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Improved Upper Bounds on Stopping Redundancy
Junsheng Han and Paul H. Siegel, Fellow, IEEE

Abstract—For a linear block code with minimum distance d, its
stopping redundancy is the minimum number of check nodes in a
Tanner graph representation of the code, such that all nonempty
stopping sets have size d or larger. We derive new upper bounds
on stopping redundancy for all linear codes in general, and for
maximum distance separable (MDS) codes specifically, and show
how they improve upon previous results. For MDS codes, the new
bounds are found by upper-bounding the stopping redundancy by
a combinatorial quantity closely related to Turán numbers. (The
Turán number, T (v; k; t), is the smallest number of t-subsets of a
v-set, such that every k-subset of the v-set contains at least one of
the t-subsets.) Asymptotically, we show that the stopping redun-
dancy of MDS codes with length n and minimum distance d> 1
is T (n; d � 1; d � 2)(1 + O(n�1)) for fixed d, and is at most
T (n; d � 1; d � 2)(3 + O(n�1)) for fixed code dimension
k = n � d + 1. For d = 3; 4, we prove that the stopping redun-
dancy of MDS codes is equal to T (n; d � 1; d � 2), for which
exact formulas are known. For d = 5, we show that the stopping
redundancy of MDS codes is either T (n; 4; 3) or T (n; 4; 3) + 1.

Index Terms—Erasure channel, iterative decoding, linear code,
maximum distance separable (MDS) code, stopping set, Turán
number.

I. INTRODUCTION

I T is well known [1] that the performance of a message-
passing decoder on erasure channels is determined by certain

combinatorial structures known as stopping sets. Unlike weight
distribution, which is a property of the code, stopping sets are
affected by the actual representation of the code. This brings up
the problem of finding “good” and “efficient” representations of
a code that are amenable to iterative decoding.

By “representations,” we refer to Tanner graph representa-
tions [2], which directly correspond to parity-check matrices.
(It should be noted that in our context, a parity-check matrix can
have linearly dependent rows as long as the rows of the matrix
span the dual code.) In a Tanner graph, a stopping set is a set of
variable nodes all of whose neighbors are connected to the set at
least twice. In the context of a parity-check matrix, a stopping
set is a set of code coordinates such that the matrix formed by the
corresponding columns of the parity-check matrix does not con-
tain a row of weight one. We shall assume this latter definition
throughout the rest of the paper. Given a parity-check matrix ,
let the size of the smallest nonempty stopping set be termed the
stopping distance [3] of the code with respect to , denoted by
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. The importance of has been widely recognized [1],
[4]–[6]. The relationship of to the performance of iterative
erasure decoding is similar to that of minimum distance to the
performance of maximum-likelihood (ML) decoding. For better
performance, it is desired that be maximized. Let be a
linear code and denote its minimum distance by . Since the
support of any codeword is a stopping set, for
all choices of . It is known [3], [7] that by proper choice of

, can always be achieved. The stopping redun-
dancy of , denoted by , is the minimum number of rows
in a parity-check matrix such that .

Stopping redundancy was introduced by Schwartz and Vardy
[3], [8], who derived general upper and lower bounds, as well as
more specific bounds for Reed–Muller codes, Golay codes, and
maximum distance separable (MDS) codes. The stopping re-
dundancy of Reed–Muller and related codes was further studied
by Etzion [9]. Effects of parity-check matrices on stopping set
distribution were discussed by Weber and Abdel-Ghaffar [7],
who found that by adding a small number of redundant parity
checks, one can minimize the number of stopping sets of size

for a binary Hamming code. In related work, Hollmann and
Tolhuizen [10], [11] consider collections of parity checks that
correct all correctable erasure patterns up to a certain size for bi-
nary codes. There, emphasis was placed on (essentially) finding
a generic -column matrix with the least number of rows, having
the property that when multiplied on the right by any matrix
with independent rows, it produces a parity-check matrix that
corrects all correctable erasure patterns up to size for the
code defined by the null space of .

In this paper, we obtain a number of new results on stopping
redundancy. For all linear codes, we derive a new upper bound
using probabilistic methods [12]. In the case of MDS codes,
we show that their stopping redundancy is upper-bounded by
a combinatorial quantity, by constructions of which new upper
bounds are obtained. Our analysis reveals a strong coupling of
the stopping redundancy of MDS codes and Turán numbers. The
Turán number, , is the smallest number of -subsets of
a -set, such that every -subset of the -set contains at least
one of the -subsets. It should be noted that the link between the
stopping redundancy of MDS codes and covering numbers—the
“dual” of Turán numbers, has been used in [3] to prove a number
of lower bounds.

