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Abstract- In this paper, we explore a novel approach to
evaluate the inherent UEP (unequal error protection) properties
of irregular LDPC (low-density parity-check) codes over BECs
(binary erasure channels). Exploiting the finite-length scaling
methodology, suggested by Amraoui et. al., we introduce a scaling
approach to approximate the bit erasure rates of variable nodes
with different degrees in the waterfall region of the peeling
decoder. Comparing the bit erasure rates obtained from Monte
Carlo simulation with the proposed scaling approximations, we
demonstrate that the scaling approach provides a close approx­
imation for a wide range of code lengths (between 1000 and
8000). In view of the complexity associated with the numerical
evaluation of the scaling approximation, we also derive simpler
upper and lower bounds.

I. INTRODUCTION

LDPC codes, with their superb error correction performance
[1], [2], are among the most promising forward error cor­
rection schemes for EEP (equal error protection). However,
many practical applications, such as robust transmission of
video/image, require UEP. The near capacity performance of
EEP-LDPC codes over BECs suggests LDPC codes could
possibly also offer good performance in UEP scenarios [3].
Consequently, the idea of designing LDPC codes for UEP
has been studied in many papers, including [3] - [6]. In [4]­
[6], UEP is provided with partially regular LDPC codes and
unequal density evolution, while Plotkin-type constructions are
employed to design UEP-LDPC codes in [3]. Here, exploiting
the finite-length scaling methodology, we introduce a novel
approach to analytically evaluate the inherent UEP properties
in (finite-length) irregular LDPC codes.

It is known that in an irregular LDPC code transmitted
over a BEC, variable nodes with larger degrees provide better
protection than variable nodes with smaller degrees. In this
work, extending the results from [7], [8], we will quantify the
effect of the variable-node degree on the bit erasure rate of
the variable nodes in the waterfall region.

The rest of this paper is organized as follows. Section
II briefly establishes the required background and notation.
Section III outlines the derivation of the bit erasure rate
(the scaling approximation, upper bounds, and lower bounds)
based on the finite-length scaling of LDPC codes. Numerical
simulations and performance analysis are presented in Section
IV, and finally Section V concludes the paper.

II. PRELIMINARIES

In this section, we first establish some background and
notation on LDPC codes, and then we present a concise outline
of the peeling decoding algorithm, the traditional algorithm for
decoding LDPC codes over BECs.

A. Low-Density Parity-Check Code Ensembles

LDPC codes are linear block codes which have a sparse
parity-check matrix. One of the main reasons for the great
interest in these codes is their superb error correction per­
formance under low-complexity sub-optimal message-passing
algorithms, such as the peeling algorithm [9].

Throughout this paper, we will define LDPC code ensem­
bles by three parameters:

1. The block length of the code, n.
2. The edge perspective variable node degree distribution,

;\(x) == Et~lx ;\i xi-1 with lmax representing the maxi­
mum variable, or left, degree.

3. The edge perspective check node degree distribution,
p(x) == E~lx Pixi-1, where r ma x denotes the maximum
check, or right, degree.

Similar to edge perspective degree distributions, node per­
spective degree distributions can also be defined for both

~ 1 .
variable and check nodes. Define A(x) == Ei~lx AiX1 ==
j} ~i~~~~ as the variable node perspective degree distribution,

where Ai for 1 :S i :S lmax represents the ratio of degree-i
variable nodes relative to the total number of variable nodes in
the original graph. Further, let P(x) £ E7ma x p·x i == fa p(u)du

1=1 1 fJ p(u)du
denote the check node perspective degree distribution, where
Pi for 1 :S i :S r max represents the ratio of degree-i check
nodes relative to the total number of check nodes in the
original graph.

B. Peeling Algorithm

The peeling algorithm was first introduced in [10] for
decoding graph-based codes over BECs. In this algorithm,
upon receiving the channel outputs, the known variable nodes
send their values to the check nodes connected to them and
are removed from the graph. The decoder proceeds by looking
for a degree-one check node, i.e., a check node such that all
but one of the variable nodes connected to it are known. If it
finds one, it computes the value of the unknown variable node,
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propagates the value of the variable node to all check nodes
connected to the variable node, and then removes it from the
graph. If the decoder does not find a degree-one check node,
then the decoding stops. At this point, the residual graph does
not have a degree-one check node. So, two cases are possible:
either the graph is empty, i.e., the decoding is successful, or
the graph is not empty and all the remaining check nodes have
degrees greater than one, i.e., the decoding has failed.

