element in . Note
that the order of a vector is the decoded message corresponding
to that vector. In this algorithm, the decoder scans the vector
from left to right. Whenever the decoder finds a 1 in the vector,
the order of the vector will increase. The details of the algorithm
are presented below. Here, is the
binary vector to be decoded; the algorithm calculates

.

Algorithm 1 Decoding: Calculate ,

1: let , , ;

2: while

3: while

4: ;

5: if

6: ;

7: algorithm ends;

8:

9: /*A 1 is detected in .*/

10: let with length ;

11:/* is a vector storing to the left of the detected
1, with a 0 appended.*/

12: if

13: let ;

14: else/* */

15: let ;

16: find such that ;

17: ;

18: ; ;

19:

20: ;

21: algorithm ends.

Example 6: Suppose we would like to decode a
-WWL vector of length 10.

1) A 1 is detected , where and .
The decoder aims to find the number of vectors such
that . Now

, so , and . There-
fore, .

2) A 1 is detected , where and .
The decoder aims to find the number of vectors such
that . Here,

, so , and . There-
fore, .

3) A 1 is detected , where and .
The decoder aims to find the number of vectors such
that . Here,

, so , and .
Therefore, .

4) A 1 is detected , where and .
The decoder aims to find the number of vectors such
that . Here,

, so , and .
Therefore, .

5) Finally, a 1 is detected , where and
. The decoder aims to find the number of vectors

such that . Here,
, so , and .

Therefore, .
We calculate that and is decoded as
353.

Theorem 9: Algorithm 1 calculates the order of a
-WWL vector of length in . Its time com-

plexity and space complexity are both .
Proof: We first show the correctness of the algorithm and

then analyze its time and space complexity.

QIN et al.: TIME–SPACE CONSTRAINED CODES FOR PHASE-CHANGE MEMORIES 5111

Correctness: Let be the vector to decode; that is, we seek
to find . For , we denote by the number
of vectors such that . Let be a sequence
of vectors such that ; then,
it is easy to see

Let be the number of 1’s in ; let all the indices of 1’s be
in ascending order, that is,

and . For ,
is chosen such that , where , and ,

, denotes the vector where all entries are 0 except
for the th entry, which is a 1. Here, addition is componentwise
modulo-2 summation.
Lines 3 and 4 together with Line 18 in Algorithm 1 scan

and find according to . Therefore, we are left to prove
that Algorithm 1 calculates for .
By definition, the first digits of and are the

same, and while . Then, a vector
satisfies if and only if the first digits

of are the same as those of , i.e., . Given the
length and the first digits of , the number of possible can be
calculated based on the matrix in the following way. Since
the -WWL constraint is local, if , the task is
equivalent to calculating the number of with length

such that the first digits are a prefix of , in particular,
; otherwise, for , it is equivalent to

calculating the number of with length such that
the first digits are zeros followed by the length- prefix
of , that is, . Lines 10–15 in Algorithm
1 find the first digits of and Lines 16 and 17 calculate
the number of , which is the number of vectors satisfying

. Therefore, Algorithm 1 calculates
for and sums them up to derive the order of .

Time Complexity Analysis: It can be seen from the
algorithm that the decoder scans the vector that is to be de-
coded only once. Whenever the decoder detects a 1, it uses
binary searches to find the corresponding prefix vector
in , while the number of 1’s is no more than . There-
fore, the time complexity of the decoder is no more that

, where
and are fixed integers and not related to .

Space Complexity Analysis: The space complexity comes
from the matrix with rows and columns.
Therefore, the space complexity is also since and
are both fixed integers.

2) Encoder: The encoder follows a similar approach to
map an integer to a vector ,
such that . We call the encoded vector for the
message . Note that , ,
if and only if , where and
. The following encoding algorithm uses the matrix to

efficiently calculate the vector such that
, for . The algorithm has linear complexity.

Algorithm 2 Encoding: Find such that

let , with length ;

for

let ;

let ;

if satisfies -WWL constraint

let with length ;

/* is a vector storing to the left of in , with a
0 appended.*/

if

let ;

else/* */

let ;

find such that .

let ;

if

let ;

let ;

if

;

return ; algorithm ends;

Example 7: Suppose wewould like to encode one of
-WWL vectors of length . The

message to be encoded is .
1) , , ,

, so . Since ,
, so set .