The rest of the paper is arranged as follows.
In Section II, we focus on general upper bounds. We start by

giving an interesting variant of an upper bound from [3] for bi-
nary linear codes. We then derive a new upper bound using a
probabilistic approach. We show that the new bound is tighter
than other known bounds for many interesting cases. Particu-
larly, we show that the bound based on probabilistic methods is
asymptotically tighter for all “good” families of codes. The re-
sults are then extended to nonbinary codes.
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Section III is devoted to MDS codes. First, we recall the ob-
servation made in [3] to show that for an MDS code with
length and minimum distance , .
Next, by introducing a new combinatorial object, we convert
the quest for upper bounds on to a purely combinatorial
problem. Proceeding in this way, we first discover that the lower
bound of is tight for small values of . In par-
ticular, for , we prove that ,
for which exact formulas are known, and, for , we show
that is no greater than . We then generalize
these results and show that for a fixed minimum distance ,
the stopping redundancy of MDS codes is asymptotically equal
to . Finally, we obtain tighter upper bounds
through explicit constructions of the newly defined combinato-
rial object. One of the upper bounds further shows that for fixed
code dimension , the stopping redundancy of MDS
codes is asymptotically at most .

Section IV concludes the paper.

II. GENERAL BOUNDS

A. Binary Linear Codes

Let denote the redundancy of code , i.e.,
, where is the dual code of . The following

theorem is taken from [3].

Theorem 1: Let be a binary linear code with .
Then

(1)

Following the same idea, we derive the following bound,
which is often better than (1).

Theorem 2: Let be a binary linear code with .
Then

(2)

Proof: Take any basis of to form a parity-check matrix
. If is of length , then is an matrix. Now, for

every rows of , where is odd and , take
their binary sum. Let a new matrix be formed consisting of
all these binary sums as rows. Clearly, is a parity-check ma-
trix for , and the number of rows in is exactly the quantity
on the right-hand side of (2).

It suffices to show that . For
, take an arbitrary set of columns of and form the

matrix . Take the corresponding columns of and form
the corresponding matrix . Since , the columns of

are linearly independent. Therefore, there exist rows of
that form a basis for . Take such rows of and call this

matrix . Clearly, is full rank.
By construction, contains all sums of odd number of rows

of . The proof is complete if we can show that at least one of

these sums is of weight one. Think of summing rows of as
multiplying by a binary row vector on the left. To find which
rows of sum to a vector of weight one, one can simply solve
for in , where is the identity matrix. Since the
solution, , is a full-rank binary matrix, it must contain
at least one row of odd weight.

Remark: If is odd, then the bound of (2) is always better
than (1) as it sums a proper subset of the terms in (1), all of which
are positive. If is even, an improvement is not guaranteed
since the bound in (2) includes the term while that in
(1) does not. For the particular case where grows with
while remains fixed, (2) is asymptotically a looser bound.

Remark: Bound (2) implies that , an upper
bound which cannot be deduced from (1). Note that

can be easily shown by considering a parity-check
matrix that contains all nonzero codewords of . (See [3].)

It was pointed out by one of the reviewers that a result in
[10] actually implies both Theorems 1 and 2. That result, when
applied to stopping redundancy, is summarized as follows.

Theorem 3: Let be a binary linear code with .
Then

The proof of Theorem 3 was based on very similar ideas, but
was more careful in selecting the binary sums in the construction
of the new parity-check matrix. It can be shown that Theorem 3
is the sam as Theorem 2 when is odd, and is better than
both Theorems 1 and 2 when is even. In [13], Hollmann
and Tolhuizen improve upon their constructions in [10] for the
special case of even weight codes.

We now propose a new upper bound on based on a prob-
abilistic approach (cf. [12]).

Theorem 4: Let be a binary linear code with length . Then

(3)

where is the smallest integer that satisfies

(4)

Proof: For any given number of rows , consider a random
ensemble of matrices , consisting of all matrices whose
rows are codewords of . Let the probability measure on
be that which is induced when the rows of matrices in are
chosen uniformly and independently from .

Let denote the set of all -element subsets of
. We refer to the elements of as -sets

and think of them as sets of vector coordinates. For a matrix
with columns, we say that covers if the

projection of rows of onto contains a vector of weight one.
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Clearly, if and only if covers all -sets for
.

It is well known [14, p. 139] that the matrix of all codewords
of is an orthogonal array of strength . This im-
plies that on any -set, , all -tuples ap-
pear, and they appear the same number of times. Since there are

weight-one vectors among a total of possible -tuples, the
probability that any given -set is covered by a randomly chosen
codeword of is . Hence, for , the
probability that a given -set is not covered by rows in a matrix
in the random ensemble is . We have

all -sets are covered

at least one -set is not covered

for some

is not covered

If

then all -sets are covered ,
which implies that there exists that covers all -sets,

. Note that the fact that covers all -sets up
to implies that . Therefore, by
adding at most appropriate codewords from
as additional rows to , we have found a parity-check matrix
for that covers all -sets, .

