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Windowed Decoding of Spatially Coupled Codes
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Abstract—Spatially coupled codes have been of interest re-
cently owing to their superior performance over memoryless
binary-input channels. The performance is good both asymp-
totically, since the belief propagation thresholds approach the
Shannon limit, as well as for finite lengths, since degree-2 variable
nodes that result in high error floors can be completely avoided.
However, to realize the promised good performance, one needs
large blocklengths. This in turn implies a large latency and de-
coding complexity. For the memoryless binary erasure channel,
we consider the decoding of spatially coupled codes through a
windowed decoder that aims to retain many of the attractive
features of belief propagation, while trying to reduce complexity
further. We characterize the performance of this scheme by
defining thresholds on channel erasure rates that guarantee a
target erasure rate. We give analytical lower bounds on these
thresholds and show that the performance approaches that of
belief propagation exponentially fast in the window size. We give
numerical results including the thresholds computed using density
evolution and the erasure rate curves for finite-length spatially
coupled codes.

Index Terms—Belief propagation (BP), erasure channels, itera-
tive decoding, low-density parity-check codes (LDPC), spatial cou-
pling, windowed decoding (WD).

I. INTRODUCTION

S PARSE graph codes have been of great interest in the
coding community for close to two decades, after it was

shown that statistical inference techniques on graphical models
representing these codes had decoding performance that sur-
passed that of the best known codes. One class of such codes
are low-density parity-check (LDPC) codes, which although
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introduced by Gallager in the 1960s [2] were rediscovered in
the 1990s after the advent of Turbo Codes [3] and iterative
decoding. Luby et al. showed [4], [5] that a decoder based on
belief propagation (BP) [6] had very good performance for
these codes over the binary erasure channel (BEC). This su-
perior performance of LDPC codes was shown by Richardson
and Urbanke [7] to be true over a broader class of binary-input,
memoryless, symmetric-output (BMS) channels. Furthermore,
these codes were optimized to approach capacity on many of
these BMS channels [8], [9].
The convolutional counterparts of LDPC block codes were

first introduced by Felstrom and Zigangirov in [10]. There is
considerable literature on the constructions and analysis of
these ensembles [11]–[14]. The BP thresholds for these ensem-
bles were reported in [15] and shown to be close to capacity in
[16]. In [17], the authors construct regular LDPC convolutional
codes based on protographs [18] that have BP thresholds
close to capacity. In [19], Kudekar et al. considered convo-
lutional-like codes which they called spatially coupled codes
and showed that the BP thresholds of these codes approached
the maximum a posteriori (MAP) thresholds of the underlying
unstructured ensembles over the BEC. This observation was
made for protograph-based generalized LDPC codes in [20].
Evidence for similar results over general BMS channels was
given in [21], and proven recently in [22]. Moreover, this
phenomenon, termed threshold saturation, was shown to be a
more generic effect of coupling by showing an improvement in
performance of systems based on other graphical models: the
random -SAT, -COL problems from computation theory,
Curie–Weiss model from statistical mechanics [23], and LDGM
and rateless code ensembles [24]. Nonbinary LDPC codes ob-
tained through coupling have also recently been investigated
[25].
The good performance of spatially coupled codes is apparent

when both the blocklength of individual codes and the coupling
length becomes large. However, as either of these parameters
becomes large, BP decoding becomes complex. We therefore
consider a windowed decoder (WD) that exploits the structure
of the coupled codes to reduce the decoding complexity while
maintaining the advantages of the BP decoder in terms of per-
formance. An additional advantage of the WD is the reduced la-
tency of decoding. The WD scheme studied here is the one used
to evaluate the performance of protograph-based codes over era-
sure channels with and without memory [26]–[28]. The main
result of this paper is that the WD thresholds approach the BP
thresholds exponentially in the size of the window . Since
the BP thresholds are themselves close to the MAP thresholds
for spatially coupled codes, WD thus gives us a way to achieve
close to ML performance with complexity reduced further be-
yond that of the BP decoder.

0018-9448/$31.00 © 2012 IEEE
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TABLE I
BP THRESHOLDS

The rest of this paper is organized as follows. Section II gives
a brief introduction to spatially coupled codes. In Section III, we
discuss the WD scheme. We state here the main result of this
paper which we prove in Section IV. We give some numerical
results in Section V and conclude in Section VI. Much of the
terminology and notation used in the paper is reminiscent of the
definitions in [19] and we often refer the reader to this paper.

II. SPATIALLY COUPLED CODES

We describe the spatially coupled ensemble that
was introduced in [19] in terms of its Tanner graph. There are

variable nodes at each position in .Wewill
assume that there are check nodes at every integer posi-
tion, but only some of these interact with the variable nodes.
The variable (check) nodes at position constitute the sec-
tion of variable (check, resp.) nodes in the code. The sections
of variables are together referred to as the chain and is called
the chain length. For each of the edges incident on a vari-
able at position , we first choose a section uniformly at random
from the set , then choose a check uni-
formly at random from the checks in the chosen section,
and connect the variable to this check. We refer to the param-
eter as the coupling length. It can be shown that this proce-
dure amounts roughly to choosing each of the connections
of a check node at position uniformly and independently from
the set . Observe that when ,
this procedure gives us copies of the -regular uncou-
pled ensemble. Since we are interested in coupled ensembles,
we will henceforth assume that . Further, we will typi-
cally be concerned with this ensemble when , in which
case the design rate given by [19]

is close to .

A. BP Performance

In the following, we will briefly state known results that are
relevant to this work. See [19] for detailed analysis of the BP
performance of spatially coupled codes. The BP performance of
the spatially coupled ensemble when can
be evaluated using density evolution (DE). Denote the average
erasure probability of a message from a variable node at position
as . We refer to the vector as the
constellation.

Definition 1 (BP Forward DE): Consider the BP decoding of
a spatially coupled code over a BEC with channel
erasure rate . We can write the forward DE (FDE) equation as

follows. Set the initial constellation to be
and evaluate the constellations according to

(1)
This is called the parallel schedule of the BP FDE.

For ease of notation, we will write the equation

as

(2)

It is clear that the function is monotonic in each of its argu-
ments.

Definition 2 (FP of BP FDE): Consider the parallel schedule
of the BP FDE for the spatially coupled code
over a BEC with erasure rate . It can be easily seen from
the monotonicity of in (2) that the sequence of constel-
lations are ordered as , i.e.,

(the ordering is pointwise).
Since the constellations are all lower bounded by the all-zero
constellation , the sequence converges pointwise to a limiting
constellation , called the fixed point (FP) of the FDE.

It is clear that the FP of FDE satisfies

.