Consider decoding an LDPC code with the peeling algo­
rithm over a BEC of erasure probability e. The threshold
erasure parameter, e", is the maximum value of e such that
the probability of decoder failure tends to zero for all e < e*
as n tends to infinity. Denote the ratio of the number of
erased check-to-variable messages to the number of edges in
the original graph by y. Let rl be the ratio of the number of
degree-one check nodes to the number of edges in the original
graph. A critical point is defined as a point where both rl (y)
and its derivative, with respect to y, vanish. In the rest of this
paper, we will concentrate on LDPC codes with one nontrivial
critical point1.

III. COMPUTATION OF THE BIT ERASURE RATE: A

SCALING ApPROACH

A. Preliminaries

The peeling algorithm can be considered as a first-order
Markov process. However, deriving the error probability di­
rectly from the Markov model is computationally intractable
[11].

Amraoui et. al., in their papers [7], [8], and [12], present
an abstract setting which allows them to approximate the
scaled process of the number of degree-one check nodes in
the peeling algorithm by a Brownian motion with a parabolic
drift. Consequently, we will also exploit the same setting.

Denote each step of the decoding process with a discrete

time tEN. Let X~o) be the number of degree-one check
nodes in the residual graph at time t. Define the first passage
time of the process {X}O)} as follows:

T~sup{tIX~O):::::O Vy:<;t}, (1)
t

where xtO
) represents the number of edges attached to degree­

one check nodes at time y. Moreover, define p~dv) as the era­
sure probability for degree-zi, variable nodes. Consequently,

p(dv) E{ Ldv (T)} (2)
E dvnAdv '

where Ldv (T) represents the number of edges connected to
degree-a, variable nodes at the first passage time. Note that
the original graph contains nl\dv degree-ri, variable nodes
and dvnl\dv edges connected to degree-d, variable nodes. By
Bayes' rule, (2) can be rewritten as

P(dv) _ P b{d di ilure] E{Ldv(T) Idecoding failure}
E - ro eco lng fai ure . d

v
nAd

v
+

P b{ 1 d
di } E{Ldv (T)Isuccessful decoding}

ro successfu eco mg . d nA .
v dv

(3)

1Note that rl (y) and its derivative always vanish at y = 0"
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When the decoding is successful, the residual graph is
empty, i.e., Ldv ( T) == O. As a result, E { i« (T)Isuccessful
decoding} == 0, and (3) can be reformulated as follows:

P(dv) p b{ . ilure ] E{Ldv(T) Idecoding failure}
E == ro decoding fai ure . dvnAd

v
.

(4)
The problem of the computation of Prob{decoding failure}

has been addressed in [13]. Hence, to derive p~dv), we will
focus on computation of E{Ldv ( T)Idecoding failure}. Let's
first consider Lemma 1:

Lemma 1: There exist positive constants 01, 02, 80 , and
a function no(8), such that, for any 8 > 80, and n > no(8),

Prob{ IT - i: I 2: 8n6/ 7 } < 01e-0282, (5)

where i" is the asymptotic critical time of the process {X}O)},
i.e., the time when both rl (y) and its derivative vanish.

The proof of this lemma is deferred to the Appendix.
Considering the fact that IT - i" I is small on the scale of

n, while IT - i" I is large on the scale 0 (1) of a single step,
we will compute the probability density function of the first
passage time with a 'continuum' approach. Let's define the
rescaled trajectory w(·) E IR as follows (similar to [13]):

w (f1(t - t*)) £ f2X~0), (6)

with

f1 = tiOO) f3- 2n- 2/ 3A' (1)-2 ( t: IJ-2

f 2 =f3-1n-1/3A'(1)-1!(t:IJ-11,
where

1*
(00) _ (y*2;/'(y*) _ y*2AI(y*)2) ri2 Y*A'(y*) 1­

- A(Y*) A(Y*)2 e*2 + A(Y*) e*

_ [£*4 ri2(£* AI(y*)2ri-x*(A"(y*)ri+A'(y*)x*))2] 1/3

f3 A' (1)2p'(x* )3x*10 (2£* A'(y* )2r3-A" (y* )rix*)
(7)