Note that Hollmann and Tolhuizen [15], [11] also use prob-
abilistic methods in their analysis of generic erasure correcting
sets.

The upper bound given in Theorem 4 involves solving an in-
equality. A closed-form expression would be desirable. This is
addressed in the following corollaries.

Corollary 5: Let be a binary linear code with length and
minimum distance . Then

where , and .

Proof: First, note that is nondecreasing for
, so that

(5)

Next, for , it can be shown that

(6)

Further, by Stirling’s approximation it is known that [16]

(7)

Now, by putting together (5), (6), and (7), and referring to (4),
we see that a positive solution to the equation

must be an upper bound on . We thus obtain

(8)

Plugging (8) in (3) we get the desired bound.

If we do not require , we have to weaken the
upper bound, but the resulting bound has a simpler form.

Corollary 6: Let be a binary linear code with length and
minimum distance . Then

(9)

Proof: The argument is almost identical to the proof of
Corollary 5, except that we instead bound by

Remark: While the bounds in Theorems 1, 2, and 3 are
roughly on the same order, the upper bound in Theorem 4
often appears to be tighter. We demonstrate this for a spe-
cific example—the extended binary Golay code—and for two
asymptotic scenarios ( and both linear in , and
fixed).

Example 1: Let denote the extended binary Golay
code. In [3], it was shown by explicit construction

that . This was later improved to [8].
Applying the upper bounds obtained in this section to ,

we see that Theorem 1 gives , Theorem 2 gives
, Theorem 3 gives , and Theorem

4 gives . Also, the relaxed bounds in Corollaries
5 and 6 give and , respectively.
We see that in this example, bounds based on Theorem 4 have
a clear advantage.

Remark: A 34-row parity-check matrix for that achieves
maximum stopping distance is given in Appendix I. Compared
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to the one reported in [8], this parity-check matrix is able to
correct more low-weight erasure patterns.

Example 2: The bound of Theorem 4 is a function of , ,
and . Similarly, the bounds of Theorems 1, 2, and 3 are func-
tions of and . In this example, we consider the asymp-
totic behavior of these bounds as . Detailed derivations
can be found in Appendix II.

We discuss two different assumptions about and .
The first case corresponds to “good” codes, i.e., codes whose
rate is bounded away from zero and whose minimum distance
is nondiminishing relative to the code length. The second case
concerns codes with fixed minimum distance, an example of
which is the family of extended binary Hamming codes.

Case 1: , , where ,
are constants.

It can be shown that the bound in Theorem 4 is .1

In comparison, the bounds of Theorems 1, 2, and 3 are all
. Clearly, the bound given by Theorem 4 is

tighter.

Case 2: is a constant.

With the expression in Corollary 5, it is not hard to see that
the bound of Theorem 4 is . On the other hand,
the bound given by Theorem 1 is clearly ; the bound
given by Theorem 2 is if is odd, and
if is even; and the bound of Theorem 3 is .

By the Hamming bound, for . Therefore,
as long as , the bound of Theorem 4 is asymptotically
tighter. Since it is known for all binary linear codes [3] that if

, then , Theorem 4 gives a better bound
asymptotically for all nontrivial values of .

B. Linear Codes Over

The bounds in Theorems 1, 2, and 3 can all be viewed as
improved versions of the more intuitive bound

which extends in a straightforward manner to nonbinary codes
(although, unfortunately, none of the improvements made in
these theorems can be directly carried over).

Theorem 7: Let be a linear code over . Then

Proof: The proof is similar to that of Theorem 2. Here we
take a basis of and construct by taking linear combina-
tions of basis vectors, , with nonzero co-
efficients. Note that for each set of basis vectors, we may fix
one of the linear coefficients at .

1We use the standard “big O” and related asymptotic notations, the definitions
of which can be found in, for example, [17, Ch. 9].

For a linear code over , the codewords of are known to
form an orthogonal array of strength with levels [18,
Ch. 4]. Therefore, the argument we used to prove Theorem 4
extends directly to nonbinary codes.

Theorem 8: Let be a linear code over with length .
Then

where is the smallest integer that satisfies

Corollary 9: Let be a linear code over with length and
minimum distance . Then

where , and .

Corollary 10: Let be a linear code over with length
and minimum distance . Then

Example 3: Let denote the extended ternary
Golay code. The bound of Theorem 7 gives ,
while the bound of Theorem 8 gives . The best
known result (by construction, see [3]) is .

Example 4: Similar to Example 2 for the case of binary codes,
we compare the bounds of Theorems 7 and 8 as . Here,
we will only treat the case of “good” codes.

Let , , where and
are constants. It is not hard to show that the bound

of Theorem 8 is . On the other hand, it can be shown
(details provided in Appendix II) that the bound of Theorem 7 is

. We see that the bound given by Theorem 8
is tighter.