Definition 3 (BP Threshold): Consider the parallel schedule
of the BP FDE for the spatially coupled code over
a BEC with erasure rate . The BP threshold
is defined as the supremum of the channel erasure rates

for which the FP of FDE is the all-zero constellation, i.e.,
.

Table I gives the BP thresholds evaluated from BP FDE
for the coupled ensemble for a few
values of and rounded to the sixth decimal place. The
MAP threshold of the underlying -regular ensemble is

. We see from the table that
the BP thresholds for spatially coupled codes are
close to the MAP threshold of the -regular unstructured
code ensemble. Note that some of the threshold values in
Table I are larger than the MAP threshold of the underlying

-regular ensemble. This is because the rates of the spa-
tially coupled ensembles are smaller than the -regular
ensemble, and depend on the values of and as stated in the
beginning of this section.
It was shown in [19] that the BP thresholds satisfy
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This means that the BP threshold saturates to the MAP
threshold, and we can obtain MAP performance with the re-
duced complexity of the BP decoder. Later, when we analyze
the WD, we will want to keep the coupling length finite and
hence will be concerned with the quantity

(3)

as a measure of the performance of the BP decoder. It immedi-
ately follows from [19, Th. 10] that

III. WINDOWED DECODING

The WD exploits the structure of the spatially coupled codes
to break down the BP decoding scheme into a series of subop-
timal decoding steps—we tradeoff the performance of the de-
coder for reduced complexity and decoding latency. When de-
coding with a window of size , the WD performs BP over the
subcode consisting of the first sections of the variable nodes
and their neighboring check nodes and attempts to decode a
subset of symbols (those in the first section) within the window.
These symbols that we attempt to decode within a window are
referred to as the targeted symbols. Upon successful decoding
of the targeted symbols (or when a maximum number of itera-
tions have been performed), the window slides over one section
and performs BP, attempting to decode the targeted symbols in
the window in the new position.
More formally, let be the constellation representing the av-

erage erasure probability of messages from variables in each of
the Section I through . Initially, the window consists only of
the first sections in the chain. We will refer to this as the first
window configuration, and as the window slides to the right, we
will increment the window configuration. In other words, when
the window has slid through sections to the right (when
it consists of sections ), it is said to be in
the window configuration. The window constellation,
denoted , is the average erasure probability of the variables
in the window configuration. Thus

for , where we assume that . Thus, the
window constellation, , represents the “active” sections

within the constellation . While referring to the entire constel-
lation after the action of the window, we will write .
When the window configuration being considered is clear from
the context, with some abuse of notation, we drop the from
the notation and write to denote the window
constellation.

Remark 1 (Note on Notation): When we wish to emphasize
the size of the window when we write the constellation, we
write . Note that the
window configuration and the window size are specified as
subscripts within curly brackets and angle brackets ,

respectively. Finally, when the constellation after a particular
number of iterations of DE is to be specified, we write

, where the iteration number ap-

pears as a superscript within parentheses . Although
would be the most general way of specifying the window con-
stellation for the window configuration with a window of
size after iterations of DE, for notational convenience, we
will write as few of these parameters as possible based on the
relevance to the discussion.

A. Complexity and Latency

For the BP decoder, the number of iterations required
to decode all the symbols in a spatially cou-
pled code depends on the channel erasure rate . Whereas
when , this required number of it-
erations can be fixed to a constant number, and when

, the number of itera-
tions scales as [29]. Therefore, in the waterfall region, the
complexity of the BP decoder scales as . For the WD
of size , if we let the number of iterations performed scale
as , the overall complexity is of the order .
Thus, for small window sizes , we see that the
complexity of the decoder can be reduced. A larger reduction
in the complexity is possible if we fix the number of iterations
performed within each window.
Another advantage of using the WD is that the decoder only

needs to know the symbols in the first sections of the code
to be able to decode the targeted symbols. Therefore, in la-
tency-constrained applications, the decoder can work on the fly,
resulting in a latency which is a fraction that of the BP de-
coder.

B. Asymptotic Performance

The asymptotic performance of the spatially
coupled ensemble with WD can be analyzed using DE as was
done for the BP decoder. We will consider the performance of
the ensemble with when the transmission happens
over a BEC with channel erasure rate . Further, we
will assume that for each window configuration, infinite rounds
of message passing are performed.

Definition 4 (WD FDE): Consider the WD of a
spatially coupled code over a BEC with channel erasure rate
with a window of size . We can write the FDE equation as
follows. Set the initial constellation according to

.

For every window configuration , let

and evaluate the sequence of window constellations
using the update rule
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where for every , for indices , we set
on the right-hand side. Then, set as

.

Discussion: Note that the constellation keeps track of
the erasure probabilities of targeted symbols of all window con-
figurations up to the , followed by erasure probability of 1 for
the variables in sections through , and zeros for sections
outside this range. As defined, discards all information ob-
tained by running theWD in its configuration apart from the
values corresponding to the targeted symbols. In practice, it is
more efficient to define

otherwise.

In the sequel, we will stick to Definition 4. We do this for
two reasons: first, discarding some information between two
window configurations can only perform worse than retaining
all the information; and second, this assumption makes the
analysis simpler since we then have .

Definition 4 implicitly assumes that the limiting window con-
stellations exist. The following guarantees that the updates
for are well defined.

Lemma 5 ( Window Configuration FP of FDE): Consider
the WD FDE of a spatially coupled code over a
BEC with erasure rate with a window of size . Then, the
limiting window constellation exists for each . We
refer to this constellation as the window configuration FP
of FDE.

Proof: As noted earlier, , and

. By induction, from the monotonicity of , this

implies that . Since these constellations
are lower bounded by , the window configuration FP of
FDE exists for every .

The window configuration FP of FDE therefore satisfies

(4)

for every . Since the vector has nonzero values
by definition, from the continuity of the WD FDE equations,
so do the vectors . Hence, cannot satisfy (4), i.e.,
cannot be the window configuration FP of FDE. Therefore,

. This means that WD can never reduce the
erasure probability of the symbols of a spatially coupled code to
zero, although it can be made arbitrarily small by using a large
enough window. Therefore, an acceptable target erasure rate
forms a part of the description of the WD. We say that the WD
is successful when .

Lemma 6 (Maximum of ): The vector obtained at
the end of WD FDE satisfies

. Moreover, independent of such that
.

Proof: By definition, . The claim

is true for since . For
the window configuration, it is clear from Definition 4 that

. By induction, from the

monotonicity of , it follows that for in
this range.
For , the aforementioned claim is

not valid because we defined for and we
cannot make use of the monotonicity of since some ar-
guments (corresponding to sections up to the section) are
increasing and others (corresponding to the sections beyond
the section) decreasing. Nevertheless, we can still claim
that where is the vector of
erasure probabilities obtained after WD for a spatially coupled
code with an infinite chain length, i.e., . For ,
the sequence is nondecreasing and since the
are probabilities, they are in the bounded, closed interval .
Consequently, the limit exists in the interval

, and .