Note that e" == e*y*A(Y*), y* denotes the fractional rate of
the erasures in check-to-variable messages at the critical point,

and t: I* is the partial derivative of '1 with respect to the
erasure rate at the critical point. Also,

x* == £* ;\(y*)
x* == 1 - x*

{

£* ;\(y*) [y* -1 + p(l - £* ;\(y*))] if i == 1

ri == E (-l)i+j (I=1) (~~ 1) Pm(£* ;\(y*))j otherwise
m2j2i 1 1 ] 1

(8)

B. Scaling Approximations

It can be shown that w (.) can be described as a two-sided
Brownian motion with a parabolic drift [13]:

_ _ 82

w(8) == w(O) + B(8) + 2'

where B(8) is a two-sided Brownian motion, with B(O) == O.
Let's denote the first passage time of the rescaled trajectory
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One can show that

err £ sup {elw(y) 2: a Vy::; e}.
a

(10) (22)

Define

g(y) £ Prob{w(e) > a ve < y}. (17)

(24)

(31)

(30)

One can further see that

Prob{w(e) > a va < e< ylw(O) ==~} ==
Prob{w(e) < a va < e< ylw(O) == -~}.

Again using results from [14], we have

Prob{w(e) > 0 VO < e < ylw(O) ==~} ==
f)3

1 - JeT e- (; h1 t ( -8)d-8,
2 fLy

and

Define a process w(·) as follows:

w(8) ~ -w(8) (23)

== -w(O) - ¥- B(e).

1 (l;-tt(O))2

P{w(O) = l,} = V2ii: e-~ . (29)
27TCJ(0)

{ ( -) _ I () } 2 _y3 +6yl,Prob we> 0 ve < y w y == ~ == 2-3e-6-
00 ivy Ai(i21/3Y)Bi(i21/3Y+21/31,)-Bi(i21/3Y)Ai(i21/3Y+21/31,)

J-00 e Ai(i21/3y ) dv,
(25)

where i == R, and Ai (.), and Bi (.), are the Airy functions
defined on page 446, of [15]. Putting everything together, for
y < 0, we have

_.f- (l,_j(y))2 + 6yl,_y3

g(y) == An:(y) Jooo e- 20- (y) 6

00 ivv Ai(i21/3Y)Bi(i21/3Y+21/31,)-Bi(i21/3Y)Ai(i21/3Y+21/31,)
J-oo e Ai(i21/3y ) dvdi..

(26)

Now let's focus on the second case, i.e., when y 2: O.
Case 2 (y > 0). Since B(O) == 0, computation of g(y)

when y > a requires a slightly different approach. It's not
hard to see that

g(y) == Jooo P{w(O) == ~}Prob{w(e) > 0 ve < O/w(O) ==~}

Prob{w(e) > 0 VO < e< y/w(O) == ~}d~.
(27)

Pursuing steps similar to those used in the calculation of g (y)
in the first case, one can easily show that

Prob{w(e) > a ve < Olw(O) ==~} == 2-~
00 Ai(i21/3Y)Bi(i21/3Y+21/31.)-Bi(i21/3Y)Ai(i21/3Y+21/31.)

J-00 Ai(i21/ 3y) dv,
(28)

It is not hard to see that - B(e) is also a double-sided Brown-
- - I::i. -

ian motion process, so we will define B(e) == - B(e), where
B(e) is a double-sided Brownian motion process starting at
B(O) == O. We can show that

Prob{w(e) > 0 ve < ylw(y) ==~} ==
Prob{w(e) < 0 ve> -ylw(-y) == -~}.

The righthand side of Eq. (24) corresponds to the probability
that the maximum of a two-sided Brownian motion with a
parabolic drift is less than zero. This problem has been studied
in [14]. Adapting the results from [14] to our situation, we
have

(13)

(11)

(21)

(20)

l-g(y)
- Prob{decoding failure} .

_ Prob{aT:::; y, decoding failure}
- Prob{decoding failure}

l1(Y) £ E{w(y)}
CJ2(y) £ E{w2(y)} - E2{w(y)}.