III. MDS CODES

Being MDS imposes a lot of structure on a code. We will
take advantage of the special properties of MDS codes to show
that their stopping redundancy is of a highly combinatorial na-
ture and is closely related to Turán numbers. New, tighter upper
bounds will be obtained through constructions.

First, a few notes (reminders) on notation. Let , be integers
and , be sets. Then

• Number of elements of ;
• ;
• ;
• is the set of -subsets of ;
• .
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Also, a -set is generally any set that has elements. Particular
to our discussions, a -set usually refers to a set of codeword
coordinates, i.e., a -subset of , if is the length of the code.

A Turán -system is a set of -subsets of a -set,
called blocks, such that each -subset of the -set contains at
least one of the blocks. The smallest number of blocks in a
Turán -system is known as the Turán number, and is
correspondingly denoted by . For more information
on Turán numbers, the reader is referred to [19], and references
therein.

Consider an MDS code of length and minimum distance
. Then its dual code, , is an MDS code with minimum

distance . Also, note that for all MDS codes with
minimum distance , any set of coordinates is the support of
at least one codeword. These properties (and many more) can
be found in MacWilliams and Sloane [14].

The authors of [3] noted the following.2

Theorem 11: Let be a MDS code with length and min-
imum distance . Then

Proof: Suppose is a parity-check matrix for and
. Note that each row of is a codeword in , and

therefore has at most zeros. Now, if is any
-set, then since is not a stopping set, there exists a

row of with zeros whose positions are contained in
. Since no -sets are stopping sets, the complements

of the supports of minimum-weight rows of form a Turán
-system.

This link between stopping redundancy and Turán numbers
immediately gives rise to a number of lower bounds on
for MDS codes. For example, it is simple to note

. So we immediately obtain

(cf. [3]). Better bounds can be obtained by utilizing a stronger
lower bound on .

Now, let be an MDS code with length and minimum dis-
tance , and consider the minimum number of rows in
a parity-check matrix for all of whose rows are minimum-
weight codewords of and that achieves the maximum stop-
ping distance . This number only depends on and , because

1) as far as covering -sets is concerned, only the supports of
rows of a parity-check matrix matter;

2) for any -set as support, we can find at least one codeword
in ;

3) if such a parity-check matrix has a minimum number of
rows, then all rows must have distinct supports.

2In [3], the observation was made with respect to covering numbers rather
than Turán numbers. A (v; k; t) covering design is a set of k-subsets of a v-set,
such that each t-subset of the v-set is contained in at least one of the k-subsets.
The smallest size of a covering design is known as the covering number, and
is correspondingly denoted by C(v; k; t). It is simple to note that a (v; k; t)
covering design is a Turán (v; v � t; v � k)-system and vice versa. Hence,
C(v; k; t) = T (v; v � t; v � k). For more information on covering designs
and covering numbers, the reader is referred to [20].

Let us denote this number by . Clearly, is an
upper bound of . Note that always exists since a
matrix consisting of one codeword from for each -set as
support achieves stopping distance equal to (cf. [3]).

We shall see that is in fact a combinatorial quantity
with a formulation similar to that of Turán numbers, without any
explicit reference to codes at all.

Definition 1: A single-exclusion -system is a collection
of -subsets of a -set, called blocks, such that for all ,

, each -subset of the -set is covered by at least one
of the blocks. Here, an -subset is covered by block if

(10)

The smallest number of blocks in a single-exclusion
-system is called the single-exclusion number, and is

denoted by .

Remark: Clearly, condition (10) is equivalent to

Remark: The definition of single-exclusion -system re-
quires that . For , it is easy to see that

. For the sake of discussion, unless otherwise
noted, we shall always make the assumption that . In
relation to , we are mostly interested in , where

is the length of and is the minimum distance. Clearly,
is always satisfied.

Remark: A single-exclusion -system is always a Turán
-system. It is interesting that the definition of single-

exclusion systems may actually be interpreted meaningfully in
design theory terms. One can analogously define -exclusion

-systems.

Let be a parity-check matrix for that achieves stop-
ping distance and whose rows all have weight . Then the
positions of zeros in the rows of form a single-exclusion

-system. On the other hand, let be a single-exclusion
-system. For each , we can find such

that the support of is . If we use these codewords as rows
to form matrix , then . Note that implies
that has a upper triangular submatrix (up to
column permutations) and hence, .
Therefore, is indeed a parity-check matrix. In summary, an
-block single-exclusion -system exists if and only if an
-row parity-check matrix consisting solely of minimum-weight

codewords of can be found that achieves maximum stop-
ping distance. Relating to the earlier definition, it is clear that

.
The following comes straight from the discussion above.

