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Abstract—Flash memory is a nonvolatile computer memory
comprised of blocks of cells, wherein each cell is implemented
as either NAND or NOR floating gate. NAND flash is currently
the most widely used type of flash memory. In a NAND flash
memory, every block of cells consists of numerous pages; rewriting
even a single page requires the whole block to be erased and
reprogrammed. Block erasures determine both the longevity and
the efficiency of a flash memory. Therefore, when data in a NAND
flash memory are reorganized, minimizing the total number of
block erasures required to achieve the desired data movement is
an important goal. This leads to the flash data movement problem
studied in this paper. We show that coding can significantly reduce
the number of block erasures required for data movement, and
present several optimal or nearly optimal data-movement algo-
rithms based upon ideas from coding theory and combinatorics.
In particular, we show that the sorting-based (noncoding) schemes
require O(n log n) erasures to move data among » blocks, whereas
coding-based schemes require only O(n) erasures. Furthermore,
coding-based schemes use only one auxiliary block, which is the
best possible and achieve a good balance between the number of
erasures in each of the n + 1 blocks.

Index Terms—Coding theory, combinatorics, data storage, flash
memory, graph theory, wear leveling.

1. INTRODUCTION

used nonvolatile electronic memories. There are two basic
types of such devices: NAND and NOR flash memories [8].
Between them, NAND flash is currently used much more often
due to its higher data density. In a NAND flash, floating-gate
cells are organized into blocks. Each block is further partitioned

F LASH memory devices have become the most widely
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into multiple pages, and every read or write operation accesses a
page as a unit. Typically, a page has 2 to 4 KB of data, and 64 or
128 pages comprise a block [8]. Flash memories have a unique
block erasure property: although every page can be read and
written (for the first time) individually, rewriting a page (that is,
modifying its contents) requires the whole block to be erased
and then reprogrammed. Typically, every block can endure
103 ~ 10° erasures, after which the flash memory no longer
meets quality guarantees and may break down. Block erasures
also degrade the quality of the cells, introduce errors in the data,
and reduce the overall read and write performance. Therefore,
it is critical to minimize the number of block erasures. It is
also critical to balance the number of erasures across different
blocks. For this reason, numerous wear leveling techniques
are widely used in flash-memory systems. The general idea is
to balance erasures by migrating data to different locations,
especially when data are rewritten [8].

In wear leveling, it is often desirable to move the frequently
changing data (so-called hot data) into the same blocks, while
storing the mostly static data together in other blocks. Thereby
the overall erasures caused by the hot data can be reduced (see
[8] and [9]). The specific locations to which the data are moved
can be optimized not only based on the update frequencies, but
also on the correlation among the data. Another important ap-
plication where data movement is required is defragmentation
of files. Many file systems (and database systems) implemented
in flash take the log-structured approach, wherein updates to
files are stored nonconsecutively across blocks. This way, wear
leveling is achieved and local block erasures are avoided [5].
Consequently, files are frequently fragmented. To improve per-
formance, data have to be moved periodically in order to reor-
ganize the file segments. In database systems or sensors, after
bursty incoming data flows are reliably stored, data movement
is used to store the data in a categorized manner for efficient
analysis. To facilitate data movement, a flash translation layer
(FTL) is usually employed to map logical data pages to phys-
ical pages in the flash memory [8]. Minimizing the number of
block erasures incurred during the data movement process re-
mains a major challenge.

In this paper, we show that coding techniques can signif-
icantly reduce the number of block erasures incurred during
data movement. In addition to the overall number of erasures,
we also consider other parameters, such as coding complexity
and extra storage space (number of auxiliary blocks). We
show that without coding, at least two auxiliary blocks are
needed to enable data movement, and present a sorting-based
solution that requires O(nlogn) block erasures in order to
move data among 7 blocks. With coding, only one auxiliary
block is needed. We present a very efficient data-movement
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algorithm based on coding over GF(2) that requires only 2n
erasures. We also present another coding-based algorithm that
requires at most 2n—1 erasures, which is worst-case optimal.
Although minimizing the number of erasures for every instance
of data movement is NP hard, as we prove in Section V-B,
both algorithms achieve an approximation ratio of 2 with
respect to the minimum possible number of erasures for the
given instance.

We note that a number of papers on coding for flash memories
have recently appeared in the literarture. These include codes
for efficient rewriting [3], [7], [10], [15] (also known as floating
codes or flash codes), error-correcting codes [4], and rank-mod-
ulation codes for reliable cell programming [11], [13]. However,
to the best of our knowledge, this paper is the first to address
storage coding at the page level instead of the cell level. Further-
more, our topic of study, namely the data-movement problem,
is also distinct from all previous works.