FaT (yldecoding failure)

As a result,

dvl=:t
Ld (t) == Ld (t*) - _v (t - t*), (12)

v v e*

where l=:tv == e* :Advy*dv. As a result,

d 1*
Ldv(rr) == Ldv(t*) - :*dv (rr- t*)

_ (*) dv1dv -- Ldv t - e*f
1

err·
Consequently, one can show that [11]

It can be shown that [13]

Clearly,

{ () I } d A * *d v
E Ldv T decoding failure == v n dvE Y -

~l~lt;] E{eTIdecoding failure}.
(14)

Let's define the conditional cumulative probability density
function of err as

FaT (y Idecoding failure) £ Prob{err < y Idecoding failure}.
(15)

It is not hard to see that

E{eT /decoding failure} == Jooo 1 - FeT(y/decoding failure )dy­

J~oo FeT(y/decoding failure )dy.
(16)

From the definition of the conditional cumulative density
function, we have

(18)
We will proceed by dividing the problem of computation of
g(y) into two cases. The first case corresponds to scenarios
where y ::; 0, and the second case corresponds to scenarios
where y > O.

Case 1 (y < 0). By the definition of g(y),

g(y)== Prob{w(e) > 0 ve < y}
== Jooo Prob{w(e) > ove < ylw(y) == ~}P{w(y) == ~}d~,

(19)

where w(y) has a Gaussian distribution [13]. We denote the
mean and the variance of w (y) as follows:
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d =3v

Fig. 2. Bit erasure rate curves of degree-9 variable nodes of LDPC(n , A(x) =
~ x2 + ~ x3 + fs- xB, p(x) = ts x6 + /s x7) codes when used over binary
erasure channel of erasure probability £ .

Fig. I . Bit erasure rate curves of degree-3 variable nodes of LDPC(n , A(x) =
gx2+ ~x3 + fs- xB, p(x) = tsx6+ i\; x7) codes when used over binary
erasure channel of erasure probability £ .

where the function h1 t: (-8) has the Laplace transform
2' <"

HI,(w) = Joooe- w8h l ,(-8)d-8
7'<" 7'<"

= Ai (21/ 3 ([; + w)) /Ai (2 1/ 3w).
Putting everything together, we deduce that, when l' > 0,

2 ~ ( 8
3

)g(1') = ~;(O) JoCOe- 2u
2(0) 1 - J6 e- T hV. (fJ)dT9

co Ai (i21/ 3y )Bi (i21/ 3y + 21/ 3E,) - Bi (i 21/ 3y )Ai (i21/ 3y + 21/ 3E, )J- co Ai (i2 1/ 3y ) dydl, .
(33)

(34)

C. Bounds on the Bit Erasure Rate

Due to the complexity of the numerical evaluation of g('Y) ,
we further derived upper and lower bounds on g(1'). These
bounds can be employed in the computation of upper and
lower bounds on the scaling approximation to the bit erasure
rate. It can be shown that, for l' ::; 0 [II J,

,;} (O)

1 - Q(~(O») _ 1 e - 2"? (0) < g(1') <
<Ty(O ) v'27fo-y (O) - -

1

. [( (- (O,M)) (1 +M)-1 /3 _ ,;}.~'M) ) 2mm 1 - Q ~ - e 2uy (0)

M>O (Jy(O) v'27fa-y (O)

( 1 _ Q ( !1y (O,M»)) 1]
o-y(O) r

with

~y(O) = f 2 (e* - e)~ I * + h 2

o-J(O) = 9 (~ I *r+ 11'1
~(O,M) = f 2 (e* - e)~ I * + f (1 + ir)
a-J(O) = a~l (~ 1*)2 + 11'1 .

where ~ I* represents the partial derivative of the number of
degree-one check nodes with respect to the erasure rate at the
critical point , and IX is the scaling factor defined in [13]:

(
p2 (i * )_ p(i* 2)+ p' (i*) (1- 2x*p(i *» _ i *2p'(i* 2)

IX = N (I)A2 (y*)p /(x* )2
I

(£*)2A2 (y* )_ (£*)2A((y* )2)_(y* )2(£*)2A'« y* )2) ) 7
+ N(1)A2(y* ) .

(36)
For l' ~ 0, it can be shown that [II J,

Prob{successful decoding} :s: g(1') <
(l -Q (~ »)

Prob{ successful decoding} uy 0 2 (0) r

l-Q( e&l )- 1 e- 2';? (0)
"y(O) J2""y (0)

(37)

where the problem of the computation of Frob {successful
decoding} has been addressed in [13].

IV. NUM ERICAL A NALYSIS

To empirically investigate the accuracy of the scaling
approximations, we performed Monte Carlo simulations of
random LDPC code ensembles of various lengths and degree
distributions over BECs.