As a consequence of Lemma 6, we can say that the WD is
successful when . This definition of the success of WD
is independent of the chain length and allows us to compare
the performance of WD to that of the BP decoder through the
thresholds defined in (3). Note that although the upper bound
for in Lemma 6 is a trivial bound, we will in the following
give conditions when can be made smaller than an arbitrarily
chosen , thereby characterizing the WD thresholds.

Definition 7 (WD Thresholds): Consider the WD of a
spatially coupled code over a BEC of era-

sure rate with a window of size . The WD threshold
is defined as the supremum of channel

erasure rates for which .

Discussion: Since we defined the WD threshold based on ,
it is clear that this is independent of the chain length . On the
other hand, if we used as the condition for
success of the WD in our definition, we would obtain an -de-
pendent threshold. But denotes the “worst case” remanant era-
sure probability after WD, and imposing constraints on there-
fore guarantees good performance for codes with any .
Note that keeping is sufficient to guarantee an a poste-

riori erasure probability smaller than because

We will now state the main result in this paper and prove it in
the following section.

Theorem 8 (WD Threshold Bound): Consider WD of the
spatially coupled ensemble over the BEC. Then,

for a target erasure rate , there exists a positive integer
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such that when the window size , the
WD threshold satisfies

(5)

Here, , and are strictly positive constants that de-
pend only on the ensemble parameters , and .

Theorem 8 says that the WD thresholds approach the BP
threshold defined in (3) at least exponentially fast
in the ratio of the size of the window to the coupling length
for a fixed target erasure probability . Moreover, the sen-
sitivity of the bound to changes in is small in the exponent in
(5) owing to the factor, but larger in the first term in the
product on the right-hand side of (5) where it is roughly linear
in . However, since we intend to set to be very small, e.g.,

, the first term does not influence the bound heavily. The
requirement that is necessary to keep the term
within parentheses in the exponent nonnegative. Therefore, the
minimum window size required, , also depends on the
constants , and and, in turn, on the ensemble parameters

, and .
The bound guaranteed by Theorem 8 is fairly loose. Numer-

ical results suggest that the minimum window size is
actually much smaller than the bound obtained from analysis
(cf., Section IV). DE also reveals that for a fixed window size,
the WD thresholds are much closer to the BP threshold than the
bound obtained from Theorem 8.
We note here that the gap between analytical results and nu-

merical experiments is mainly due to the reliance on bounding
the DE function in (2) using the counterpart for regular unstruc-
tured LDPC ensembles, which proves to be easier to handle
than the multivariate (2) (see, e.g., the bound in (11)). However,
the scaling of the WD thresholds with the window size and the
target erasure probability seems to be as dictated by the bound
in (5), suggesting that Theorem 8 captures the essence of the
WD algorithm.
Table II gives the WD thresholds obtained through FDE for

the spatially coupled ensemble for
different target erasure rates and different window sizes .
These thresholds have been rounded to the sixth decimal point.
A few comments are in order. As can be seen from the table, the
thresholds are close to
even for window sizes that are much smaller than the
obtained analytically, e.g., . Moreover, the WD thresh-
olds are more sensitive to changes in for small window sizes
where the bound in Theorem 8 is not valid. It is obvious that the
thresholds decrease as is decreased. Also note that for a fixed
target erasure rate, the window size can be made large enough
to make the WD thresholds close to the BP threshold.

IV. PERFORMANCE ANALYSIS

In this section, we prove Theorem 8 in steps. First, we an-
alyze the performance of the first window configuration. We
will characterize the first window configuration FP of FDE.

TABLE II
WD THRESHOLDS

Fig. 1. First window configuration FP of FDE for the
ensemble with a window of size for . The left

and the right boundaries are fixed at 0 and 1, respectively. The sections within
the window are indexed from 1 to . The first section has a FP erasure
probability .

We will establish that for the variables in the first section of
the window, the FP erasure probability can be made small at
least double exponentially in the size of the window. We will
show that this is possible for all channel erasure rates smaller
than a certain , which we will call the first window threshold

, provided the window size is larger than a
certain minimum size.
Once we have this, we consider the performance of the

window configuration for . In this case also, we will
show that the FP erasure probability of the first section within
the window is guaranteed to decay double exponentially in the
window size. As for the first window configuration, this result
holds provided the window size is larger than a certain minimal
size and this time the minimal size is slightly larger than the
minimal size required for the first window configuration. More-
over, such a result is true for channel erasure rates smaller than
a value which is itself smaller than the first window threshold,
and this value will be our lower bound for the WD threshold.

A. First Window Configuration

From Definition 4, FDE for the first window configuration
amounts to the following. Set and evaluate the se-

quence of window constellations according to

.
(6)

Since is nondecreasing, i.e., , so is the

first window configuration FP, , by induction and mono-
tonicity of .
Fig. 1 shows the first window configuration FP of FDE for

the ensemble with a window of size
for a channel erasure rate .

The scheduling scheme used in the definition of the window
configuration FPs is what is called the parallel schedule. In gen-
eral, we can consider a scheduling scheme where, in each step,
a subset of the sections within the window are updated. We say
that such an arbitrary scheduling scheme is admissible if every
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section is updated infinitely often with the correct boundary con-
ditions, i.e., with the correct values set at the left and the right
ends of the window. It is easy to see from the standard argument
of nested computation trees (see, e.g., [19]) that the FP is inde-
pendent of the scheduling scheme.
We know that the first window configuration FP of FDE,
, is nondecreasing, i.e., . The fol-

lowing shows the ordering of the FP values of individual sec-
tions in windows of different sizes. With the understanding that
we are considering only the first window configuration in this
section, we will drop the window configuration number from
the notation for window constellations throughout this section
for convenience.

Lemma 9 (FPs and Window Size): Let and de-
note the first window configuration FPs of FDE with windows
of sizes and , respectively, for . Then

where denotes the FP erasure probability of the sec-
tion in a window of size .