The rest of the paper is organized as follows. In Section II,
we define the data movement problem and introduce the rele-
vant notation. In Section III, sorting-based data movement algo-
rithms are presented. We further show in Section III that coding
can help minimize the auxiliary storage requirements during
data movement. In Section IV, we develop an efficient data-
movement algorithm, based on coding over GF(2). This algo-
rithm uses only 2n erasures in order to move data among 7
blocks. In Section V, we present an alternative coding-based al-
gorithm, which uses at most 2n — 1 erasures and is worst-case
optimal. The NP hardness of the general problem of minimizing
the number of erasures in data movement (for every given in-
stance) is also established in Section V. Finally, Section VI con-
tains our concluding remarks.

II. TERMS AND CONCEPTS

In this section, we formally define the data movement
problem, and present some useful concepts.

Definition 1. (Data Movement Problem): Consider n blocks
storing data in a flash memory, and suppose that each block
contains m pages. The n blocks are denoted by Bjy,..., By,
and the m pages in block B; are denoted by p; 1,...,p;m for
i=1,...,n.Let a(4,j) and ((4, j) be two functions

.,n}

..,m}.

The functions a(%, j) and (3, j) specify the desired data move-
ment. Specifically, the data initially stored in the page p; ; are
denoted by D; ;, and need to be moved into page p.i, j,5(i,5)>
forall (i,7) € {1,...,n} x {1,...,m}.

A given number of empty blocks, called auxiliary blocks, can
be used in the data movement process, and they need to be erased
in the end. To ensure data integrity, at any moment of the data
movement process, the data stored in the flash memory blocks
should be sufficient for recovering all the original data. The ob-
jective is to minimize the total number of block erasures in the
data movement process.

Clearly, the functions «(i,7) and (3(i,j) together have to
form a permutation for the mn pages. To avoid trivial cases, we
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assume that every block has at least one page whose data need to
be moved to another block (otherwise, it can be simply excluded
from the set of the n blocks considered in the data movement
problem). Also note that a block has to be fully erased when-
ever any of its pages is modified.

Let us now define some terms that are used throughout the
paper. There are two useful graph representations for the data
movement problem: the transition graph and a bipartite graph.
In the transition graph G = (V, E), |V| = n vertices represent
the n data blocks Bj,...,B,. If y pages of data need to be
moved from B; to B, then there are y directed edges from B;
to B; in G. G is aregular directed graph with m outgoing edges
and m incoming edges for every vertex. In the bipartite graph
H = (V1UVs,, E’), V; and V5 each has n vertices that represent
the n blocks. If y pages of data are moved from B; to Bj, there
are y directed edges from vertex B; € Vj to vertex B; € Vs.
The two graphs are equivalent but are used in different proofs.

Definition 2. (Block-Permutation Set and Semi-Cycle): A set
of n pages {p1,j,,P2j,»--++Pn,j,} that belong to n different
blocks is called a block-permutation set if

{a(lvj1)7 a(27j2)7 sy Ol(n,_]n)} = {1727 s ,’I’L}.

If {p1,j,,P2,jss---+Pn,j, } is a block-permutation set, then the

data they initially store, namely {D1 j,, D2 j,,..., D, ;, }, are
called a block-permutation data set.
Let z € {1,2,...,n}. An ordered set of pages

(pi07j07pi17j17 s 7pi:717j:71)

is called a semi-cycle if for k = 0,1,...,z — 1, we have

a(ikn Jk‘) = ik+1m0dz~
O

Example 1: The data movement problem shown in Fig. 1 ex-
emplifies the construction of the transition graph and the bipar-
tite graph. The nm = 18 pages can be partitioned into three
block-permutation sets

{p1,1,P2,2,P3,2,P4,2, P53, P6,1}
{P1.2,P2,1,P3,3,P4,3,P5,2, P62}
{P1,3,P2,3,P3,1,P2,1, P51, P63 }-
The block-permutation sets can be further decomposed into six
semi-cycles
P5,3,P1,1,P3,2,06,1)
P2,2,P4,2)
P5,25P3,3: 1,2, P2,1, P4,3, D6,2)
P1,3)
D2,3, 03,1, P4,1)
P5,1,P6,3)-

(
(
(
(
(
(

O

Every semi-cycle corresponds to a directed cycle in the transi-
tion graph, and every block-permutation set corresponds to a set
of directed cycles that enter and leave every vertex exactly once.
It is not a coincidence that the nm pages in the above example
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(a) i=1 2 3 4 5 6
j=1 33 | 4,1 43 | 23 | 63 53
2 2,1 42 | 6,1 22 | 32 | 52
3 1,3 | 3.1 1,2 | 6,2 1,1 5,1
) 1 2 3 4 5 6
1 2 3 4 5 6
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@ 1 2 3 4 5 6
©) O
1 2 3 4 5 6

Fig.1. Datamovement withn = 6, m = 3. (a) The permutation table. The numbers with coordinates (4, j) are (4, 5 ), 3(1, j). Forexample, («(1,1), 3(1,1)) =
(3,3),and ((1,2), 3(1,2)) = (2,1). (b) The transition graph. (c) The bipartite graph representation. The n thick edges are a perfect matching (a block-permu-
tation set). (d) After removing a perfect matching from the bipartite graph. Here for ¢ = 1, ..., n, vertex ¢ represents block B;.

can be partitioned into 7 block-permutation sets. The following
theorem shows it holds for the general case.

