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Abstract—Previous work by the authors on parity-preserving
fixed-length constrained encoders is extended to the variable-
length case. Parity-preserving variable-length encoders are for-
mally defined, and a necessary and sufficient condition is
presented for the existence of deterministic parity-preserving
variable-length encoders for a given constraint. Examples are
provided that show that there are coding ratios where parity-
preserving variable-length encoders exist, while fixed-length en-
coders do not.

I. INTRODUCTION

In mass storage platforms, such as magnetic and optical
disks, user data is mapped (encoded) to binary sequences that
satisfy certain combinatorial constraints. One common exam-
ple of such a constraint is the (d, k)-runlength-limited (RLL)
constraint, where the runs of 0’s in a sequence are limited to
have lengths at least d (to avoid inter-symbol interference) and
at most k (to allow clock resynchronization) [7]. In virtually
all applications, the encoder takes the form of a finite state
machine, where user data is broken into binary blocks, and
each block is mapped, in a state-dependent manner, into a
binary codeword, so that the concatenation of the generated
codewords satisfies the RLL constraint. In the case of fixed-
length encoders, the input blocks all have the same length p,
and the codewords all have the same length q, for prescribed
positive integers p and q. The coding rate is then p : q.

In the mentioned storage applications, there is also a need
to control the DC content of the recorded modulated sequence.
One commonly used strategy to achieve DC control is allowing
input blocks to be mapped to more than one codeword, and
the encoder then selects the codeword that yields a better DC
suppression [9, p. 29]. In the Blu-ray standard, this strategy
is applied through the use of parity-preserving encoders: such
encoders map each input block to a codeword that has the
same parity (of the number of 1s), and DC control is achieved
by reserving one bit in the input block to be set to a value that
minimizes the DC contents [7, §11.4.3], [8], [10]–[12], [15].

Most constructions of parity-preserving encoders that were
proposed for commercial use were obtained by ad-hoc meth-
ods. In [13], we initiated a study of bi-modal encoders (which
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include parity-preserving encoders as a special case), focusing
on fixed-length encoders; we will summarize the concepts
that pertain to the fixed-length case, along with the main
results of [13], as part of the background that we provide
in Section II below. On the other hand, the existing ad-hoc
parity-preserving constructions typically have variable length,
where the length p of the input block and the length q of the
respective codeword may depend on the encoder state, as well
as on the input sequence (the coding ratio, p/q, nevertheless,
is still fixed).

In this work, we present several results on parity-preserving
variable-length encoders (in short, parity-preserving VLEs),
focusing on deterministic encoders. To put our results into
perspective, we mention that even in the ordinary setting
(where parity preservation is not required), the known tools
for analyzing and synthesizing VLEs are much less developed,
compared to the fixed-length case. A summary of relevant
(and mostly known) results on (ordinary) VLEs is provided
in Section III. In Section IV we turn to the parity-preserving
setting. Much of the discussion in that section deals in fact
with the definition of parity-preserving VLEs, as it entails
a (nontrivial) extension of the known Kraft conditions on
variable-length coding to the parity-preserving case. Our main
result is a necessary and sufficient condition for the existence
of parity-preserving VLEs that are deterministic. We present
several examples that demonstrate the advantages that parity-
preserving VLEs may have over their fixed-length counter-
parts, in terms of the attainable coding ratios and encoding–
decoding complexity.

II. FIXED-LENGTH GRAPHS AND ENCODERS

In this section, we extract from [9, Chapters 2–5] several
basic definitions and properties pertaining to ordinary (namely,
fixed-length) graphs and fixed-length encoders. We then quote
the main result of [13], which applies, in particular, to parity-
preserving fixed-length encoders.

A (finite labeled directed ordinary) graph is a graph G =
(V,E, L) where V is a nonempty finite set of states, E is a
finite set of edges, and L : E → Σ is an edge labeling. A
graph G is deterministic if no two outgoing edges from the
same state in G have the same labels, and it is lossless if no
two paths with the same initial state and the same terminal
state generate the same word.



A constraint S over an alphabet Σ is the set of all words
that are generated by paths in a graph G; we then say that G
presents S and write S = S(G). Every constraint S can
be presented by a deterministic graph. The capacity of S is
defined by cap(S) = lim`→∞(1/`) log2 |S ∩ Σ`|. It is known
that cap(S) = log2 λ(AG) where λ(AG) denotes the spectral
radius (Perron eigenvalue) of the adjacency matrix AG of any
lossless (in particular, deterministic) presentation G of S.