Theorem 12: If is an MDS code with length and min-
imum distance , then

We conjecture that equality holds always.
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Conjecture 13: If is an MDS code with length and min-
imum distance , then

Up to now we have bounded between two well-defined
combinatorial quantities, and .
Clearly, any lower bound on is a lower bound
on and any upper bound on is an upper bound
on . We will actually proceed in this way—in fact, we will
be focusing solely on the upper bound, and all results we shall
show for hold for as well, although it may not
be made explicit.

We start by looking at how things work for ,
where much stronger results can be derived.

If , then .
The case where is also quite trivial, and the result is

actually implied by the best upper and lower bounds on
given in [3].

Theorem 14: Let be an MDS code with length and min-
imum distance . Then

Proof: It suffices to show that
. On one hand, it is easy to verify that any

-subset of is a single-exclusion -system. On
the other hand, a Turán -system cannot have or
fewer blocks, or there would exist , , such that
does not contain any of the blocks.

The case for needs a bit more work.

Lemma 15: For all

Proof: The proof is by construction. Let ,
, and . It is easy to verify that is

a Turán -system, and it has blocks.

Theorem 16: Let be an MDS code with length and
minimum distance . Then

Proof: The formula for is a known result first
discovered by Mantel [21] in 1907. Later, Turán [22], [23]
solved the more general case of .

It suffices to show that . Let be a Turán
-system with smallest size. We show that must also be

a single-exclusion -system. By definition of , all -sets
are covered. We show that all - and -sets are covered as well.

Suppose there is a -set, say , that is not covered. Then is
contained in all blocks of . But this implies that all -subsets
of are not covered, contradicting the fact that is a
Turán -system.

Suppose there is a -set, say , that is not covered. This
implies that a block of either is , or is disjoint from

. Note that must be a block of , or -sets like

would not be covered. Also, all -sets disjoint from
must be blocks of ; otherwise, if is

not a block, then -set would not be covered by . This
shows that . But

for , which contradicts Lemma 15.

Remark: Since the formula for is known, Lemma
15 may seem unnecessary. But we find its simple construction
to be appealing, and the bound it gives, though loose, is enough
to show without further knowledge about

.

Remark: The proof of Theorem 16 needs to go
through. It turns out that the only two cases for are
indeed “anomalies” for which is strictly greater than

.
For , , while it is simple to see that

. For , . But it can be shown that
.

For , we first note a couple of bounds on .

Lemma 17:

where equality holds for .
Proof: The upper bound comes from a construction of

Turán -systems due to Ringel [24], which has been
verified to be optimal for [20].

Lemma 18: For

Proof: It is known [25] that is nonde-
creasing in , hence

for

Since by Lemma 17, the result follows.

Theorem 19: Let be an MDS code with length and min-
imum distance . Then

Further

for

Proof: It suffices to show that and
for .

For , it is known that , while it can be
easily verified that . So the claimed inequality holds
for .

In the following, assume . Let be a Turán -
system of smallest size. If is a single-exclusion -system
then we are done. Otherwise, let be a smallest -set that is not
covered. Then or . (All -sets are covered since
is a Turán -system.)
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First, suppose . Since is not covered, it is contained
in all blocks of . Then a -subset of is not covered. This
is a contradiction.

Next, suppose , say . Then any block of
either contains or is disjoint from . Out of the -sets
that contain , at least must be in . Otherwise, we
could find , such that . But
then the -set would not be covered. On the other
hand, all of the -sets that are disjoint from must be
blocks of . Otherwise, if is not a block, then

would not be covered. In summary, must have at
least blocks. Since

for , this contradicts Lemma 17.
Finally, suppose , say . Then for all ,

. Note the following facts.

Fact 1: itself must be a block of , otherwise -sets like
would not be covered.

Fact 2: For each -set , at least two of ,
, and must be blocks of . This is

true because if, say, and both were
not blocks of , then would not be cov-
ered.

Fact 3: All blocks that are disjoint from form a Turán
-system.

Together, these imply that

which contradicts Lemmas 17 and 18 for .
For , we do not have an immediate contradiction.

However, note that a -set that contains zero or one element of
is covered due to Fact 2, and one that contains two elements

of is covered due to Fact 1. So, in this case must be the only
-set that is not covered. Since is also the smallest uncovered
-set, by adding one more block to to cover , we have found

a single-exclusion -system that has blocks.

Corollary 20: Let be an MDS code with length and min-
imum distance . Then

for

We have seen that (and hence of an MDS
code with the corresponding parameters) is almost the same as

for small values of . We now show that
these results can be generalized in an asymptotic sense when
is fixed.

Theorem 21: For fixed , , as

Proof: We show that we can always add blocks
to a Turán -system to make it a single-exclusion

-system.
Let and . Let

. Clearly

We show that blocks of cover all -sets, .
Let be an -set and be an arbitrary element. Take ,
adjoin to it the smallest elements of and call the
resulting set . It is easy to verify that and .

Now, let be a Turán -system of smallest size.
Let . Then is a single-exclusion -system
with blocks.