2) , , ,
, so . Compute

.
3) , , ,

, so . Compute
,

so set .
4) , , ,

, so . Compute
,

so set .
5) , , does not
satisfy the -WWL constraint.

5112 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

6) , , does not
satisfy the -WWL constraint.

7) , , ,
, so . Compute

,
so set .

8) , , does not
satisfy the -WWL constraint.

9) , , ,
, so . Compute

.
10) , , ,

, so . Compute
.

Therefore, and .
Theorem 10: Algorithm 2 encodes a message

to a -WWL vector such that
, and its time complexity and space complexity are

both .
Proof: We first show the correctness of the algorithm and

then analyze its time and space complexity.
Correctness: The proof of the correctness of the encoder is

similar to the proof of the correctness of the decoder. Therefore,
we omit the details.

Time Complexity Analysis: It can be seen from the al-
gorithm that the encoder scans the vector from left to right
once and tries to set each entry to 1. Whenever the encoder
sets an entry to 1, it first determines whether the constraint
is satisfied. This takes steps since we do not have to
check the entire vector but only the bits to the left of the
set entry. Then, it uses binary search to find the corresponding
prefix vector in , while the number of 1’s is no more than
. Therefore, the complexity of the encoder is no more that

, where
and are fixed numbers.

Space Complexity Analysis: The matrix is the primary
contributor to the space complexity. As is shown in the proof of
Theorem 9, the space complexity is also .
Note that Algorithm 2 and Algorithm 1 establish a one-to-one

mapping between and . Therefore, the
rate of the encoder is maximized. If the blocklength goes to in-
finity, the rate of the encoder approaches .

APPENDIX B

In this section, we present the proof of Theorem 5. The reason
for which the proof of Theorem 5 is nontrivial is the following.
Suppose the cell-state vector is updated from to on the
th write. The encoder has full knowledge of and since
we assume there is no noise in the updating procedure. The de-
coder is required to recover with full knowledge of
but zero knowledge of . This is similar to the situation en-
countered in memories with defects, considered in [15], where
the most interesting scenario is when the defect locations are
available to the encoder but not to the decoder. In general, this
scenario can be modeled as a channel with states [10] where the
side information on states is available only to the encoder.

Proof: First, we introduce some definitions. Recall that
is defined as the set all -WWL vectors of length

. will be written as for short if no confusion about
the parameters can occur. Let be the -dimen-
sional binary vector space.

Definition 8: For a vector and a set , we
define and denote it by . We call
vectors in reachable by and we say is centered at
.
For two subsets , , we define

. We call a subset -good if

i.e., is covered by the union of translates of centered at
vectors in .

Lemma 3: If is -good, then is -good, for
all .

Lemma 4: If is -good, then for all , there
exists and , such that .
Lemma 4 guarantees that if is an -good subset, then

from any cell-state vector , there exists a -WWL vector
, such that . We skip the proofs of Lemmas 3 and 4,
referring the reader to similar results and their proofs in [5].

Lemma 5: If are pairwise disjoint -good
subsets of , then there exists a -constrained code of
size . In particular, if is an -good linear code, then
there exists a -constrained code with rate .

Proof: If is -good for all , then from
Lemma 4, for any and , there exist
and , such that . Suppose the current cell-state
vector is ; then, we can encode the message as a
vector , for some . The decoder
uses the mapping , if , to give an estimate of

. This yields a -constrained code of size .
If represent the cosets of an -good

linear code , then each coset is -good according to Lemma
3. The rate of the resulting -constrained code is

.
Now we are ready to prove Theorem 5.
Let be a randomly chosen linear code with code-

words , and let be the
number of vectors not reachable from any vector in . Let

be a randomly chosen vector and let be the proba-
bility that . Then, we have

The proof of the following lemma is based upon ideas dis-
cussed in [3, pp. 201–202].

Lemma 6: There exists a linear code such that

Proof: Let denote an linear
code. If

QIN et al.: TIME–SPACE CONSTRAINED CODES FOR PHASE-CHANGE MEMORIES 5113

then

where .
Let and let be the linear code formed

by . It can be seen that comprises the
vectors in plus new vectors of the form , .
Let

It can be seen that has the same cardinality as . There-
fore, it contains vectors, too, some of which may already
belong to . Since , we have

Thus, is maximized by choosing that minimizes
.