A graph G is irreducible if it is strongly connected, namely,
for any two states u and v in G there is a path from u
to v. A constraint S is irreducible if it can be presented by
a deterministic irreducible graph. For irreducible constraints,
there is a unique deterministic graph presentation that has the
smallest number of states; such a presentation is called the
Shannon cover of S.

Example 1. Let S be the constraint over the alphabet
Σ = {a, b, c, d} which is presented by the graph G in
Figure 1. The graph G is the Shannon cover of S, and
cap(S) = log2 λ(AG) = log2 2 = 1.
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Fig. 1. Graph G for Example 1.

The power Gt of a graph G = (V,E, L) is the graph with
the same set of states V and edges that are the paths of length t
in G; the label of an edge in Gt is the length-t word generated
by the path. For S = S(G) the power St is defined as S(Gt).

Given a constraint S and a positive integer n, a (fixed-
length) (S, n)-encoder is a lossless graph E such that S(E) ⊆
S and each state has out-degree n. An (S, n)-encoder exists
iff log2 n ≤ cap(S). In a tagged (S, n)-encoder, each edge is
assigned an input tag from a finite alphabet Υ of size n, such
that edges outgoing from the same state have distinct tags.

A (tagged) rate p : q encoder for a constraint S is a tagged
(Sq, 2p)-encoder (the tag alphabet Υ is then assumed to be
{0, 1}p); such an encoder exists iff p/q ≤ cap(S).

Let Σ be an alphabet and fix a partition {Σ0,Σ1} of Σ.
The symbols in Σ0 (resp., Σ1) will be referred to as the even
(resp., odd) symbols of Σ. Extending the definition of parity to
words, we say that a word w over Σ is even (resp., odd) if w
contains an even (resp., odd) number of symbols from Σ1. The
set of even (resp., odd) words in Σt will be denoted by (Σt)0
(resp., (Σt)1). In the practical scenario where Σ is the binary
alphabet (with Σ0 = {0} and Σ1 = {1}), a parity of a word
coincides with the ordinary meaning of this term.

Given a graph H with labeling in Σ, for b ∈ {0, 1}, we
denote by Hb the subgraph of H containing only the edges
with labels in Σb.

Let S be a constraint over an alphabet Σ, fix a partition
{Σ0,Σ1} of Σ, and let n0 and n1 be positive integers. A
(fixed-length) (S, n0, n1)-encoder E is an (S, n0+n1)-encoder
such that for each b ∈ {0, 1}, the subgraph Eb is an (S, nb)-
encoder. A rate p : q parity-preserving (fixed-length) encoder

for S is a tagged (Sq, 2p−1, 2p−1)-encoder in which the tag
(in {0, 1}p) that is assigned to each edge has the same parity
as the edge label (when seen as a word in Σq).

The next theorem follows from the results of [13] (see
Theorem 1, Corollary 5, and §III-A therein). For a square non-
negative integer matrix A and a positive integer n, denote by
X (A,n) the set of all nonnegative nonzero integer vectors x
that satisfy the inequality Ax ≥ nx componentwise.

Theorem 1 ([13]). Let S be an irreducible constraint,
presented by an irreducible deterministic graph G, and let n0
and n1 be positive integers. Then the following holds.

(a) There exists an (S, n0, n1)-encoder, if and only if
X (AG0 , n0) ∩ X (AG1 , n1) 6= ∅.

(b) There exists a deterministic (S, n0, n1)-encoder, if and
only if X (AG0

, n0)∩X (AG1
, n1) contains a 0–1 vector.

III. VARIABLE-LENGTH GRAPHS AND ENCODERS

In this section, we summarize several definitions and prop-
erties relating to variable-length graphs and variable-length
encoders (see also [9, §6.4]).

A. Variable-length graphs

In a variable-length graph (in short, VLG), the labels of
the edges may be words of any positive (finite) length over
the label alphabet Σ; the length of the edge is then defined
as the length of its label. Given a VLG H , the constraint
S(H) that is presented by H is defined as the set of all
(consecutive) sub-words of words obtained by concatenating
the labels that are read along finite paths in H . Equivalently,
S(H) is the constraint presented by the (ordinary) graph G
obtained from H by replacing each length-` edge e in H by a
path of ` length-1 edges (connected through newly introduced
dummy states) which generates the label of e. The follower
set of a state u in H is the set of all prefixes of words that
are generated by finite paths that start at u.