Theorem 1: The nm pages can be partitioned into m block-
permutation sets. Therefore, the nm pages of data can be parti-
tioned into m block-permutation data sets.

Proof: The data movement problem can be represented by
the bipartite graph, where every edge represents a page whose
data need to be moved into another block [see Fig. 1(c) for an
example]. It is known that for every bipartite graph G = (V, E)
with bipartition { A, B} (namely, AN B ={and AUB =V),
we have the Hall’s Marriage Theorem [6]:

For S C A, let N(S) denote the set of vertices in the graph

G that are adjacent to at least one vertex in S (that is, the

vertices in N(S) are the neighbors of the vertices in .S).

Then, the graph GG contains a matching of A if and only if

IN(S)| > |S| forall S C A.

For the bipartite graph we are considering here, fori = 1,...,n,
any ¢ vertices in the top layer have im outgoing edges and, there-
fore, are connected to at least ¢ vertices in the bottom layer.
Therefore, the bipartite graph has a perfect matching. The edges
of the perfect matching correspond to a block-permutation set.
If we remove those edges, we get a bipartite graph of degree
m — 1 for every vertex [see Fig. 1(c) and (d)]. With the same
argument, we can find another perfect matching and reduce the
bipartite graph to regular degree m — 2. In this way, we partition
the nm edges into m block-permutation sets. ]

A perfect matching in the bipartite graph can be found using
the Ford—Fulkerson Algorithm [14] for computing maximum
flow. The idea is to connect all the n top-layer vertices of the
bipartite graph to a source s and connect all the n bottom-layer
vertices to a sink ¢. Then a perfect matching in the bipartite
graph is equivalent to a maximum flow of capacity n between
the source s and the sink ¢. The Ford—Fulkerson Algorithm has
time complexity O(n?m), so decomposing the nm edges in the
bipartite graph into m perfect matchings has time complexity
O(n?*m?). Therefore, we can partition the nm pages into m
block-permutation sets in time O(n?m?).

III. CODING FOR MINIMIZING AUXILIARY BLOCKS

In this paper, we focus on the scenario where as few auxiliary
blocks as possible are used in the data movement process. In
this section, we show that coding techniques can minimize the
number of auxiliary blocks. Afterwards, we will study how to
use coding to minimize block erasures.

A. Data Movement Without Coding

When coding is not used, data are directly copied from page
to page. The following simple example shows that, in the worst
case, more than one auxiliary block is needed for data move-
ment. Note that D; ; denotes the data initially stored in the page
Pij-

Example 2: Letn = m = 2, and let the functions a(z, j) and

B(i, j) be

Itis simple to verify that without coding, there is no way to move
the data as requested with only one auxiliary block. To see that,
assume that only one auxiliary block B is used. Without loss
of generality, assume that we first copy the data in B;—the data
D11 and Dy o—into By, and then erase B;. In the next step, the
only reasonable choice is to write into 1 the data D;; and
D5 > (which are the data we want to eventually move into By).
After this writing, By has D ; and D1 », By has Dy ; and D3 »,
and By has D5 ; and D ». The objective of the data movement
has not been met yet. However, we can see that there is no way
to proceed: in the next step, if we erase By, the data D1 » will
be lost; if we erase By, the data Dj 1 will be lost. So the data
movement fails. It is simple to verify that no feasible solution
exists. Therefore, at least two auxiliary blocks are needed. [
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We now show that two auxiliary blocks are sufficient for data
movement without coding. The next algorithm uses two aux-
iliary blocks, which are denoted by By and Bj{. It operates in
a way similar to bubble sort. And it sorts the data of the m
block-permutation data sets in parallel.

Algorithm 1. (Bubble-Sort-Based Data Movement): Decom-
pose the nm pages of data into m block-permutation data sets.

For:i=1,...,n—1

{

Fory=4+1,....n

{

Copy all the data of B; into By;
Copy all the data of B, into Bj;
Erase B; and Bj;

Fork =1,...,m

{

Let D;, ;, and D;, ;, be the two pages of data in By and By,
respectively, that belong to the kth block-permutation data set.

Let p; j, be the unique page in B; such that when the data
movement process ends, the data stored in p; ;, will be from
the kth block-permutation data set.

If iz, jo) = ¢ (which implies 3(i2,j2) = j3 and
a(i1, j1) # 1), copy the data D;, ;, into the page p; j,;
otherwise, copy the data D;, ;, into the page p; ;.

}

Write into B; the m pages of data that are in By or By but
not in B;.

Erase By and Bj,.

}
}

In the above algorithm, for every block-permutation data set,
its data are not only sorted in parallel with other block-permu-
tation data sets, but are also always dispersed in n blocks (with
every block holding one page of its data). The algorithm uses
O(n?) erasures (the n blocks By, ..., B, are each erased n — 1
times, while the two auxiliary blocks By and By, are each erased
() times). If instead of bubble sorting, we use more efficient
sorting networks such as the Batcher sorting network [2] or the
AKS network [1], the number of erasures can be further reduced
to O(nlog®n) and O(nlogn), respectively. For simplicity, we
skip the details.