In Figures I and 2, we compare the simulated bit erasure
rates of degree-3 and degree-9 variable nodes with the results

obtained from our scaling approximation, and both upper
and lower bounds for LDPC code ensembles with parameters
A(X) - ~x2 + 12 x3+ .l.x8 and p(x) - .z.x6+ JLx7 In each- 5 25 25 - 15 15'
graph, we present results for codes of length n = 1000, 2000,
4000, and 8000. Note that the simulation results are quite
close to the scaling approximation. Furthermore, by increasing
the code length, the upper and lower bounds also become very
close to the simulation results.

V. CONCLUDING R EMARKS

In this paper, we investigated the UEP properties of finite­
length irregular LDPC codes in the waterfall region of the
peeling decoder. We introduced a scaling approach to compute
the bit erasure rate of variable nodes with a given degree over
BECs. Simulation results showed that, for a wide range of code
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(40)

(43)

(45)

(46)

we can rewrite (42) as
2 4

Prob{min 6 2 Yt < ns 83 } <
ool:;,n

7

c5

J

{ ~2 ( I 1- 1 2 Ksc5 ) 2}
OlLz=oexp -rz;; n383-ntZ+VYitZ+l I

where 01 and 02 are positive constants. After some algebraic
manipulations, one can show that

Prob{min 6 2 Yt < n~ 81} <
t>n'lb3 - -

o ,"",00- exp {- 02
b2n j (22Z - n~ _ Ks2z+1n 1:f 81/ 3)2}

1 i..JZ=o 21+1 •

(44)
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For n > max {I, (2KS81/3)14/S},
2 4

Prob{min 6 2 Yt < n 38 3 } <
t>n'lb3 - -

01 exp-{ - n2~n~ (1 - n~ _ 2Ksn1t81/3) 2} +

o ,"",00 exp{_02b2nj (22Z_1_2Z)2}1 i..JZ=l 21+1 •

Now it is not hard to show that there exist two positive
constants, O~, and O~, such that [11]

Prob{min 6 2Yt<n~81} <O'lexp{-02'82}.
t"2n'lb3 - -

Note that O~ and O~ are not necessarily the same as 0 1 and
02. Combining the results from (39), (40), and (46) concludes
the proof.
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Prob{min 6 2 Yt < n~ 81} <
t>n'l b~ - - (41)

L~Prob{mintz::;t <t1+1 Yt::; n~81},

or, equivalently,
2 4

Prob{min 62Yt<n 383}<
t>n'lb~ - -

L~o P~b{mintz::;t <tZ+1 Yt - ~ t2 +~ t ::; (42)

n ~ 81 - It2 + Ksbtz+1}n Z VYi I

where KS is a positive constant. Adapting a result on the
concentration properties of the X}O) from [[13], Eq. (2.27)],

which implies the fact that as n -* 00, the absolute value of

X~~) with high probability is less than or equal to n2/ 3 . Let's
define (similar to [13])

Y ~ ~ (x(O) _ x(o))t-t* - t l" I

K4

where K4 is a positive constant. Let tz ~ 2Zn6/ 7fJ2/3, where
fJ is a positive constant. For the sake of simplicity, here we
will focus on the case t > i", The case t < i" can be treated
similarly. Then,

ApPENDIX

PROOF OF LEMMA 1

In this appendix, we present the proof of Lemma 1. We start

by showing that with high probability, IX~~) I < n2 / 3 .Then,

we show that, for any time t such that X}O) - X~~) < n2/ 3 ,

with high probability we have It- t*1 < n6 / 7 . Combining
these two results, we deduce that for any time t, such that
It- i" I 2: n6/ 7 , with high probability X}O) is bounded away
from zero, which concludes the proof of the Lemma.

It can be shown that (see [[13], Lemma 4] for the proof)

n7 / 6

Prob{ IX~~) - X~~) I :::: n7/ 12 } < 2e- 200t* , (38)

where 0 0 is a positive constant and independent of n. Con­

sider the fact that X~~) is of order 0 (Jri) . Note that this
corresponds to the erasure probability e being in a critical
window e - e* == O(n-1/ 2 ) [13]. One can show that, for
values of n large enough,

n7/ 6

Prob{ IX~~) I :::: n2/ 3 } < 2e- 2°01* , (39)

lengths, scaling approximations provide a very close estimate
to the bit erasure rate. We further derived upper and lower
bounds on the scaling approximation to the bit erasure rate.
We showed that these bounds are quite tight, and by increasing
the length of the code, they become very close to the Monte
Carlo simulation results.
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