A VLG H is called deterministic if the labels of the
outgoing edges from each state in H form a prefix-free list,
namely, no label is a prefix of any other label. The notions of
losslessness and irreduciblity carry over from ordinary graphs.

Example 2. Letting G and S be as in Example 1, the
VLG H in Figure 2 is irreducible and deterministic, and it
presents S, i.e., S(H) = S(G) = S.

αa bd cd

Fig. 2. VLG H for Example 2.

B. Variable-length encoders

Let Υ be a finite alphabet1 and let L be a finite list of
nonempty finite words over Υ. We say that L is exhaustive if
every word over Υ either has a prefix in L or is a prefix of
some word in L. The next result is well known [4, p. 298].

1We use here the notation Υ for an alphabet (instead of Σ) since in the
context of variable-length encoders, that alphabet will be the alphabet of tags.



Proposition 2. Given an alphabet Υ and a nonnegative
integer sequence µ = (µ`)`≥1 with finite support, there exists
an exhaustive prefix-free list L over Υ such that

µ` =
∣∣L ∩Υ`

∣∣ , ` = 1, 2, 3, · · · ,

iff µ satisfies the Kraft inequality with equality, namely:∑
`≥1

µ`
|Υ|`

= 1 . (1)

Let S be a constraint over an alphabet Σ and let n be a
positive integer. Also, let E = (V,E,L) be a VLG, and for
every u ∈ V and ` ≥ 1, denote by µ`(u) the number of
edges of length ` outgoing from u in E . We say that E is a
variable-length (S, n)-encoder (in short, an (S, n)-VLE) if the
following conditions hold.
(E1) E is lossless,
(E2) S(E) ⊆ S, and—
(E3) for every u ∈ V : ∑

`≥1

µ`(u)

n`
= 1 .

(This definition reduces to that of a fixed-length (S, n)-encoder
when µ`(u) = 0 for every u ∈ V and ` > 1.)

Extending now the notion of tagging to the variable-length
case, let Υ be a (base tag) alphabet of size |Υ| = n. A tagging
of an (S, n)-VLE E is an assignment of input tags—namely,
words over Υ—to the edges of E , such that:
(T1) the length of each input tag equals the length of (the

label of) the edge, and—
(T2) the input tags of the outgoing edges from each state in E

form an exhaustive prefix-free list over Υ.
Proposition 2 and condition (E3) guarantee that every

(S, n)-VLE can be tagged consistently with conditions (T1)–
(T2). Condition (T1) means that the coding ratio is fixed
to be 1 at all edges, regardless of their length (by grouping
symbols and tags into nonoverlapping blocks, any fixed coding
ratio can be reduced to the case of a coding ratio of 1). We
note that this is the variable-length encoding model assumed
in [1], [2], [6].

Example 3. Letting Σ and S be as in Example 1, the
graph H in Figure 2 is a deterministic (S, 2)-VLE. Taking
Υ = {0, 1}, one possible tag assignment to (the labels of) the
edges of H is given by 0 ↔ a, 10 ↔ bd, and 11 ↔ cd. The
coding ratio at each state is 1, so this encoder is capacity-
achieving. Note that this tag assignment is parity-preserving
w.r.t. the following partition of Σ:

Σ0 = {a, b} and Σ1 = {c, d} . (2)

In contrast, using Theorem 1(a), it was shown in [13] that for
this partition, a coding rate of t : t cannot be achieved by any
parity-preserving fixed-length encoder for S for any positive
integer t.

Example 4. Letting Σ and S be as in Example 1, the
graph E in Figure 3 presents another (S, 2)-VLE. The coding

ratio at each state is 1, making E capacity-achieving. However,
E is not deterministic.

α′ β

α′′
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bdb
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cdb
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Fig. 3. VLE E for the constraint presented by Figure 1.

Consider now the following partition {Σ0,Σ1} of Σ:

Σ0 = {a} and Σ1 = {b, c, d} (3)

(the odd labels w.r.t. this partition are marked in boldface in
Figure 3). Taking the tag alphabet Υ = {0, 1}, one possible
parity-preserving tag assignment to the edges of E is shown
in Table I. Similarly to the partition (2), it was shown in [13]

TABLE I
POSSIBLE TAG ASSIGNMENT FOR THE ENCODER IN FIGURE 3.