B. Storage Coding With One Auxiliary Block

In Algorithm 1, the only function of the two auxiliary blocks
By and Bj is to store the data of the data blocks B;, B; when
the data in B;, B; are being swapped. We now show how coding
can help reduce the number of auxiliary blocks to one, which is
clearly the best possible. Let By denote the only auxiliary block,
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l BO I Bl I Bz | B3 [ B4 ]Bs| B6 |B7[B8H Operation
forward pass
1 2 3 4 |5 6 |78 01 D oy
144 2 3 4 |5 6 |78 b2 @ o5
194265 3 4 |5 6 |78 63 P Oy B da
14426531 4 |5 6 |78 Oy B Oy
1304205301407 5/ 6 |78 O5 D ¢
104|12053014D7(506 6 |78 copy O¢
19420530114 B7|506|6 718 b7 B Og
10420530 14B7|506(6(708 8 copy Og
1041205130 14D7506|6|7D8|8
backward pass
104205301140 7|566|6|708|8 b7 B b6 B 03 D Oy B O
144205301140 7506|6|708 3 (|06 D O3 D oy DB Oy b dg
104205301140 7|566|6 813 05 D O4 B 01
1304205301140 7|566 2 |83 04 B 01 B O
1642053014607 6| 2 [8]3 03B 0 B o2 B g
144265301 7 6] 2 [8]|3 Oy g
1404265 1 7 |6] 2 [8]|3 51 D 6
144 5 1 7 6] 2 [8|3 b0 B 3
4 5 1 7 |6] 2 [8|3

Fig. 2. Example execution of Algorithm 2. In the rightmost column, ; denotes
the data in the page p; at that moment, for¢ = 0,1,...,8.

and let pg 1, Po,2, - - -, Po,m denote its pages. Fork =1,...,m,
statically store in page py i the bit-wise exclusive-OR of the n
pages of data in the kth block-permutation data set. We make
such a change in Algorithm 1:

When the datain B;, B; are swapped, instead of erasing them
together, we first erase B; and write data into B;, then erase B
and write data into B;.

This is feasible because for every block-permutation data set,
there are always at least n pages of data related to it stored in the
n + 1 blocks: n — 1 pages of those data are the original data in
the block-permutation data set, and the other page of data are the
bit-wise exclusive-OR of the data of the block-permutation data
set. The total number of block erasures here is of the same order
as the algorithm without coding. Therefore, if the AKS network
is used for swapping the data, O(n logn) block erasures will be
used in total.

IV. EFFICIENT STORAGE CODING OVER GF(2)

In this section, we present a data movement algorithm that
uses only one auxiliary block and 2n erasures. It erases every
block either once or twice, which is well balanced. The algo-
rithm uses coding over GF(2) and is very efficient.

For convenience, let us assume for now that every block has
only one page. The results will be naturally extended to the gen-
eral case where every block has m pages. (Note that the erasure
of a block will affect all the m block-permutation data sets. So
when m > 2, the sequence of block erasures need to be compat-
ible for the data movement of all those m sets.) Let By denote
the auxiliary block, and let py denote its page. For: = 1,...,n,
let p; denote the page in the block B;, and let D; denote the data
initially stored in the page p;. Let

a:{l,....,n} —={1,...,n}

be the permutation such that the data D; need to be moved into
the page p,(;)- Leta™ ! be the inverse permutation of c. Say that
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the n pages p1,p2, - - . , Pn can be partitioned into ¢ semi-cycles,
denoted by

017027-"7Ct'

Note that since right now we consider a block to have only one
page, a semi-cycle is just a cycle in the permutation «.. Every
semi-cycle C; (1 < ¢ < t) has a special page called tail, defined
as follows: if p; is the tail of C;, then for every other page p;, €
C;, we have j > k.

We use “@” to represent the bit-wise exclusive-OR of data.
The following algorithm uses 2n block erasures to move data. It
consists of two passes: the forward pass and the backward pass.
Note that in the algorithm below, whenever some data are about
to be written into a page, the data can be efficiently computed
from the existing data in the flash memory blocks (namely, from
the data currently stored in the flash memory). The details will
be clear later. Also note that for i = 1,2,...,n, Dy-1(;) is the
data that need to be moved into the page p;.

Algorithm 2. (GF(2)-Coding-Based Data Movement):

FORWARD PASS:
For: =1,2,...,n do:
If p; is not the tail of its semi-cycle, write
D; ® Do-1(;)
into the page p;_1; otherwise, write
D;
into the page p;_1. Then, erase the block B;.

BACKWARD PASS:

For: =n,n—1,...,1do:

Write
Da-1)
into the page p;. Then, erase the block B;_.

