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Abstract—Write-once memory (WOM) is a binary storage
medium in which each memory cell is initially in state 0 and
can be irreversibly programmed to state 1. This paper studies
the problem of writing multiple messages into a WOM. Instead
of writing a new message (and obliterating old ones) as in the
traditional setup, the user wishes to retain access to some of the
previously written messages. The capacity region is studied and
code constructions are proposed for three canonical cases.

I. INTRODUCTION AND MAIN RESULTS

As part of the tremendous increase in coding research for
the ubiquitous flash memories, a considerable attention has
been given to rewriting codes. The motivation comes from the
special physical properties of the flash memory floating-gate
cells, the most conspicuous of which is the asymmetric pro-
gramming behavior of the cells [1]. The memory cells can
only increase their level by the injection of electrons to each
cell. However, in order to decrease the level of even a sin-
gle cell, its entire containing block (∼ 106 cells) has to be
erased. This undesired property not only reduces the writing
speed but also significantly affects the lifetime of flash mem-
ories, which is often specified in terms of a maximum number
of block erasures [1]. As this number can be as low as a few
hundreds or thousands, reducing the number of block erasures
becomes critical in improving the lifetime of flash memories.

The idea of rewriting codes dates back to the pioneer-
ing work [10] by Rivest and Shamir on write-once memory
(WOM) in 1982. The motivation came from storage media
such as punch cards and ablative optical disks. These me-
dia are modeled as a collection of write-once binary cells,
where each cell is initially in state 0 and can be irreversibly
programmed to state 1. Figure 1 shows a typical model for
rewriting t times on a binary WOM.

An [n, t; 2nR1, . . . , 2nRt ] WOM code consists of
• t message sets [1 : 2nR1 ], . . . , [1 : 2nRt ],
• t encoders, where encoder i ∈ [1 : t] for the i-th write

assigns a codeword xi = Ei(mi,yi−1) ∈ {0, 1}n (y0 =
∅) to each message mi ∈ [1 : 2nRi ] and the cell levels
yi−1 from the previous write, and

• t decoders, where decoder i ∈ [1 : t] assigns an estimate
m̂i = Di(yi) or an error e to the cell levels yi from the
i-th write.

The notation [i : j] denotes the set {k ∈ Z : i � k � j}.
The average probability of error of the WOM code is defined
as P

(n)
e = P{(M̂1, . . . , M̂t) �= (M1, . . . ,Mt)}. A rate tuple

(R1, . . . , Rt) is said to be achievable for the WOM if there ex-
ists a sequence of [n, t; 2nR1 , . . . , 2nRt ] WOM codes such that
limn→∞ P

(n)
e = 0. The capacity region CWOM(t) is the clo-

sure of the set of all achievable rate tuples (R1, . . . , Rt). The
sum-capacity Csum(t) of WOM is the maximum achievable
sum-rate

∑t
j=1 Rj . A sequence of WOM codes is said to be
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Fig. 1. A t-write WOM model
sum-rate optimal if its sum-rate approaches the sum-capacity
in the limit.

The capacity region as well as the sum-capacity for the
WOM model is well studied in the literature [3], [5]; for ex-
ample, it is known that the t-write sum-capacity is Csum(t) =
log2(t+ 1) and the capacity region is

CWOM(t) =
{
(R1, . . . , Rt)|R1 � H(p1),

Ri �

(
i−1∏
k=1

pk

)
H(pi), i ∈ [2 : t− 1],

Rt �

t−1∏
k=1

pk for some p1, . . . , pt−1 ∈ [ 12 , 1]
}
.

Furthermore, many code constructions have been found
(e.g., [8], [12], [13]), the sum-rates of which are close to the
sum-capacity.

Following the work by Rivest and Shamir on the binary
WOM, many papers on WOM codes appeared during the
1980s and 1990s, (e.g., [2], [3], [5], [11]) as well as in the
past few years (e.g., [4], [6], [8], [9], [12]). Among all of
the existing models for rewriting on flash memories, one as-
sumes that a new message is stored in the memory on each
write, effectively overwriting previously written messages.
This can be a drawback in some applications, however, if
the user wishes to retain access to one or more previously
written messages. For example, suppose that a police station
keeps traffic surveillance videos for up to a certain amount of
time, say 30 days. This requires that the most current video
as well as the videos from the previous 29 days be retrievable
at any time. If the entire set of 30 daily videos are treated as
a completely new message to be written on top of the exist-
ing content of the memory cells, the writing efficiency will
be low, because the same message is being written multiple
times via different codewords.