State α′ State α′′ State β
000, 011 ↔ bda 00, 11 ↔ aa 01, 10 ↔ da
101, 110 ↔ cda 01 ↔ ac 00 ↔ db

001 ↔ bdb 10 ↔ ab 11 ↔ dc
010 ↔ bdc
100 ↔ cdb
111 ↔ cdc

that for the partition (3), too, one cannot achieve a coding
ratio of 1 by any parity-preserving fixed-length encoder for S.
Yet unlike the partition (2), for (3), it can be shown (details
omitted) that there is no deterministic VLE that has coding
ratio 1 and a parity-preserving assignment.

Example 5. Let S be the (2,∞)-RLL constraint, whose
Shannon cover is given by the graph G in Figure 4. The

0 0
0

1

α β γ

Fig. 4. Shannon cover G of the (2,∞)-RLL constraint.

capacity of S is approximately 0.5515, so there exists a rate
1 : 2 fixed-length encoder for S (namely, an (S2, 2)-encoder);
such a (tagged) encoder E is shown in Figure 5. This encoder

1/00

0/01

1/10

0/00

Fig. 5. Rate 1 : 2 fixed-length encoder E for the (2,∞)-RLL constraint.

is not deterministic; in fact, the smallest integer p for which
there exists a rate p : 2p deterministic fixed-length encoder
for S is p = 7, as this is the smallest integer for which the set
X (A2p

G , 2
p) contains a 0–1 vector (see [9, Theorem 7.15]).



On the other hand, the graph in Figure 6, with the tagging
0↔ 00, 10↔ 01.00, and 11↔ 10.00, is a deterministic VLE
for S with a coding ratio of 1/2 (see [6]; since the alphabet
of S2 consists of pairs of bits, we have used dots to delimit
the symbols within each label). Note, however, that such a
tag assignment is not parity-preserving; we will return to this
example in Examples 6 and 7 below.

γ00 01.00 10.00

Fig. 6. VLE for the (2,∞)-RLL constraint.

C. Deterministic variable-length encoders

In this section, we focus on VLEs which are deterministic,
and quote a necessary and sufficient condition for having such
encoders.

Let H = (V,E, L) be a VLG whose labels are over a finite
alphabet Σ and let n be a positive integer. Fix some nonempty
subset V ′ ⊆ V , and let H ′ = (V ′, E′, L′) be the subgraph
of H that is induced by V ′ (namely, E′ consists of all the
edges in H both of whose endpoints are in V ′). For every
u ∈ V ′ and ` ≥ 1, denote by µ`(u|V ′) the number of outgoing
edges of length ` from u in H ′. We say that V ′ is a set of
principal states in H w.r.t. n if for every u ∈ V ′:∑

`≥1

µ`(u|V ′)
n`

≥ 1 .

It readily follows from this definition that V ′ is a set of
principal states in a VLG H w.r.t. n, iff it is also so in the
subgraph H ′ of H that is induced by V ′.

The following result is essentially known (see [2], [5], [6]).

Theorem 3. Let S be an irreducible constraint and let n
and r be positive integers. There exists a deterministic (S, n)-
VLE whose edges all have length at most r, iff S is presented
by an irreducible deterministic VLG H = (V,E, L) whose
edges all have length at most r, and V contains a subset of
principal states w.r.t. n.2

Given an ordinary irreducible deterministic graph G (with
length-1 edges) and positive integers n and r, Franaszek
described in [6] a polynomial-time algorithm for testing
whether S(G) can be presented by a VLG H that satisfies
the conditions of Theorem 3 (see also [2], [3]). His algorithm,
which is based on dynamic programming, effectively finds a
set of principal states V ′ (which is a subset of the states of G)
and a subgraph H ′ of H that is induced by V ′ (the graph H
itself is not explicitly constructed in [6]).

Example 6. Let G and S be as in Example 5, and take
n = 2. Since there are no deterministic (S2, 2)-encoders, we
cannot have any principal states when r = 1. Selecting r = 2,
an application of Franaszek’s algorithm from [6] to G2 yields

2Moreover, the graph H can be assumed to be reduced, namely, the follower
sets of its states are distinct. For the case where all the edge lengths are 1,
the graph H is the Shannon cover of S.

a (unique) set of principal states V ′ consisting only of state γ.
Since w.l.o.g. H is reduced, that implies a unique subgraph H ′

that is induced by V ′, which is the graph in Figure 6 (see [6,
§V]).