Example 3: Fig. 2 gives an example of the execution of Al-
gorithm 2 withn = 8 and ¢t = 2. Here

(a(1), (2),...,

Consequently, we have

a(8)) = (3,6,8,1,2,5,4,7).

(@ 1(1),a1(2),...,a 1(8) = (4,5,1,7,6,2,8,3).

The two semi-cycles are (p1,p3, ps, pr,p4) and (pz2, ps, ps). In
Fig. 2, each row is a step of Algorithm 2. The numbers are the
data in the blocks (for convenience, we use 7 to denote data D; in

the figure for 7z = 1,2, ..., 8). The rightmost column describes
the computation performed for this step, where 6; denotes the
data in p; then. O

The correctness of Algorithm 2 depends on whether the data
written into a page can always be derived from the existing data
in the flash memory blocks. Theorem 2 shows this is true.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 10, OCTOBER 2010

Theorem 2: When Algorithm 2 is running, at any moment,
fors = 1,2,...,n, if the data D; are not stored in the n + 1
blocks By, By, ..., By, then there must exist a set of data

{DiEBDjl?DleBDjz?Djz@Djs """ DjA-—l@Dk7Dk}

that are all stored in the n+ 1 blocks. Therefore, D; can be easily
obtained by computing the bit-wise exclusive-OR of the data in
the set.

Proof: Consider a semi-cycle C; (1 < ¢ < t), and let us
denote its pages by

PiysPiss -3 Piy-

Without loss of generality (WLOG), assume
a(i;) =ij41

forj =1,2,...,2 — 1 and

Oé(Lx) = Z'l.

Also assume that p;, is the “tail” of the semi-cycle, namely,
11 > 1; for 5 = 2,3,...,2. Now imagine a directed path S
as follows:
1) S has « vertices, representing the data D;,, D, ..
2) There is a directed edge from D;, to D,
7 =1,2,..., 2 — 1. The edge represents the data

D,
for

D i; © D Tj41t

For example, the data movement problem in Example 3 has two
semi-cycles, (p1,ps, ps, p7,p4) and (p2,pe, p5). We show the
corresponding directed path S in Fig. 3(a) and (b).

Consider the forward pass in the algorithm. In this pass, for
J = 2,3,...,m, right before the data D;, are erased, the data
D,;]f1 @ DL-J. are stored. Note that DL-J. corresponds to a vertex in
the directed path S, and D;,_, ®D;, corresponds to the directed
edge entering that vertex in S. So, for every vertex in S whose
corresponding data have been erased, there is a directed sub-
path in S entering it with this property: “the data represented
by the edges in this sub-path, as well as the data represented by
the starting vertex of the sub-path, are all stored in the n + 1
blocks.” This is the same as the condition stated in the theorem
[for instance, for the data movement problem in Example 3,
after three block erasures, the stored and un-stored data are as
shown in Fig. 3(c)]. As an example, consider the erased data
D3. The corresponding sub-path entering it contains the data
Dy, Dy ® D4 and D1 & D3, which are stored and can be used
to recover Ds.

When the forward pass of the algorithm ends, the data repre-
sented by the vertex D;, and all the edges in S are all stored in
the n + 1 blocks. Clearly, all the original data can be recovered.

Now consider the backward pass in the algorithm. In this
pass, first, the data D;_ are stored and then the data D;, are
erased. Then, for 5 = 1,2,...,z — 1, right before the data
D;; ® D;,,, are erased, the data D;; are stored. Note that D,
corresponds to a vertex in the directed path S, and D;, © D;,
corresponds to the directed edge leaving that vertex in S. So, for
every vertex in S whose corresponding data have been erased,
there is a directed sub-path in S leaving it with this property:
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(a) (b)
Dy @ D, D; @ Dy
@ CICCL

D; @ Dy

Dg @ D,

Dy @ Dy
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(c

) ;2
D\
P ® 0, \J&@DS
i
D,)
%

\
D7® Dy %\

-------

Dg @D D,

Fig. 3. Directed path S corresponding to a semi-cycle, whose vertices and edges represent data. (a) The directed path .S for semi-cycle (p1, p3, ps, p7, pa). (b) The
directed path .S for semi-cycle (p2, pe. ps). (c) The stored and un-stored data after three block erasures in the “forward-pass” of the data-movement algorithm.
The vertices and edges of solid thick lines represent the data that are stored at that moment. The vertices and edges of dashed thin lines represent the data that are

not stored at that moment.

“the data represented by the edges in this sub-path, as well as
the data represented by the end vertex of the sub-path, are all
stored in the n 4+ 1 blocks.” This is the same as the condition
stated in the theorem. So, the conclusion holds. |

Algorithm 2 can be easily extended to the general case where
every block has m > 1 pages. Use the algorithm to process the
m block-permutation data sets in parallel, in the same way as
Algorithm 1. Specifically, forz = 1,...,nand 5 = 1,...,m,
let p; r(i,j) denote the unique page in B; such that some data
in the jth block-permutation data set need to be moved into
Dik(i,5)- In the algorithm, every time B; is erased, write the data
related to the jth block-permutation data set into p; 1 (; ;). Since
every block-permutation set occupies exactly one page in each
block, there will be no conflict in writing.