Proof: Consider the following schedule. Set
and evaluate the sequence of window constellations

according to (6). Clearly, we have

so that the sequence is pointwise nonincreasing by
induction. We claim that this schedule is admissible. This is
true because the DE updates are first performed infinitely many
times over the first sections to obtain , and then over
all the sections infinitely many times again. Therefore,
the updates are performed over all sections infinitely often with
the correct boundary conditions. The limiting FP must hence be
exactly and the first inequality in the statement of the
lemma holds. Intuitively, this is true because in going from
to and checking the section, we have moved further
away from the right end of the window (where ) while
remaining at the same distance from the left end (where ).
To prove the second inequality, consider the following

schedule. Set and evaluate

the sequence of constellations according to (6). Since

, we must have and
by induction the sequence of constellations thus obtained is
also pointwise nonincreasing. Again we claim that the afore-
mentioned schedule is admissible. This is true because we first
update all sections within the window and also the zeroth
section infinitely often, and then set the boundary condition
that the zeroth section also has all variables completely known.
In all, every section within the window gets updated infinitely
often with the correct boundary conditions. The limiting FP
must hence be exactly and the second inequality claimed
in the statement of the lemma follows. As in the previous case,
this is intuitively true because in going from the
section with window size to the section with window

size , we have moved closer to the left end of the window
while maintaining the distance from the right end.

We now give some bounds on the FP erasure probabilities of
individual sections within a window.

Lemma 10 (Bounds on FP): Consider the WD of the
ensemble with a window of size over a

channel with erasure rate and . The first window
configuration FP satisfies

for , where
.

We relegate the proof to Appendix I. The following shows
that once the FP erasure probability of a section within the
window is smaller than a certain value, it decays very quickly
as we move further to the left in the window.

Lemma 11 (Double Exponential Tail of the FP): Consider
WD of the ensemble with a window of size
over a channel with erasure rate . Let and let
be the first window configuration FP of FDE. If there exists an

such that , then

where and .
Proof: Since the FP is nondecreasing, we have

(7)

which can be applied recursively to obtain

(8)

where and are as defined in the statement. It is worthwhile
to note that is a lower bound on the breakout value for the

-regular ensemble [30]. The emergence of the breakout
value in this context is not entirely unexpected since it is known
that for the -regular ensemble, the erasure probability
decays double exponentially in the number of iterations below
the breakout value, and in case of spatially coupled ensembles,
the counterpart for the number of iterations is the number of
sections (cf. (7)).

We now show that the FP erasure probability of a message
from a variable node in the first section, , can be made small
by increasing the window size for any .
Assuming that the window size is “large enough,” we will count
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the number of sections, starting from the right, that have a FP
erasure probability larger than a small for a channel erasure
rate .

Definition 12 (Transition Width): Consider WD of a
spatially coupled code over a BEC of erasure rate

. Let be the first window configuration FP of FDE. Then, we
define the transition width of as

Note that from the definition of the transition width, it de-
pends on the window size . We first upper bound

such that the upper bound is independent of the window
size , and then claim from Lemma 9 that by employing a
window whose size is larger than , we can guarantee

.

Definition 13 (First Window Threshold): ConsiderWD of the
spatially coupled ensemble with a window of size

over a BEC with erasure rate . The first window threshold
is defined as the supremum of channel era-

sure rates for which the first window configuration FP of FDE
satisfies .

From Definitions 12 and 13, we can see that by ensuring that
, we can bound .

Proposition 14 (Maximum Transition Width): Consider the
first window configuration FP of FDE for the
spatially coupled ensemble with a window of size for

E. Then

provided . Here, , and ,
and are strictly positive constants that depend only on the
ensemble parameters , and .

The proof is given in Appendix II. This means that the
smallest window size that guarantees for a channel
erasure rate is

where . When ,
we have

(9)

Discussion: We restricted E in Proposition 14 to ob-
tain constants that are independent of . As can be seen from
the proof of the proposition, these constants are dependent on ,
unless each is optimized in the range E. As we let the minimum
in E approach , the constants in the expression for

blow up and the upper bound will be useless. It is there-
fore necessary to keep the minimum of E strictly larger than

and the value chosen in the above was motivated by
our intent to ensure that the first window threshold was closer to

than to . Note that the increase in the
upper bound for with decrease in is purely an artifact
of the upper bounding technique we have employed, i.e., it is
obvious that as we decrease , also decreases.

B. Window Configuration,

We now evaluate the performance of the WD scheme when
the window has slid a certain number of sections from the left
end of the code. We arrive at conditions under which is guar-
anteed to be smaller than while operating with a window of
size . We start by establishing a property of .

Lemma 15 (FP Equation Involving ): Consider the function
where

where

.

Then, there exists a solution to the equation such
that . Moreover, is the smallest such constellation, i.e.,
if , then .

Proof: We have

Hence, if we define as follows:

then it is clear that .
Note that any FP of the function has to satisfy
for the same channel erasure rate from the

monotonicity of . In particular, . From the con-
tinuity of the DE equations in Definition 4, it follows that is
the least solution to the equation , since it is the lim-
iting constellation of the sequence of nondecreasing constella-
tions .

We defer the proof of the following proposition to
Appendix III, which is the central argument in the proof
of Theorem 8. Using the bound on the maximum transition
width from Proposition 14, we obtain an upper bound on for
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Fig. 2. Bit erasure probability of the
spatially coupled code with achieved with a WD of window sizes

and 8.

a given window size and erasure rate E. From this, we
arrive at a lower bound for that guarantees when is an
arbitrarily chosen value smaller than (which depends only
on ) and the window size is larger than (which
depends only on the code parameters , and ). This
gives us our lower bound on the WD threshold.

Proposition 16 (WD and FW Thresholds): Consider WD of
the spatially coupled ensemble with a window of
size over a BECwith erasure
rate . Then, we have

provided , where is
the first window threshold.

From Proposition 16 and (9), we immediately have that

provided . Bymaking the substitution ,
we see that this proves Theorem 8.

V. EXPERIMENTAL RESULTS

In this section, we give results obtained by simulating WD
of finite-length spatially coupled codes over the BEC. The code
used for simulation was generated randomly by fixing the pa-
rameters , , with coupling length

and chain length . The blocklength of the code
was hence and the rate was .

Fig. 3. Average number of iterations for BP and WD as a function of the
channel erasure rate is shown for each window size in solid lines. For the WD,
we show in dashed lines, the average number of iterations required within each
window configuration.