Finally, note that , since

and the result follows.

With Theorems 11, 12, and 21, the following result is
immediate.

Theorem 22: Let be a sequence of MDS codes with
strictly increasing code length . If for all
, then as ,

where .

Katona, Nemetz, and Simonovits [25] showed that
is nondecreasing in and hence there ex-

ists the limit

Theorems 21 and 22 essentially tell us that for fixed ,
, , and are all asymptotic

to .3

Corollary 23: Let be a sequence of MDS codes with
strictly increasing code length . If for all
, then

The value of , although unknown for , is well
studied. In fact, the determination of for has
been one of the most challenging open problems in combina-
torial theory (for the solution of which Erdös offered a $1000

3Functions f(x) and g(x) are said to be asymptotic to each other as x !
x if lim = 1, and is denoted by f(x) � g(x). In this paper we
usually talk about integer functions ofn and the conditionn!1 is sometimes
omitted where there is no confusion.



HAN AND SIEGEL: IMPROVED UPPER BOUNDS ON STOPPING REDUNDANCY 97

TABLE I
SOME KNOWN BOUNDS ON t(r + 1; r)

award; see [26]). Some of the known bounds on are
summarized in Table I (cf. [22], [23], [19], [27]–[31]).

In contrast, the bounds on for MDS codes given in [3]
are

(11)

Compared to what is promised by Corollary 23 and Table I,
here the lower bound is already close to our best knowledge
of . On the other hand, since ,

. This suggests room for improvement
in the upper bound.

We will derive new upper bounds on the stopping redun-
dancy of MDS codes through constructions of single-exclusion
systems. First, consider the following construction of a Turán

-system due to Kim and Roush [32].

Construction 1: Partition into disjoint sets,
, with sizes as equal as possible. (For example, let

.) For any , define

For , let

(12)

Theorem 24 ([32]): For all and all , as defined in
Construction 1 is a Turán -system.

Proof: Let be any -set. If there exists
such that , then any satisfies
and hence is a member of . Otherwise, we can find

for all . Let . Then . Note
that , . So by choosing
we can realize any value of . Therefore, for any
, there exists such that .

Theorem 25: For all , as defined in Construction 1 is a
single-exclusion -system if .

Proof: Given Theorem 24, it suffices to show that for any
, , there exists such that .

If there exists such that , pick
such that . The availability of such a

choice is guaranteed if , which is implied

by . Let where is an arbi-
trary element of . Then since . Also,

.
On the other hand, if for all , , we can find

for all . Pick such that . Let
. Similarly to the proof of Theorem 24, we can

show that for any , there exists such that . Also, by
construction, .

Now, we wish to estimate the smallest number of blocks in
. Note

(13)

Therefore, we arrive at the following upper bound on .

Theorem 26: For all integers

This immediately leads to an upper bound on .

Theorem 27: Let be an MDS code with length and min-
imum distance . For all integers , where

is the code rate of ,

Let us interpret this upper bound asymptotically as .
Consider the following cases.

1) is fixed:
Assume . By choosing ,
one can show that the upper bound of Theorem 27 is
asymptotically better than , while the
best upper bound from [3] (as given in (11)) is asymptotic
to . This shows that for all , the bound of
Theorem 27 is asymptotically tighter. Note that for this
particular case we already knew more—Corollary 23 gives
a better understanding of the asymptotic behavior of ,
and a tighter bound on could have been
used. The upper bound in Theorem 27 is valuable in that it
is exact—it holds for all , rather than only asymptotically
in .

2) is fixed:
Choosing , we see that the
upper bound of Theorem 27 is , which is
better than , given by (11). Note that from (11),

is at least .
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3) , the dimension of , is fixed:
Theorem 27 requires that . If , we can choose

such that . Then the bound of Theorem
27 becomes, asymptotically,

The bound above is asymptotic to . For compar-
ison, (11) implies an upper bound that is asymptotic to

, and a lower bound of .

The last case of the discussion above is interesting in its own
right and we summarize it in the following theorems. Note that
what we have talked about applies to

as well as .

Theorem 28: For fixed , as ,

Proof: The lower bound is trivial since

Also, we have seen that the claimed upper bound is true for
.

For , note that if we had been a bit more careful in
writing (13), we could have shown that

(14)

Choosing such that and noting
if gives the desired result.

For , we show that we can construct a single-exclusion
-system using less than blocks. Let ,
. Consider the -set

Choose as blocks the complements of the following triples (if
they exist in ) to construct :

1) , for ;
2) and , for

, , , ;
3) , for , if .

(In the above, is modulo .) We claim that is a single-
exclusion -system. Let be an -set. We show that is
covered in that there exists such that , i.e., such
that . Let us call the set of points in that share

a common first coordinate a bin. It is not hard to verify that if
intersects some bin at exactly two points, then is covered.