V. STORAGE CODING WITH MINIMIZED NUMBER OF ERASURES

In this section, we present an algorithm that uses at most
2n — 1 erasures, which is worst-case optimal. It erases every
block either once or twice, which is well balanced. We further
show that it is NP hard to minimize the number of erasures for
every given instance, but our algorithm provides a 2-approxima-
tion. Namely, it uses at most twice the number of block erasures
compared to the optimal solution.

A. Optimal Solution With Canonical Labelling

The n blocks initially storing data can be labelled by
Bi,...,B, in n! different ways. Let y be an integer in
{0,1,...,n — 2}. We call a labelling of the n blocks that
satisfies the following constraint a canonical labelling with
parameter y:

“Fori=y+1,y+2,...,n—2andj=:1+2,24+3,...,n,
no data initially stored in the block B; need to be moved into
the block B;.”

Trivially, any labelling is a canonical labelling with param-
eter n — 2. However, given an instance of the data movement
problem, it is difficult to find a canonical labelling that mini-
mizes the value of .

We now present a data-movement algorithm for blocks that
have a canonical labelling with parameter y. It uses one auxiliary
block By, and uses

n+y+1<2n—-1

erasures. So the smaller ¥ is, the better. For convenience, let us
again assume that every block contains only one page, and let
pi, D;, &, o~ be as defined in the previous section. Let r denote
the number of bits in a page.! The algorithm can be naturally
extended to the general case, where every block has m > 1
pages, in the same way as introduced in the previous section.
Algorithm 3. (Data Movement With Linear Coding): This al-

gorithm is for blocks that have a canonical labelling with pa-
rameter y € {0,1,...,n — 2}. Let v1,72,. .., be distinct
nonzero elements in the field GF(2").

STEP 1: For ¢« = 0,1,...,y do: Erase B; (for: = 0

there is no need to erase By), and write into p; the data

ZZ=1 YDk

STEP 2: Fori = y + 1,y + 2,...,n do: Erase B;, and

write into p; the data D1 ;).

STEP 3: For¢ = y,y — 1,...,1 do: Erase B;, and write

into the page p; the data D, -1(;). Finally, erase By.

Theorem 3: Algorithm 3 is correct and uses
n+y+1<2n-1

erasures (note that the algorithm assumes that the blocks have a
canonical labelling with parameter y).

Proof: We show that each time a block B; is erased, it is
feasible to generate all the n pages of original data using the cur-
rent data stored in the other n pages. Denote by 6;, 0 < i < n,
the current data stored in the page p;, which are a linear com-
bination of the n pages of original data. The linear combination
written in each page can be represented by a matrix multiplica-
tion

H - (D1, Dy, Dp)" = (80,5 61,8001, -, 00) "
The matrix H defines the linear combination of the original data
written into each page. Consider the first step of the algorithm
when the block B; is erased. The data written in py,, for 0 <
h<1i-—1,are

n
on = Z Y Dy
k=1

'When r is greater than what is needed by Algorithm 3, which is nearly al-
ways true in practice, we can partition each page into bit strings of an appropriate
length, and apply the algorithm to the strings in parallel.
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and the data stored in py, for7 +1 < h < n, ared

6h = Dy,.

The matrix representation of this problem is

1 1 T b, 5o
71 Y2 Tn D, .
G SR D, 5

} . . ) i—1
; 5 : I
7ntomt i D, :
D, '

O(n—iyxi I On

where 0(,,_;); is the zero matrix of size (n — i) X 7, and I, _;
is the unit matrix of size (n — i) x (n — 7). Since this matrix
is invertible, it is feasible to generate all the original data and in
particular, the required data that need to be written into p;.

Fori=y+1,y+2,...,n, after erasing the block B; during
the second step of the algorithm, the data stored in py, for 0 <
h < y,are 8, = > ,_, v#Dy. The data written into py, for
y+1 < h<i—1,ared, = Da—l(h), and the data stored
inpp, forte +1 < h < n, are 0, = Dj,. These equations are
represented as follows:

o Dy b
7% é R Do :
n D3 6

. . . _ 1—1
S : : | bt
w oo M Do :
An—i Dn 671

where A,,_; is a matrix of size (n—y—1) x n defined as follows:
1) The hth row of the matrix A,,_; for1 < h <i—y—11is
a unit vector of length n containing a one in its (o~ (y +
h))th entry.
2) The hth row of the matrix A,,_; fori—y < h<n—y—1
is a unit vector that contains a one in its (y+ h+ 1)th entry.
Since there are no data that are moved from block B; to block
Bi,wherey+1 < i <mn-—2and?+ 2 < j < n, the first
i —y — 1 row vectors of the matrix A, ; are different from
the last n — ¢ row vectors of the matrix A,,_;. Therefore, the
matrix A,,_; contains a set of unit vectors where all the vectors
are different from each other. If we calculate the determinant
of the matrix on the left hand side according to the rows of the
matrix A,,_;, then we are left with an (y + 1) x (y + 1) matrix
of the form

1 1 1 - 1 1
71'21 71'22 71'23 T 71'2y Yiys1
Yiv Vi, Vi Vi, Yiyn

Yi, Vip Vi Vi, Viyaa

and its determinant is not zero because it is a Vandermonde ma-
trix. Therefore, the matrix on the left hand side is invertible, and
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it is feasible to generate all the original data D;, 1 < ¢ < n, and
in particular the data D, -1 (+) that need to be written into the
page p;.