Let us now calculate the average of over all
. Here, all are also considered since they will

result in an overestimate of the average of . Then

where is the indicator function of the event , i.e.,
if is true and otherwise.
Equality holds since, for a fixed , if , then

and vice versa. Equality holds since
. Thus, the average value of is

. Since the minimum of cannot exceed
this average, we conclude that there exists , such that

. Then, there exists , such that

Thus

It follows that there exists , such that .
Lemma 7: If , then there exists

such that .

Proof: Note that .
Then, there exists , such that

Then, .
Since is an integer and , there exists an

linear code such that , i.e., an -good exists.
According to Lemma 5, there exists a sequence of -con-
strained codes of length and rate such that

We have seen in Theorem 1 that .
This concludes the proof that .

REFERENCES
[1] R. Ahlswede and Z. Zhang, “Coding for write-efficient memory,” Inf.

Comput., vol. 83, no. 1, pp. 80–97, Oct. 1989.
[2] N. Alon and J. Spencer, The Probabilistic Method. New York, NY,

USA: Wiley, 1992.
[3] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ, USA:

Prentice-Hall, 1971.
[4] G. Burr, M. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakr-

ishnan, B. Jackson, B. Kurdi, C. Lam, L. Lastras-Montaño, A. Padilla,
B. Rajendran, S. Raoux, and R. Shenoy, “Phase change memory tech-
nology,” J. Vac. Sci. Technol., vol. 28, no. 2, pp. 223–262, Mar. 2010.

[5] G. D. Cohen, “A nonconstructive upper bound on covering radius,”
IEEE Trans. Inf. Theory, vol. 29, no. 3, pp. 352–353, May 1983.

[6] G. D. Cohen and G. Zemor, “Write-isolated memories (WIMs),” Dis-
crete Mathematics, vol. 114, no. 1–3, pp. 105–113, Apr. 1983.

[7] T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory,
vol. 19, no. 1, pp. 73–77, Jan. 1973.

[8] S. Datta and S. W. McLaughlin, “An enumerative method for run-
length-limited codes: Permutation codes,” IEEE Trans. Inf. Theory,
vol. 45, no. 6, pp. 2199–2204, Sep. 1999.

[9] S. Datta and S. W. McLaughlin, “Optimal block codes for -ary run-
length-constrained channels,” IEEE Trans. Inf. Theory, vol. 47, no. 5,
pp. 2069–2078, Jul. 2001.

[10] A. El Gamal and Y.-H. Kim, Network Information Theory. Cam-
bridge, U.K.: Cambridge Univ. Press, 2011.

[11] S. Forchhammer and T. V. Laursen, “A model for the two-dimen-
sional no isolated bits constraint,” in Proc. IEEE Int. Symp. Inf. Theory,
Seattle, WA, USA, Jul. 2006, pp. 1189–1193.

[12] F. Freitas and W. Wickle, “Storage-class memory: The next storage
system technology,” IBM J. Res. Dev., vol. 52, no. 4, pp. 439–447,
2008.

[13] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved
bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. Inf.
Theory, vol. 50, no. 5, pp. 824–838, May 2004.

[14] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf.
Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[15] C. Heegard and A. El Gamal, “On the capacity of computer memory
with defects,” IEEE Trans. Inf. Theory, vol. 29, no. 5, pp. 731–739,
Sep. 1983.

[16] K. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2260–2299,
Oct. 1998.

5114 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

[17] A. Jiang, J. Bruck, and H. Li, “Constrained codes for phase-change
memories,” in Proc. IEEE Inf. Theory Workshop, Dublin, Ireland, Aug.
–Sep. 2010.

[18] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp.
1527–1540, Jul. 1999.

[19] L. Lastras-Montaño, M. Franceschini, T. Mittelholzer, J. Karidis, and
M. Wegman, “On the lifetime of multilevel memories,” in Proc. IEEE
Int. Symp. Inf. Theory, Seoul, Korea, Jul. 2009, pp. 1224–1228.

[20] B. H. Marcus, R. M. Roth, and P. H. Siegel, “Constrained Systems and
Coding for Recording Channels,” in Handbook of Coding Theory, V.
S. Pless and W. C. Huffman, Eds. New York, NY, USA: Elsevier,
1998, ch. 20.

[21] J. Moon and B. Brickner, “Maximum transition run codes for data
storage systems,” IEEE Trans. Magn., vol. 32, no. 5, pp. 3992–3994,
Sep. 1996.

[22] Z. Nagy and K. Zeger, “Asymptotic capacity of two-dimensional chan-
nels with checkerboard constraints,” IEEE Trans. Inf. Theory, vol. 49,
no. 9, pp. 2115–2125, Sep. 2003.