Also, if intersects some two bins each at just one point, then
is also covered. Now, excluding the two cases already discussed
above, we may assume that intersects no bins at two points,
and intersects at most one bin at one point. But since ,
must intersect some bin at three points. This fact, however, also
implies that is covered. Finally, it is simple algebra to verify
that .

For , it is not hard to see that .
(Note in this case .)

The following is an immediate consequence of Theorem 28.

Theorem 29: Let be a sequence of MDS codes with
strictly increasing code length . If the dimension of
is for all , then, as ,

where .

Previously we have seen a close connection between
and . Let us see what the results

of Theorems 28 and 29 tell us in those terms.

Theorem 30: For fixed , as ,

Proof: It suffices to note that
, and the result follows directly from Theorem 28. It

should be noted that for fixed and , is
asymptotic to (cf. [33], [34]). Therefore, if is fixed,
then and the claimed result
is indeed the best that one can get out of Theorem 28.

Theorem 31: Let be a sequence of MDS codes with
strictly increasing code length . If the dimension of
is for all , then, as ,

where , .

Remark: The proof of Theorem 28 shows that for ,

Empirical data suggest that this may be true for all , so that it
may be possible for the constant factor of to be improved.

Next, consider the following construction of a Turán
-system, due to Frankl and Rödl [35].

Construction 2: Partition into disjoint sets,
, with sizes as equal as possible. For all , define

and . So is
the number of partitions that intersects. Also, define
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Now, for , let

(15)

Theorem 32 ([35]): For all and all , constructed ac-
cording to Construction 2 is a Turán -system.

Proof: Note that in general, if , then
. Let be an -set. Since intersects

partitions, contains
distinct values. Hence, there exists , such that

. Now, note that
since . Therefore,

, which implies that .

Theorem 33: If , then for all , constructed
according to Construction 2 is a single-exclusion -system.

Proof: Given Theorem 32, it suffices to show that all -sets
are covered by , .

Let be an -set. Choose , such that
and . This is possible as

Consider the class of -sets, . Note that
contains distinct values.

Hence, there exists , such that

Now, note that implies that .
Therefore, , which
implies that . Finally, it is clear that .

Now we wish to estimate . It can be shown that [19]

Therefore

Thus, we have the following theorems.

Theorem 34: For all positive integers ,

Theorem 35: Let be an MDS code with length and min-
imum distance . Then for all positive integers

, where is the code rate of ,

The requirement that be no greater than turns out
to be too restrictive for most cases and makes the upper bound
less useful when is not close to . To mitigate the problem,
we can get rid of this requirement by adding some more blocks
to . For clarity, we first assume .

Construction 3: Arrange elements of into an
matrix (in an arbitrary way). The columns of this matrix parti-
tion into disjoint sets with equal size which we denote by

. With , let be defined the same
way as described in Construction 2. Now, the rows of this ma-
trix also partition . We denote them by . For
all , define

For , let

Finally, for all , , let

We show that as defined in Construction 3 is a single-
exclusion -system for all .

Lemma 36: Let be an integer. Let .
For all , define

Then, for all , ,

Proof: First, it is easy to see that the claim is true for
and . The case is quite trivial. For , it suffices to
note that for and .

In general, if the claim is true for , then it is also true
for , since

(16)

So, the claim is also true for and .
Now, for the general case, let us assume . The idea is

to consider pairs of elements in that sum to modulo . First,
suppose is even. Then can be partitioned in the following
way:

where , . We show that for all
, we can find a -set such that . If is

even, then we get the following.
• If for some , let be the union of and

’s other than .
• If , let be the union of and ’s.
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Fig. 1. Bounds on �(C) for (n; k; d) MDS codes. d = 50 is fixed. Bounds are normalized relative to .

• If , let be the union of ’s.
Similarly, if is odd, then we get the following.

• If for some , let be the union of and
’s other than .

• If , let be the union of and ’s.
• If , let be the union of and ’s.

For odd , the proof is very similar and we will not elaborate
here.

Theorem 37: For all , , and , as defined in
Construction 3 is a single-exclusion -system.

Proof: Let be an -set, , and be
an arbitrary element. First, suppose that for all , .
If , then we can find an -set such that

for all . Now, choose for all and
consider -sets of the form . For all ,
we can choose such that , and hence,

. Clearly, . On the other hand, if ,
then we can find an -set such that for all

. Clearly, intersects each at exactly one element.
Consider -sets that consist of the union of and an

-subset of . By Lemma 36, for all , there
exists such that if
then . Therefore, and clearly

.
Otherwise, suppose . By construction, contains

elements from each . Let be an -set; then,
by choosing , we can realize any

value of . Hence, for any , there exists an -set
such that .

If , we can define by applying Con-
struction 3 to the first elements of and letting
include the extra elements. All reasoning is still valid.

Clearly

Hence

By the union bound, , hence, we arrive
at the following bounds.