This motivates the model of rewriting flash memories with
retained messages. This model is related to the work on buffer
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codes and trajectory codes [6], [7], which are capable of re-
membering the most recent values stored in the memories. To
make the problem simple, in this paper we consider rewriting
on a binary WOM, where after each write the current message
and some of the previously written messages need to be re-
trievable. We aim to characterize the optimal rate tradeoff and
find code constructions focusing on three concrete problems
motivated by different scenarios in real storage systems.

In Section II, we formulate the problem of retaining two
days of video surveillance as follows.

Problem 1. Consecutive two-step WOM
On the i-th write, i ∈ [1 : t], encoder i stores (Mi−1,Mi)
(M0 = ∅) and decoder i has to recover both messages.

By ignoring the correlation between message pairs over
multiple writes and treating (Mi−1,Mi) as a new message,
one can achieve roughly 1

2 log2(t + 1) in sum-rate using a
traditional WOM code, since every Mi, i ∈ [1 : t− 1], is writ-
ten twice. Is this optimal? We establish in Theorem 1 that
the sum-capacity of the consecutive two-step WOM model is
log2

(⌈
t
2

⌉
+ 1
)
, which can be twice as large as 1

2 log2(t+ 1)
for large t. How can we fully exploit the correlation among
messages? We propose in Construction 1 a very simple code,
which turns out to be sum-rate optimal. The idea is to parti-
tion the set of n cells into two blocks and to update the new
message alternately on the two blocks, as shown in Table I.
An outer bound on the capacity region for general t is also
derived.

TABLE I
WRITING ARRANGEMENT OF THE CONSECUTIVE 2-STEP WOM CODE

block 1 block 2
1st write M1

2nd write M1 M2

3rd write M3 M2

4th write M3 M4

5th write M5 M4

Now suppose the police station wishes to keep track of the
video from the most recent day on which there was a traffic
accident, as well as the traffic video for the current day. Since
the traffic accident is unpredictable, we cannot tell which part
of the video will be kept for the next day until the end of
the current day. This is the situation in which the retrievable
message for the next write can be an arbitrary one from the
two messages currently written in the memory. To be more
concrete, we formulate the problem as follows.

Problem 2. Arbitrary two-step WOM
On the first write, encoder 1 stores message M1 and decoder 1
has to recover M1. On the i-th write, i ∈ [2 : t], encoder i
stores (Ms(i),Mi), where Ms(i) ∈ {Ms(i−1),Mi−1} is arbi-
trarily chosen from the two messages stored on the (i − 1)-st
write, and decoder i has to recover both messages.

For this problem, an idea arises naturally from the construc-
tion for the consecutive two-step WOM. With Table I in mind,
we store M1 and M2 the same way as before for the first two
writes. If (M1,M3) is stored on the third write, we update M3

on block 2. If instead (M2,M3) is stored on the third write,
we update M3 on block 1. It can be shown that the sum-rate is

roughly 1
2 log2(t) in the worst case scenario. Can we do better

than this? In Section III, we construct a code by enlarging the
number of blocks, and we show that it can strictly outperform
the above code. Moreover, it is shown to be asymptotically
optimal in t. A simple outer bound on the capacity region and
an upper bound on the sum-capacity are also presented.

Now we introduce the last problem. Suppose the surveil-
lance videos are layered as high-fidelity and low-fidelity ones,
e.g., encoded by the H.264 standard. On each day, all low-
fidelity videos from previous days and the high-fidelity video
from the current day should be stored. This motivates the fol-
lowing.
Problem 3. Incremental WOM
We rewrite each message Mi, i ∈ [1 : t], as two independent
parts: the common message M c

i ∈ [1 : 2nR
c
i ] and the private

message Mp
i ∈ [1 : 2nR

p
i ], i.e., Mi = (M c

i ,M
p
i ). On the i-

th write, encoder i stores all the previous common messages
and its own full message, i.e., (M c

1 ,M
c
2 , . . . ,M

c
i ,M

p
i ), and de-

coder i has to recover all of them.