[23] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini,
A. Lacaita, and R. Bez, “Reliability study of phase-change nonvolatile
memories,” IEEE Trans. Device Mater. Rel., vol. 4, no. 3, pp. 422–427,
Sep. 2004.

[24] R. Rivest and A. Shamir, “How to reuse a write-once memory,” Inf.
Control, vol. 55, no. 1–3, pp. 1–19, Dec. 1982.

[25] R. E. Swanson and J. K. Wolf, “A new class of two-dimensional RLL
recording codes,” IEEE Trans. Magn., vol. 28, no. 6, pp. 3407–3416,
Nov. 1992.

[26] I. Tal and R. M. Roth, “Convex programming upper bounds on the
capacity of 2-D constraints,” IEEE Trans. Inf. Theory, vol. 57, no. 1,
pp. 381–391, Jan. 2011.

[27] W. Weeks and R. Blahut, “The capacity and coding gain of certain
checkerboard codes,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp.
1193–1203, May 1998.

[28] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9, pp.
5985–5999, Sep. 2012.

[29] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K.Wolf, “Efficient
two-write WOM-codes,” in Proc. IEEE Inf. Theory Workshop, Dublin,
Ireland, Aug.–Sep. 2010.

[30] E. Zehavi and J. K. Wolf, “On runlength codes,” IEEE Trans. Inf.
Theory, vol. 34, no. 1, pp. 45–54, Jan. 1988.

Minghai Qin (S’11) received the B.E. degree in electronic and electrical engi-
neering from Tsinghua University, Beijing, China, in 2009. He is currently pur-
suing the Ph.D. degree in electrical engineering from the Department of Elec-
trical and Computer Engineering at the University of California, San Diego,
where he is associated with the Center for Magnetic Recording Research.

Eitan Yaakobi (S’07–M’12) received the B.A. degrees in computer science
and mathematics, and the M.Sc. degree in computer science from the Technion-
Israel Institute of Technology, Haifa, Israel, in 2005 and 2007, respectively, and
the Ph.D. degree in electrical engineering from the University of California, San
Diego, in 2011.
He is currently a postdoctoral researcher in electrical engineering at the Cal-

ifornia Institute of Technology, Pasadena. His research interests include coding
theory, algebraic error-correction coding, and their applications for digital data
storage and in particular for nonvolatile memories.

Paul H. Siegel (M’82–SM’90–F’97) received the S.B. and Ph.D. degrees in
mathematics from the Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1975 and 1979, respectively.
He held a ChaimWeizmann Postdoctoral Fellowship at the Courant Institute,

New York University. He was with the IBM Research Division in San Jose, CA,
from 1980 to 1995. He joined the faculty at the University of California, San
Diego in July 1995, where he is currently Professor of Electrical and Computer
Engineering in the Jacobs School of Engineering. He is affiliated with the Center
for Magnetic Recording Research where he holds an endowed chair and served
as Director from 2000 to 2011. His primary research interests lie in the areas
of information theory and communications, particularly coding and modulation
techniques, with applications to digital data storage and transmission.
Prof. Siegel was amember of the Board of Governors of the IEEE Information

Theory Society from 1991 to 1996 and from 2009 to 2011. He was re-elected
for another 3-year term in 2012. He served as Co-Guest Editor of the May 1991
Special Issue on Coding for Storage Devices of the IEEE TRANSACTIONS ON
INFORMATION THEORY. He served the same Transactions as Associate Editor
for Coding Techniques from 1992 to 1995, and as Editor-in-Chief from July
2001 to July 2004. He was also Co-Guest Editor of the May/September 2001
two-part issue on The Turbo Principle: From Theory to Practice of the IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.
Prof. Siegel was co-recipient, with R. Karabed, of the 1992 IEEE Informa-

tion Theory Society Paper Award and shared the 1993 IEEE Communications
Society Leonard G. Abraham Prize Paper Award with B. H. Marcus and J. K.
Wolf. With J. B. Soriaga and H. D. Pfister, he received the 2007 Best Paper
Award in Signal Processing and Coding for Data Storage from the Data Storage
Technical Committee of the IEEE Communications Society. He holds several
patents in the area of coding and detection, and was named a Master Inventor
at IBM Research in 1994. He is an IEEE Fellow and a member of the National
Academy of Engineering.