Theorem 38: For all integers , ,

if

if .

Theorem 39: Let be an MDS code with length and min-
imum distance . Then for all integers , ,

if

if

where is the code rate of .
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Fig. 2. Bounds on �(C) for (n; k; d) MDS codes. R = 0:5 is fixed. Bounds are normalized relative to .

Note that when we choose in the region , the
upper bound is never better than . So the strength of
the bound above still lies in the regime of high rate codes.

Figs. 1 –3 compare the upper bounds we have obtained so far,
i.e., those of Theorems 27 and 39 (minimized over ), to the pre-
viously known bounds as given in (11). In the plots, all bounds
are normalized with respect to . We see that the new upper
bounds are both tighter than (11) in a variety of situations, with
the one based on Construction 1 outperforming the one based
on Construction 3 for all but very high code rate scenarios.

IV. CONCLUSION

We have obtained new upper bounds on the stopping redun-
dancy of linear codes. Compared to the bounds from [3] and
[10], our bound based on probabilistic methods gives better re-
sults for a number of interesting cases, including for all “good”
codes, i.e., those whose minimum distance is asymptotically
nontrivial relative to code length.

Though tighter, the new upper bounds for the case of “good”
codes are still exponential in the length of the code. It remains an
open question whether there exist “good” codes whose stopping
redundancy is polynomial in the code length.

Improving the lower bound on stopping redundancy seems to
be difficult. Applying the probabilistic method only yields the
same bound as given in [3].

For MDS codes, the interesting relationship between stopping
redundancy and Turán numbers has been explored. We have de-
fined a new combinatorial quantity, the single-exclusion number

, and related it to the Turán number and the stopping re-
dundancy of MDS codes. By studying , we have obtained
new upper bounds on the stopping redundancy of MDS codes,
which have been shown to be tighter than the best previously
known bounds for various situations. We have also proved that
for MDS codes with length and minimum distance ,
is asymptotic to for fixed , and is asymp-
totic to up to a constant factor of at most
for fixed . We conjecture that in the latter case
the constant factor can be improved to . We also conjecture that

for all MDS codes. For one thing, the two are
asymptotic to each other if is fixed. Further, for , both

and are equal to . For ,
we have shown that neither can differ from
by more than .

APPENDIX I
THE BINARY GOLAY CODE

We present here a parity-check matrix with 34 rows that
achieves maximum stopping distance and corrects more
low-weight erasure patterns than the parity-check matrix given
in [8]. The details of our parity-check matrix, denoted by ,
are given in Table II. It was found by a greedy computer search.
The idea is to start with a random selection of codewords
from (note that is self-dual), and in each iteration,
replace one codeword in the selection so that as many more
-sets ( ) as possible are covered. When no such

improvements can be made, an additional codeword is added to
the selection and the iteration continues. The process is stopped
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Fig. 3. Bounds on �(C) for (n; k; d) MDS codes. k = 50 is fixed. Bounds are normalized relative to .

TABLE II
PARITY-CHECK MATRIX WITH 34 ROWS FOR G

THAT ACHIEVES STOPPING DISTANCE 8

TABLE III
NUMBER OF UNDECODABLE ERASURE PATTERNS BY WEIGHT w FOR

DIFFERENT ITERATIVE DECODERS FOR G

when the desired stopping distance is achieved. We find that
it is enough to only consider covering -sets, and verify in the
end that the matrix obtained indeed covers all smaller -sets
and has the proper rank.

Table III compares the number of undecodable erasure pat-
terns by weight (number of erased bits) for iterative decoders
based on , (the 34-row parity-check matrix reported in
[8]), and the ML decoder. We see that the iterative decoder based
on corrects considerably more lower weight erasure patterns
than does the one based on , which implies that it will per-
form better when the erasure probability is small. For a binary
erasure channel with erasure probability , a detailed compar-
sion shows that for all , the iterative decoder based on

has a smaller probability of decoding failure.
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APPENDIX II
DERIVATIONS IN THE ASYMPTOTIC COMPARISON OF BOUNDS

Binary Linear Codes (Example 2, Case 1): Noting that
as , we see the upper bound

in (9) is , hence so is the bound in Theorem 4. On the
other hand, note that

Setting

and solving for , one can readily show that is also
. Therefore, the bound given by Theorem 4 is indeed
.

In comparison, consider the bound in Theorem 1. For
, the asymptotic Plotkin bound implies that .

Noting that for , we have

The analysis for the bounds of Theorems 2 and 3 is similar,
and one can show that the same asymptotic result applies.

Linear Codes Over (Example 4): Showing that the
bound in Theorem 8 is is very similar to the binary
case, and we will not elaborate here.

Now, consider the bound of Theorem 7. Let .
For , we see that by the asymptotic
Plotkin bound. Noting that for all ,

, we have
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