From Table I, the BP threshold for the ensemble to which this
code belongs is

.
Fig. 2 shows the bit erasure rates achieved by using win-

dows of length , i.e., the number of bits within each
window was and 8192, respectively. From
the figure, it is clear that good performance can be obtained for
a wide range of channel erasure rates even for small window
lengths, e.g., . In performing the simulations above,
we let the decoders (BP and WD) run for as many iterations as
possible, until the decoder could solve for no further bits. For
the WD, this meant that within each window configuration, the
decoder was allowed to run until it could solve no further bits
within the window. Fig. 3 plots the average number of itera-
tions for the BP decoder and the average number of iterations
within each window configuration times the chain length (which
corresponds to the average number of iterations) for the WD.
We can see that for randomly chosen spatially coupled codes, a
modest reduction in complexity is possible by using the WD in
the waterfall region. Interestingly, the average number of itera-
tions required per window configuration is independent of the
chain length below certain channel erasure rates. The number
of iterations required decreases beyond a certain value of be-
cause for these higher erasure rates, the decoder is no longer
able to decode and gets stuck quickly. Although the smaller
window sizes have a large reduction in complexity and a decent
BER performance, the block erasure rate performance can be
fairly bad, e.g., for the window of size 4, the block erasure rate
was 1 in the range of erasure rates considered in Fig. 2. How-
ever, the block erasure rate improves drastically with increasing
window size—for the window of size 8, the block erasure rate
at was .
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The aforementioned illustration suggests that for good perfor-
mance with reduced complexity via WD, careful code design is
necessary. For a certain variety of spatially coupled codes—pro-
tograph-based LDPC convolutional codes—certain design rules
for good performance with WD were given in [28], and ensem-
bles with good performance for a wide range of window sizes
(including window sizes as small as ) over erasure channels
with and without memory were constructed. For these codes
constructed using PEG [31] and ACE [32] techniques, not only
can the error floor be lowered but also the performance of a
medium-sized WD with fixed number of iterations can be made
to be very close to that of the BP decoder [28]. It is for such
codes that the windowed decoder is able to attain very good per-
formance with significant reduction in complexity and decoding
latency.

VI. CONCLUSION

We considered a WD scheme for decoding spatially coupled
codes that has smaller complexity and latency than the BP
decoder. We analyzed the asymptotic performance limits of
such a scheme by defining WD thresholds for meeting target
erasure rates. We gave a lower bound on the WD thresholds and
showed that these thresholds are guaranteed to approach the BP
threshold for the spatially coupled code at least exponentially
in the window size. Through DE, we showed that, in fact, the
WD thresholds approach the BP threshold much faster than is
guaranteed by the lower bound proved analytically. Since the
BP thresholds for spatially coupled codes are themselves close
to the MAP threshold, WD gives us an efficient way to trade off
complexity and latency for decoding performance approaching
the optimal MAP performance. Since the MAP decoder is
capacity-achieving as the degrees of variables and checks are
increased, similar performance is achievable through a WD
scheme for a target erasure floor.
Through simulations, we showed that WD is a viable scheme

for decoding finite-length spatially coupled codes and that even
for small window sizes, good performance is attainable for a
wide range of channel erasure rates. However, the complexity
reduction for randomly constructed spatially coupled codes is
not as significant as that obtained for protograph-based LDPC
convolutional codes with a large girth. Thus, characterizing
good spatially coupled codes within the ensemble of randomly
coupled codes is a question that remains.
The WD scheme was analyzed here for the BEC and, there-

fore, the superior performance of these codes and the low com-
plexity and latency of the WD scheme make these attractive for
applications in coding over upper layers of the internet protocol.
Furthermore, the same scheme can be employed for decoding
spatially coupled codes over any channel. However, for chan-
nels that introduce errors apart from erasures, the WD scheme
can suffer from error propagation. This effect would be sim-
ilar to what occurs in decoding convolutional codes using a
Viterbi decoder with a fixed traceback length. Analysis of the
WD scheme and providing performance guarantees over such
channels will play a key role in making spatially coupled codes
and the WD scheme practical.

APPENDIX I
PROOF OF LEMMA 10

For the lower bound, we have

where follows from the fact [19, Lem. 24(iii)] that

where . Applying this bound recur-
sively for , we get

where and .
When , since

with .
For the upper bound

for , where . Here,
follows from [19, Lem. 24(i)]

Note that for , , the FDE up-
date equation for the -regular ensemble. This proves the
Lemma. We now discuss the utility and limitations of the upper
bounds derived here.
Fig. 4 plots the bounds for the

ensemble for two values of , one below and the
other above the BP threshold . As is clear from the
figure, the tightest bounds are obtained for . Note that
the bound when can be recursively computed to obtain
a universal upper bound on all the window constellation
points for a given ensemble, given by the FP of
the equation

which is plotted in Fig. 5. As can be seen from the plot, these
upper bounds are only marginally tighter than the trivial upper
bound of . In general, we can write and use the other
upper bounds to obtain better bounds for other sections
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Fig. 4. Upper bounds for two values of :
for the

ensemble.

Fig. 5. Universal upper bounds on the constellation points as a function
of for the ensemble. These bounds are only
marginally tighter than the straightforward upper bound . Also, the bounds are
nondecreasing in .

as follows. In the sequel, we shall write to de-
note and similarly define

Thus, for , we can write
. The FP value of the erasure probability

of a variable node in the first section can therefore be bounded
in terms of the window size as

Fig. 6. Upper bound, , for the ensemble
with a window of size . The channel erasure rate . Note that

, , and .

where . This bounding

is particularly useful when when the FP of
the upper bound is zero. It is sometimes possible that

, in which case we can re-
tain the tighter upper bound . Fig. 6 shows an ex-
ample of the upper bound on graphically. As a consequence
of this upper bound, as , we have that for

. However, for , these upper
bounds are not very useful since the FP of the upper
bound is nonzero (cf., Fig. 4).

APPENDIX II
PROOF OF PROPOSITION 14

In the following, we will use some results from [19] summa-
rized below. We define

where

the DE update equation for randomized -regular ensem-
bles. For , the equation has ex-
actly three roots in the interval , given by and

. Between 0 and , is negative, attaining a unique
minimum at . Between and , is positive,
attaining a unique maximum at . Beyond , is
negative again. Between 0 and , is upper bounded
by a line through the origin with slope

i.e., the line . Between and ,
is upper bounded by a line passing through with a
slope
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Fig. 7. Plot of (in solid blue) for the ensemble for
illustrating the properties stated previously. We have dropped the

dependence of all the parameters on from the notation. The tangents at ,
and are shown as dashed red lines. The other lines used in bounding
are shown as dash-dotted green lines. The ’s, , are shown in
the same color as the lines, whose absolute values of slopes they represent, that
bound in various regions.

Between and , is lower bounded by a line
through with a slope

Between and , is lower bounded by the line
through with slope

Beyond , is upper bounded by the line through
with slope

Each of the ’s, , defined previously is strictly
positive for in the specified range. For a general , we will drop
the dependence of each of these parameters on from the nota-

tion. When , the corresponding parame-
ters are themselves shown with ’s. These properties of are
illustrated in Fig. 7. We can lower bound as ,

and the slope as .
Further, . We have

, .
, where

and

.

From Rolle’s Theorem, . We first give some
simple bounds for the ’s defined earlier which will be useful
in the proof.

Lemma 17 ( Bounds): For , we
have .