IV. PARITY-PRESERVING VARIABLE-LENGTH ENCODERS

In this section, we provide a formal definition of a parity-
preserving variable-length encoder. A key ingredient in that
definition will be an adaptation of Proposition 2 to the parity-
preserving case, which we do in Section IV-A; that adaptation
may be of independent interest, beyond its use in this work.
We then state a necessary and sufficient condition for having
a parity-preserving VLE which is deterministic.

A. Parity-preserving Kraft conditions

Let Υ be a finite alphabet and assume a partition {Υ0,Υ1}
of Υ. Given a finite list L of nonempty words over Υ, the
(parity-preserving) length distribution of L is a pair of non-
negative integer sequences (η=(η`)`≥1,ω=(ω`)`≥1), where

η` =
∣∣L ∩ (Υ`)0

∣∣ and ω` =
∣∣L ∩ (Υ`)1

∣∣ , ` = 1, 2, 3, · · · .

Given positive integers n0, n1, and ` and a pair (η,ω) of
nonnegative integer sequences, each with finite support, define
K+
` = K`(η +ω, n0 + n1) and K−` = K`(η −ω, n0 − n1) by

K±` = K`(η ± ω, n0 ± n1)

= (n0 ± n1)` −
∑̀
i=1

(ηi ± ωi)(n0 ± n1)`−i .

Denoting by r = r(η,ω) the largest index in the union of the
supports of η and ω, the notation K± = K(η ± ω, n0 ± n1)
will stand for K±r . Thus, (1) becomes

K+ = K+(η + µ, n0 + n1) = 0 ,

where we have taken n0 = |Υ0| and n1 = |Υ1|.
The next proposition provides a necessary and sufficient

condition for a pair (η,ω) to be a (parity-preserving) length
distribution of an exhaustive prefix-free list.

Proposition 4. Given a partition {Υ0,Υ1} of a finite
alphabet Υ with |Υ0| = n0 and |Υ1| = n1, let (η,ω) be a
pair of nonnegative integer sequences, each with finite support.
Then there exists an exhaustive prefix-free list over Υ with a
length distribution (η,ω), iff the following conditions hold.

(a) K+ = 0, and—
(b) K+

` ≥
∣∣K−` ∣∣ for every ` ≥ 1.

The proof of the proposition can be found in [14].

B. Definition of parity-preserving variable-length encoders

Let S be a constraint over an alphabet Σ and assume a
partition {Σ0,Σ1} of Σ. Also, let E = (V,E, L) be a VLG,
and for every u ∈ V and ` ≥ 1, denote by η`(u) (resp., ω`(u))
the number of edges of length ` outgoing from u in E that
have even (resp., odd) labels (when the labels are regarded as
words over Σ). Writing

η(u) = (η`(u))`≥1 and ω(u) = (ω`(u))`≥1 ,



the pair (η(u),ω(u)) thus stands for the length distribution of
the set of labels of the outgoing edges from u in H .

Fix now n0 and n1 to be positive integers, and for every
u ∈ V define

K±` (u) = K`(η(u)± ω(u), n0 ± n1)

and
K±(u) = Kr(η(u)± ω(u), n0 ± n1) ,

where r = r(u) = r(η(u),ω(u)). We say that E is a (parity-
preserving) (S, n0, n1)-VLE if for every u ∈ V it satisfies
the three conditions (E1)–(E3) in Section III-B, as well as the
following fourth condition:
(E4) K+

` (u) ≥
∣∣K−` (u)

∣∣ for every ` ≥ 1.
Now, let Υ be a base tag alphabet of size n0 +n1 that has a

partition {Υ0,Υ1} with |Υ0| = n0 and |Υ1| = n1. A (parity-
preserving) tagging of an (S, n0, n1)-VLE is an assignment of
input tags to the edges of E such that conditions (T1)–(T2) in
Section III-B hold, and, in addition:
(T3) at each edge, the parity of the input tag (as a word

over Υ) is the same as the parity of the label (as a word
over Σ).

It follows from Proposition 4 and conditions (E3)–(E4) that
every (S, n0, n1)-VLE can be tagged consistently with (T3).

C. Deterministic parity-preserving variable-length encoders

The main result of this section is Theorem 5 below, which
is the parity-preserving counterpart of Theorem 3: it presents
a necessary and sufficient condition for having a deterministic
parity-preserving VLE.