For: = y,y — 1,...,1, after erasing the block B; during
the third step of the algorithm, the data stored in pj, for 0 <
h <i¢—1,are b, = Zzzl fyZDk, and the data stored in pj,,
fori+1 < h < n,are d, = Da—l(h). Therefore, the matrix
representing this equations is

1 1 1 D 56
Y1 V2 te Tn D .
“oon o m D, :

: . ) ) 301 | dica
: : : | i
-1 -1 - :
71 Y2 o D, 1 :
P’n,—i Dn 6”

where P,,_; is a matrix consisting of n — ¢ row vectors of length
n, and its hth row vector, 1 < h < n — 4, is a unit vector of
length n which has a one in its @~ (i + h)th entry and zero
elsewhere. As before, all the unit vectors in the matrix FP,,_; are
different from each other. Therefore, the matrix on the left hand
side is invertible, and it is feasible to generate all the original
data D;, 1 < ¢ < n, and in particular the data D, —: (i) that need
to be written into the page p;. ]

The above algorithm uses Reed—Solomon codes for data
movement. It can be extended to general MDS codes.

The following theorem shows an interesting property of
canonical labelling. Note that since every block has some data
that need to be moved into it from some other block, every
block needs to be erased at least once. So at least n 4- 1 erasures
(including erasing the auxiliary block) are needed in any case.

Theorem 4: Assume r, the number of bits in a page, is suffi-
ciently large. Let y € {0,1,...,n — 2}. There is a data-move-
ment solution using

n+y+1

erasures if and only if there is a canonical labelling of the blocks
with parameter y.

Proof: First, assume that there is a data-movement solution
using n+ y + 1 erasures. Since every block (including the auxil-
iary block) is erased at least once, there are at least n — y blocks
that are erased only once in the solution. Pick n—y blocks erased
only once and label them as By1, Byy2,..., B, this way: “in
the solution, when y +1 < ¢ < j < n, B; is erased before B;.”
Label the other y blocks as By, ..., B, arbitrarily. Let us use
contradiction to prove that no data in B; need to be moved into
B;,wherei > y+ 1,7 > 1+ 2.

Assume some data in B; need to be moved into B;. After
B, is erased, those data must be written into I3; because B; is
erased only once. When the solution erases B;;1 (which hap-
pens before B; is erased), the data mentioned above exist in both
B; and Bj. So at this moment, there are at most nm — 1 pages
of distinct data; however, it is impossible to recover all the nm
pages of original data using only nm — 1 pages of distinct data.
So there is a contradiction. Therefore, with the above labelling,
we have already found a canonical labelling with parameter y.
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Fig. 4. NP hardness of the data movement problem. (a) A simple undirected graph G. (b) The corresponding regular directed graph GG'. Here every edge between
two different vertices has arrows on both sides, representing the two directed edges of opposite directions between those two vertices. There is a symbol X beside

every directed loop, representing : parallel loops of that vertex.

The other direction of the proof comes from the existence of Al-
gorithm 3. [ |

We can easily make Algorithm 3 use 2n—1 erasures by letting
y = n — 2 and using an arbitrary block labelling. On the other
hand, 2n — 1 erasures are necessary in the worst case. To see
that, consider an instance where m > n and every block has
some data that need to be moved into every other block. For
such an instance, a canonical labelling has to have y = n — 2,
which implies n 4+ y + 1 = 2n — 1 erasures by Theorem 4. So
Algorithm 3 is worst-case optimal.

B. Optimization for Each Given Instance

A specific instance of the data movement problem may re-
quire less than 2n — 1 erasures. So it is interesting to find an
algorithm that minimizes the number of erasures for each given
instance. The following theorem shows that this is NP hard.

Theorem 5: For the data movement problem, it is NP hard to

minimize the number of erasures for every given instance.

Proof: It has been shown in Theorem 4 and its proof that
minimizing the number of erasures is as hard as finding a canon-
ical labelling for the blocks with a minimized parameter y. So
we just need to show that finding a canonical labelling with min-
imized vy is NP hard. We prove it by a reduction from the NP hard
MAXIMUM INDEPENDENT SET problem.