Proof: Since for , monoton-
ically decreases in this interval. Thus, .
From the mean value theorem, we have

Fig. 8. Unstable and stable FPs of DE for the -regular en-
semble as given by (10). is shown as the thick blue curve and as the
thin red curve. By definition, and . and

are also shown. Note that .

for some so that
.

The values and are referred to as the unstable and stable
FPs of DE for the -regular ensemble, respectively. This
is because both these values satisfy or

. The for which the FP is is
given by

The BP threshold is hence the smallest value of ,
i.e., . The value
of that achieves this minimum is denoted . Then,

, the unstable and stable FPs are given by

(10)

Fig. 8 plots these stable and unstable FPs. The reason why is
called the stable FP (and the unstable FP) can be explained
through Fig. 8. For , when the FDE updates
are performed, the value monotonically decreases from 1 and
converges to the first solution of the equation , which
happens to be for in this range. Therefore, performing
BP always results in the FP and hence the adjective “stable.”
Similarly for , which is a solution never reached through BP,
it can be shown that a small perturbation from the value of
will result in convergence to either or 0. Therefore, ’s are
“unstable” FPs.
We can define the derivatives and of and , respec-

tively, with respect to for . It is easy to see
that is monotonically decreasing and is monotonically in-
creasing in . For details and proofs of the aforementioned prop-
erties, see [19, Appendix II] and [33].
We are now ready to prove the proposition. Note that when

is smaller than the claimed upper bound on the transition width,
the claim is trivially true, i.e., the transition width cannot be
longer than the window size. However, in this case, we cannot
guarantee . Hence, we will assume that is larger than
the bound. In the following, we will often use the bound
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We now define a schedule that results in a FP window con-
stellation that dominates the FP of the parallel schedule, , for
a channel erasure rate E. We then upper bound the actual
transition width by the transition width of the dominating FP.
We generate the dominating FP in steps.
1) Set and evaluate the sequence of window con-
stellations according to (6), but with the boundary
conditions

.

We have the FP in this case, , satisfying by
induction. Further

(11)

so that . Note that cannot happen since,
starting from 1, will equal the first solution of (11),
which from the continuity of the DE equations is guaran-
teed to have a solution no smaller than . Starting from
the right end, we now count the number of sections until

where we choose . Recall that
the -ed values correspond to . We first
observe that

Hence

which implies that .
From similar reasoning, we can show that

Since from Lemma 17, the aforementioned differ-
ence is decreasing in . From the definition of (note
that this upper bound is valid even for the boundary con-
ditions specified here) in the proof of Lemma 10, it is easy
to see that so that the right-hand side of the
aforementioned chain of inequalities is nonnegative. Thus,

if

Let E . Then, we can write from the
mean value theorem

for some . We can lower bound this as

where the first inequality follows from the fact that is de-
creasing in in the interval and the second
from . Therefore, this width is no more
than

sections, since .
2) From the definition of , we have .
Let be the largest index for which . Set

and evaluate the sequence of window constella-
tions according to (6) performing the updates only
for those sections with indices . Further, perform
the updates for the channel erasure rate since we only
require an upper bound on the transition width. We set the
left end of the window to perform these updates to 0, i.e.,

. Let denote the FP window constel-
lation at the end of this procedure. By induction, we have

. Also, so
that

where the last inequality assumes that . Note
that there is no loss of generality in this assumption, for if it
were not true, we have that the number of sections with FP
values between and is smaller than the upper
bound we derive in the following. The aforementioned in-
equality implies that

Similarly, it can be shown that as long as

and by induction

Note that since from Lemma 17, the aforemen-
tioned difference is increasing in . Thus, there are no
more than

sections with .
3) Let be the largest index such that . We
define and count the number of sections with
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FP values between and . Since
, we have

where we again assume without loss of generality that
. The aforementioned inequality implies

that

Again by induction

as long as . Since , the afore-
mentioned difference is decreasing in , and consequently,

if

Writing

from the mean value theorem for some , we can
bound this as

where the first inequality follows because is de-
creasing in in the interval and the second
because . This implies that there are
no more than

sections with FP values between and .
4) From the definition of , we have .
Let be the largest index such that . Set

and evaluate according to (6) performing
the updates only for sections with indices with
channel erasure rate . Again, we set the left end of the
window to 0 while performing the updates. Denote the FP
obtained at the end of this procedure as . Clearly,

. Since , we have

so that

Here, we assume that in order to obtain
an upper bound on the number of sections in the range

. From similar reasoning as earlier, as long as

and by induction

Since , the aforementioned difference is increasing
in . By letting E and noting that

we have that there are no more than

sections with FP values in the interval .
5) Let be the largest index such that . Pro-
ceeding as earlier, we have

and by induction

Thus, between and , there are no more than

sections with FP values in the interval , since
and .

6) Let be the largest index such that . From
Lemma 11, we know that the tail decays double expo-
nentially for . From (8), we have

, where

and

Thus, there are no more than

sections with .
Finally, collecting all these terms, we conclude that the tran-

sition width of the FP obtained from the procedure highlighted
in the steps 1) through 6) is upper bounded by



2290 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 4, APRIL 2013

where the constants , and are as follows:

The constant is as given in (12) shown at the bottom of the
page. Note that these constants depend only on the ensemble
parameters , and . Since it is clear that the FP obtained
through the procedure in steps 1) through 6) earlier dominates
pointwise the first window configuration FP of FDE with a
window of size for channel erasure rate , we can guarantee
that the transition width is upper bounded by the aforemen-
tioned expression. This completes the proof.

APPENDIX III
PROOF OF PROPOSITION 16

We start with the first window configuration FP of FDE when
the channel erasure rate is and show that this FP dominates the

window configuration FP of FDE for every for a smaller
channel erasure rate . To prove this, it suffices to show
that the FP defined in Lemma 15 for channel erasure rate is
dominated pointwise by the first window configuration FP for
channel erasure rate . This establishes as being a lower bound
on the WD threshold .
Set , the first window configuration FP of FDE

for channel erasure rate . Evaluate according to

where is as defined in Lemma 15, but for channel erasure
rate . Then, the following are true:

and

.

For

(13)

Let us write

and

for . For in this range, consider

(14)

where and . Here, follows from the
mean value theorem. We have

Since , we focus on . When expanded out, the
expression for can be written as

where

.

Clearly, . Therefore

(12)
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Here, holds because
. This implies that

Here, the inequality labeled is true because ,
follows from the observation that , which is
in turn true since and were nondecreasing. Substi-
tuting back in (14), we have for

Thus, if , , and hence
dominates pointwise. Recall that

.