Let Σ be an alphabet which is partitioned into {Σ0,Σ1}
and let H = (V,E, L) be a VLG whose labels are over Σ.
Fix some nonempty subset V ′ ⊆ V and positive inte-
gers n0 and n1, and for every u ∈ V ′ and ` ≥ 1, let
(η(u|V ′),ω(u|V ′)) be the length distribution of the set of
labels of the outgoing edges from u in the subgraph H ′ =
(V ′, E′, L′) of H that is induced by V ′. Also, (re-)define

K±` (u) = K` (η(u|V ′)± ω(u|V ′), n0 ± n1)

and

K±(u) = Kr (η(u|V ′)± ω(u|V ′), n0 ± n1) ,

where r = r(u) = r(η(u|V ′),ω(u|V ′)). We say that V ′ is a
set of (parity-preserving) principal states in H w.r.t. (n0, n1)
if for every u ∈ V ′:

K+(u) ≤ −
∣∣K−(u)

∣∣
and

K+
` (u) ≥

∣∣K−` (u)
∣∣ , ` = 1, 2, . . . , r(u)− 1 .

Theorem 5. Let S be an irreducible constraint over an
alphabet Σ, assume a partition {Σ0,Σ1} of Σ, and let n0,
n1, and r be positive integers. There exists a deterministic
(S, n0, n1)-VLE whose edges all have length at most r, iff S is
presented by an irreducible deterministic VLG H = (V,E,L)
whose edges all have length at most r, and V contains a subset
of principal states w.r.t. (n0, n1).

The proof of the theorem builds upon an (alternate) proof
of Theorem 3; both proofs can be found in [14].

Example 7. Let S be the (2,∞)-RLL constraint, which is
presented by the graph G in Figure 4. Recall from Example 5
that there is no deterministic (S2, 2)-encoder in this case
and, so, there is no VLG H that satisfies the conditions of
Theorem 3 for r = 1.

Turning to r = 2, recall from Example 6 that the VLE in
Figure 6 is the unique induced subgraph H ′ of any (reduced)
VLG H that satisfies the conditions of Theorem 3. Yet,
assuming the ordinary definition of parity of binary words,
the set of states V ′ = {γ} of H ′ is not a set of (parity-
preserving) principal states (in H ′ and therefore in H) w.r.t.
(n0, n1) = (1, 1). Hence, for r = 2, there is no deterministic
(S2, 1, 1)-VLE.

On the other hand, there exists a deterministic (S2, 1, 1)-
VLE for r = 3, as shown in Figure 7, along with the tag
assignment in Table II.

γ00 01.00

10.00.00

10.01.00

Fig. 7. Parity-preserving VLE for the (2,∞)-RLL constraint.

TABLE II
TAG ASSIGNMENT FOR THE ENCODER IN FIGURE 7.

0 ↔ 00
10 ↔ 01.00
110 ↔ 10.01.00
111 ↔ 10.00.00

Comparing to the fixed-length case, using Theorem 1(a),
one can verify that there exists a (not necessarily deterministic)
(S2p, 2p−1, 2p−1)-encoder, iff p ≥ 3. For p = 3, any vector
x ∈ X (A(G6)0 , 4) ∩ X (A(G6)1 , 4) satisfies ‖x‖∞ ≥ 6 (and
equality is attained only by x = (2 3 6)>). By Corollaries
4 and 5 in [13] we then get that any rate 3 : 6 parity-
preserving fixed-length encoder for S must have at least six
states and decoding look-ahead of at least 2 (measured in 6-bit
symbols); in contrast, recall that when there is no requirement
for parity preservation, we have the simple encoder in Figure 5.
Using Theorem 1(b), one can determine that there exists a rate
p : 2p parity-preserving fixed-length encoder for S which is
deterministic, (if and) only if p ≥ 8.

Remark 1. Unlike Theorem 3, we do not have (as of yet)
an extension of Franaszek’s algorithm from [6] to the parity-
preserving case; namely, a polynomial-time algorithm is yet to
be found for determining whether, for given S, {Σ0,Σ1}, n0,
n1, and r, there is a VLG H that satisfies the conditions of
Theorem 5. (The problem, however, is still decidable, since
there are only finitely many reduced VLGs H with edge
lengths at most r such that S(H) = S.)
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