Let Gy = (Vy, Ey) be any simple undirected graph. Let d(v)
denote the degree of vertex v € Vp and let A = max,ev, d(v)
denote the maximum degree of Gy. We build a regular directed
graph G’ = (V1 U V2 U V3, E’) as follows. Let |Vp| = V1| =
[V2| = |Vs]. For all v € Vg, there are three corresponding ver-
tices v; € Vi,v9 € Vo, vg € V3. If there is an undirected edge
between u,v € V, in Gy, then there are two directed edges
of opposite directions between u; and v; for 2 = 1,2,3 and
7 = 1,2,3. For all v € V,, there are also two directed edges
of opposite directions between v1, v2 and between vs, vs. Add
some loops to the vertices in G’ to make all vertices have the
same out-degree and in-degree 3A + 2. See Fig. 4 for an ex-
ample.

The graph G’ naturally corresponds to a data movement
problem with n = 3|V| and m = 3A + 2, where G’ is its
transition graph (the transition graph is defined in Section II).
Finding a canonical block labelling with minimized parameter

y for this data movement problem is equivalent to finding
t = n — y vertices—with the value of ¢ maximized—in G’

1,02, ...,0¢

such that fors = 1,2,...,t —2and 7y = ¢+ 2,7+ 3,...,¢,
there is no directed edge from a; to a;. We call such a set of ¢
vertices—with ¢ maximized—the MAXIMUM SEMI-INDEPENDENT
SET of G'. For all v € Vj, let N(v) denote the neighbors of v
in Go.

Claim 1: “There is a maximum semi-independent set of G’
where V v € V), either all three corresponding vertices v1 €
Vi,vo € Va,v3 € V3 are in the set, or none of them is in the
set. What is more, if v1,v2, v3 are in the set, then no vertex in
{w1, w2, ws|lw € N(v)} is in the set.” To prove Claim 1, let
(a1,as,...,a:)denote a maximum semi-independent set (MSS)
of G’ (note that the order of the vertices in the set matters).
Consider two cases:

Case 1: One of {v1,v2,v3} is in the MSS of G'. WLOG, say
itis v1. At most two vertices—say b and c—in {wy, we, w3|w €
N(v)} can be in the MSS, because otherwise due to the bi-di-
rectional edges between them and vy, there would be no way to
place them in the MSS. Let us remove b, ¢ from the MSS and
add ve, v3 right after v1 in the MSS. It is simple to see that we
get another MSS.

Case 2: Two of {v1,v9,v3} are in the MSS of G'. WLOG,
say they are v; and vs. At most, one vertex—say b—in
{w1, w2, w3lw € N(v)} can be in the MSS, for a similar
reason as Case 1. In the MSS, let us remove b, move vo right
behind v;, and add vs right behind v2. Again, we get an MSS.

So in this way, we can easily convert any MSS into an MSS
satisfying the conditions in Claim 1. So Claim 1 is true.

Claim 2: “A setof vertices {w(1),w(2),...,w(k)} is a max-
imum independent set of G if and only if the set of vertices

(w(D) 1, w(1)2, w(l)s, w(2)1, w(2)2, w(2)s
. 711)(]{3)17 U)(k)Q./ w(k)g)

is an MSS of G’.” Tt is simple to see that this is a consequence
of Claim 1.

So given a canonical labelling with minimized parameter y
for the data movement problem with G’ as the transition graph,
in polynomial time we can convert it into an MSS of G’, from
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that into an MSS of G’ satisfying the conditions of CLAIM 1,
and finally into a maximum independent set of GG. So, it is NP
hard to find a canonical labelling with minimized parameter y.
So minimizing the number of erasures is NP hard. [ |

Therefore, there is no polynomial time data-movement algo-
rithm that minimizes the number of erasures for every given in-
stance unless P = N P. However, since every algorithm uses at
least n + 1 erasures, and Algorithm 3 can easily achieve 2n — 1
erasures (by setting y = n — 2), we see that the algorithm is a
2-approximation algorithm.

VI. CONCLUSION

In this paper, we study the data movement problem for NAND
flash memories. We present sorting-based algorithms that do not
utilize coding, which can use as few as O(n logn) erasures for
moving data among n blocks. We show that coding techniques
can not only minimize the number of auxiliary blocks, but also
reduce the number of erasures to O(n). In particular, we present
a solution based on coding over GF(2) that requires only 27 era-
sures. We further present a linear-coding solution that requires
at most 2n — 1 erasures, which is worst-case optimal. Both so-
lutions based on coding achieve an approximation ratio of two
with respect to the minimum possible number of block erasures
for each instance. They also balance the number of erasures in
different blocks very well.

The data movement problem studied here can have numerous
practical variations. In one variation, the data to be moved into
each block are specified, but the order of the data in that block is
allowed to be arbitrary. The algorithms presented in this paper
can easily solve this variation of the problem by first assigning
an arbitrary page order to each block (which does not affect
the performance of the algorithms). In another variation, we are
only given a specification as to which group of data needs to
be moved into the same block, without specifying which block.
Furthermore, the final data may be a function of the data origi-
nally stored in the blocks. Such variations require new solutions
for optimal performance. They remain open for future research.
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