It therefore follows by induction that the limiting constellation
exists, and is also dominated by . It is clear that
satisfies

From Lemma 15, and hence .
If the window size is chosen to be

, then for the first window, we can guarantee
for some for all channel erasure rates smaller than

. From the aforementioned
argument, it follows that we can ensure for all erasure

rates smaller than . As long as

this erasure rate is a nontrivial lower bound on theWD threshold
.

ACKNOWLEDGMENT

The authors thank the anonymous reviewer for help to im-
prove the presentation of the paper. A. R. Iyengar would like
to thank S. Kudekar for pointing out Lemma 11 and for helpful
suggestions in proving parts of Proposition 14.

REFERENCES

[1] A. R. Iyengar, P. H. Siegel, R. L. Urbanke, and J. K. Wolf, “Windowed
decoding of spatially coupled codes,” in Proc. IEEE Int. Symp. Inf.
Theory, St. Petersburg, Russia, Jul.–Aug. 31–5, 2011, pp. 2552–2556.

[2] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA:
MIT Press, 1963.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Proc. IEEE
Int. Conf. Commun., Geneva, Switzerland, May 23–26, 1993, vol. 2,
pp. 1064–1070.

[4] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Effi-
cient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no.
2, pp. 569–584, Feb. 2001.

[5] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Im-
proved low-density parity-check codes using irregular graphs,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

[6] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA: Morgan Kaufmann, 1988.

[7] T. Richardson and R. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[8] A. Amraoui, “Asymptotic and finite-length optimization of LDPC
codes,” Ph.D. dissertation, Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland, 2006.

[9] A. Amraoui and R. Urbanke, LDPCOpt 2012 [Online]. Available:
http://ipgdemos.epfl.ch/ldpcopt/

[10] A. J. Felstrom and K. Zigangirov, “Time-varying periodic convolu-
tional codes with low-density parity-check matrix,” IEEE Trans. Inf.
Theory, vol. 45, no. 6, pp. 2181–2191, Sep. 1999.

[11] K. Engdahl and K. S. Zigangirov, “On the theory of low-density con-
volutional codes I,” Probl. Peredachi Inf., vol. 35, pp. 12–27, 1999.

[12] K. Engdahl, M. Lentmaier, and K. Zigangirov, “On the theory of
low-density convolutional codes,” in Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes Transl.:Lecture Notes in
Computer Science. Berlin, Germany: Springer-Verlag, 1999, vol.
1719, , pp. 77–86.

[13] M. Lentmaier, D. V. Truhachev, and K. S. Zigangirov, “To the theory
of low-density convolutional codes. II,” Probl. Inf. Transmiss., vol. 37,
pp. 288–306, 2001.

[14] R. Tanner, D. Sridhara, A. Sridharan, T. Fuja, and D. Costello, “LDPC
block and convolutional codes based on circulant matrices,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.

[15] A. Sridharan,M. Lentmaier, D. J. Costello, andK. S. Zigangirov, “Con-
vergence analysis of a class of LDPC convolutional codes for the era-
sure channel,” in Proc. 42nd Annu. Allerton Conf. Commun., Control
Comput., Monticello, IL, Sep.–Oct. 29–1, 2004, pp. 953–962.

[16] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “It-
erative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[17] M. Lentmaier, G. P. Fettweis, K. S. Zigangirov, and D. J. Costello,
“Approaching capacity with asymptotically regular LDPC codes,” in
Proc. Inf. Theory Appl., San Diego, CA, 2009, pp. 173–177.

[18] J. Thorpe, Low-density parity-check (LDPC) codes constructed from
protographs California Inst. Technol., Pasadena42-154, 2003.

[19] S. Kudekar, T. Richardson, and R. L. Urbanke, “Threshold satura-
tion via spatial coupling:Why convolutional LDPC ensembles perform
so well over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp.
803–834, Feb. 2011.

[20] M. Lentmaier andG. Fettweis, “On the thresholds of generalized LDPC
convolutional codes based on protographs,” in Proc. IEEE Int. Symp.
Inf. Theory, Austin, TX, Jun. 13–18, 2010, pp. 709–713.

[21] S. Kudekar, C. Measson, T. J. Richardson, and R. L. Urbanke,
“Threshold saturation on BMS channels via spatial coupling,” CoRR,
vol. abs/1004.3742, 2010.

[22] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled en-
sembles universally achieve capacity under belief propagation,”CoRR,
vol. abs/1201.2999, 2012.

[23] H. Hasani, N. Macris, and R. Urbanke, “Coupled graphical models and
their thresholds,” in Proc. IEEE Inf. Theory Workshop, Dublin, Ireland,
Aug.-Sep. 30–3, 2010, pp. 1–5.

[24] V. Aref and R. Urbanke, “Universal rateless codes from coupled LT
codes,” in Proc. IEEE Inf. Theory Workshop, Oct. 2011, pp. 277–281.

[25] H. Uchikawa, K. Kasai, and K. Sakaniwa, “Terminated LDPC convo-
lutional codes over ,” CoRR, vol. abs/1010.0060, 2010.



2292 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 4, APRIL 2013

[26] M. Papaleo, A. R. Iyengar, P. H. Siegel, J. K. Wolf, and G. Corazza,
“Windowed erasure decoding of LDPC convolutional codes,” in Proc.
IEEE Inf. Theory Workshop, Cairo, Egypt, Jan. 2010, pp. 78–82.

[27] A. R. Iyengar, M. Papaleo, G. Liva, P. H. Siegel, J. K. Wolf, and G. E.
Corazza, “Protograph-based LDPC convolutional codes for correlated
erasure channels,” in Proc. IEEE Int. Conf. Commun., Cape Town,
South Africa, May 2010, pp. 1–6.

[28] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[29] P. Olmos and R. Urbanke, “Scaling behavior of convolutional LDPC
ensembles over the BEC,” in Proc. IEEE Int. Symp. Inf. Theory, St.
Petersburg, Russia, Jul.–Aug. 31–5, 2011, pp. 1816–1820.

[30] M. Lentmaier, D. Truhachev, K. Zigangirov, and D. Costello, “An anal-
ysis of the block error probability performance of iterative decoding,”
IEEE Trans. Inf. Theory, vol. 51, no. 11, pp. 3834–3855, Nov. 2005.

[31] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular pro-
gressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[32] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective avoidance of
cycles in irregular LDPC code construction,” IEEE Trans. Commun.,
vol. 52, no. 8, pp. 1242–1247, Aug. 2004.

[33] T. Richardson and R. Urbanke, Modern Coding Theory. New York:
Cambridge Univ. Press, 2008.

Aravind R. Iyengar (S’09–M’12) received his B.Tech degree in Electrical En-
gineering from the Indian Institute of Technology Madras, Chennai, in 2007;
his M.S. and Ph.D. degrees in Electrical Engineering from the University of
California in San Diego, La Jolla, where he was affiliated with the Center for
Magnetic Recording Research, in 2009 and 2012 respectively. He is currently
with Qualcomm Technologies Inc., Santa Clara, where he is involved in the
design of baseband modems. In 2006, he was a visiting student intern at theÉ-
cole Nationale Supérieure de l’Electronique et de ses Applications (ENSEA),
Cergy, France. He was a visiting doctoral student at the Communication Theory
Laboratory at theÉcole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland in 2010. His research interests are in the areas of information and
coding theory, and in signal processing and wireless communications.
A. R. Iyengar was the recipient of the Sheldon Schultz Prize for Excellence in

Graduate Student Research at the University of California, San Diego in 2012.

Paul H. Siegel (M’82–SM’90–F’97) received the S.B. and Ph.D. degrees in
mathematics from the Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1975 and 1979, respectively.
He held a ChaimWeizmann Postdoctoral Fellowship at the Courant Institute,

New York University. He was with the IBM Research Division in San Jose, CA,
from 1980 to 1995. He joined the faculty at the University of California, San
Diego in July 1995, where he is currently Professor of Electrical and Computer
Engineering in the Jacobs School of Engineering. He is affiliated with the Center
for Magnetic Recording Research where he holds an endowed chair and served
as Director from 2000 to 2011. His primary research interests lie in the areas
of information theory and communications, particularly coding and modulation
techniques, with applications to digital data storage and transmission.
Prof. Siegel was amember of the Board of Governors of the IEEE Information

Theory Society from 1991 to 1996 and from 2009 to 2011. He was re-elected
for another 3-year term in 2012. He served as Co-Guest Editor of the May 1991
Special Issue on “Coding for Storage Devices” of the IEEE TRANSACTIONS ON
INFORMATION THEORY. He served the same Transactions as Associate Editor
for Coding Techniques from 1992 to 1995, and as Editor-in-Chief from July
2001 to July 2004. He was also Co-Guest Editor of the May/September 2001
two-part issue on “The Turbo Principle: From Theory to Practice” of the IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.
Prof. Siegel was co-recipient, with R. Karabed, of the 1992 IEEE Information

Theory Society Paper Award and shared the 1993 IEEE Communications So-
ciety Leonard G. Abraham Prize Paper Award with B.H. Marcus and J.K. Wolf.
With J.B. Soriaga and H.D. Pfister, he received the 2007 Best Paper Award in
Signal Processing and Coding for Data Storage from the Data Storage Technical
Committee of the IEEE Communications Society. He holds several patents in
the area of coding and detection, and was named a Master Inventor at IBM Re-
search in 1994. He is an IEEE Fellow and a member of the National Academy
of Engineering.

Rüdiger L. Urbanke received the Diplomingenieur degree from the Vienna
Institute of Technology, Vienna, Austria, in 1990 and theM.Sc. and PhD degrees
in electrical engineering from Washington University, St. Louis, MO, in 1992
and 1995 respectively.
From 1995 to 1999, he held a position at the Mathematics of Communica-

tions Department at Bell Labs. Since November 1999, he has been a faculty
member at the School of Computer & Communication Sciences of EPFL, Lau-
sanne, Switzerland, where he is the head of the Communications Theory Lab as
well as the head of the Doctoral Program of the School of Computer and Com-
munication Sciences (comprising roughly 250 PhD students).
Dr. Urbanke’s research is focused on the analysis and design of coding sys-

tems and, more generally, graphical models.
Dr. Urbanke is a recipient of a Fulbright Scholarship. From 2000–2004 hewas

an Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY and
he has been elected in October 2012 to the Board of Governors of IEEE Informa-
tion Theory Society. He is also currently on the board of the series Foundations
and Trends in Communications and Information Theory. He is a co-recipient of
the IEEE Information Theory Society 2002 Best Paper Award and a co-recip-
ient of the 2011 IEEE Kobayashi Computers and Communications Award. He
is co-author of the book Modern Coding Theory published by Cambridge Uni-
versity Press.

Jack Keil Wolf (S’54–M’60–F’73–LF’97) received the B.S.E.E. degree from
the University of Pennsylvania Philadelphia, in 1956, and the M.S.E., M.A.,
and Ph.D. degrees from Princeton University, Princeton, NJ, in 1957, 1958, and
1960, respectively. Hewas the Stephen O. Rice Professor of Electrical and Com-
puter Engineering and amember of the Center forMagnetic Recording Research
at the University of California-San Diego, La Jolla. He was a member of the
Electrical Engineering Department at New York University from 1963 to 1965,
and the Polytechnic Institute of Brooklyn from 1965 to 1973. He was Chairman
of the Department of Electrical and Computer Engineering at the University
of Massachusetts, Boston, from 1973 to 1975, and he was Professor there from
1973 to 1984. From 1984 to 2011, he was a Professor of Electrical and Computer
Engineering and a member of the Center for Magnetic Recording Research at
the University of California-San Diego. He also held a part-time appointment at
Qualcomm, Inc., San Diego. From 1971 to 1972, he was an NSF Senior Post-
doctoral Fellow, and from 1979 to 1980, he held a Guggenheim Fellowship. His
most recent research interest was in signal processing for storage systems.
Dr. Wolf was elected to the National Academy of Engineering in 1993. He

was the recipient of the 1990 E. H. Armstrong Achievement Award of the IEEE
Communications Society and was co-recipient with D. Slepian of the 1975 IEEE
Information Theory Group Paper Award for the paper “Noiseless coding for cor-
related information sources.” He shared the 1993 IEEE Communications So-
ciety Leonard G. Abraham Prize Paper Award with B. Marcus and P.H. Siegel
for the paper “Finite-State Modulation Codes for Data Storage.” He served on
the Board of Governors of the IEEE Information Theory Group from 1970
to 1976 and from 1980 to 1986. Dr. Wolf was President of the IEEE Infor-
mation Theory Group in 1974. He was International Chairman of Committee
C of URSI from 1980 to 1983. He was the recipient of the 1998 IEEE Koji
Kobayashi Computers and Communications Award, “for fundamental contribu-
tions to multi-user communications and applications of coding theory to mag-
netic data storage devices.” In May 2000, he received a UCSD Distinguished
Teaching Award. In 2004 Professor Wolf received the IEEE Richard W. Ham-
ming Medal for “fundamental contributions to the theory and practice of in-
formation transmission and storage.” In 2005 he was elected by the American
Academy of Arts and Sciences as a Fellow, and in 2010 was elected as a member
of the National Academy of Sciences. He was co-recipient with I.M. Jacobs of
the 2011Marconi Society Fellowship and Prize. Prof.Wolf passed away onMay
12, 2011.