One extreme special case of this problem is M c
i = ∅, i ∈

[1 : t], i.e., there is no common message. Then we go back to
the traditional t-write WOM. The other extreme special case is
Mp

i = ∅, i ∈ [1 : t], i.e., there is no private message. Since all
the previously written messages have to be recoverable by the
current decoder, the performance is fundamentally limited by
the last write. It can be shown that the capacity region for this
extreme problem is

∑t
i=1 Ri � 1. Thus, an obvious choice

to maximize the sum-rate is to set all the common-message
rates to be zero and the sum-capacity is readily established as
log2(t+ 1). In Section IV, we establish the optimal trade-off
between the common-message sum-rate Rc

sum :=
∑n

i=1 R
c
i

and the private-message sum-rate Rp
sum :=

∑n
i=1 R

p
i . More-

over, we investigate the symmetric sum-capacity C3
ssum(t), de-

fined as the maximum achievable sum-rate when Rc
1 = Rp

1 =
Rc

2 = Rp
2 = · · · = Rc

t = Rp
t = R.

Since the problem formulation is apparently a combination
of two completely solved extreme problems, one might think
that a time-sharing strategy between the two optimal coding
schemes would be optimal. Surprisingly, in Section IV, we
construct a code that strictly outperforms the time-sharing code
and is asymptotically optimal in t. The performance of this
construction is illustrated in Figure 2.

II. CONSECUTIVE TWO-STEP WOM

In this section we establish the sum-capacity as well as an
outer bound and an inner bound on the capacity region for the
consecutive two-step WOM defined in Problem 1.
Proposition 1.(Outer bound on the capacity region) If a rate
tuple (R1, R2, . . . , Rt) is achievable for the t-write consecu-
tive two-step WOM, it must satisfy R1 � H(Y1), R1 + R2 �

H(Y2), R2 + R3 � H(Y3|Y1), R3 + R4 � H(Y4|Y2), . . . ,
Rt−1 + Rt � H(Yt|Yt−2) for some pmf p(x1)p(x2|y1) · · ·
p(xt|yt−1).

Proposition 2.(Inner bound on the capacity region) For
even t, let s = t/2. If two rate tuples (R′

1, . . . , R
′
s) and

(R′′
1 , . . . , R

′′
s ) are achievable for the s-write WOM, then for
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all λ ∈ [0, 1], with λ̄ = 1 − λ, the rate tuple (R1, . . . , Rt) =
(λR′

1, λ̄R
′′
1 , λR

′
2, λ̄R

′′
2 , . . . , λR

′
s, λ̄R

′′
s ) is achievable for the

t-write consecutive two-step WOM.
For odd t, let s = (t− 1)/2. If the rate tuple (R′

1, . . . , R
′
s+1)

is achievable for the (s + 1)-write WOM and the rate
tuple (R′′

1 , . . . , R
′′
s ) is achievable for the s-write WOM,

then for all λ ∈ [0, 1], the rate tuple (R1, . . . , Rt) =
(λR′

1, λ̄R
′′
1 , λR

′
2, λ̄R

′′
2 , . . . , λR

′
s, λ̄R

′′
s , λR

′
s+1) is achievable

for the t-write consecutive two-step WOM.

The above outer and inner bounds coincide at the sum-
rate and establish the sum-capacity of the consecutive two-step
WOM for every t.

Theorem 1. The sum-capacity C1
sum(t) of the t-write consecu-

tive two-step WOM is

C1
sum(t) = log2

(⌈
t

2

⌉
+ 1

)
.

Due to space limitations, we skip the proofs. In the follow-
ing, we give a code construction1 for even t, which is sum-rate
optimal. It also serves as part of the proof for Proposition 2.
Partition the set of all cells into two blocks and write odd mes-
sages to one block on odd writes and even messages to the
other block on even writes, as shown in Table I. Thus, each
block of cells can reliably store t/2 messages using a tradi-
tional (t/2)-write WOM code and decoder i can recover both
messages (Mi−1,Mi) stored in the two blocks.

Construction 1 Let t and n be positive integers, with t even,
and let λ ∈ [0, 1] such that λn is an integer. Let λ̄ = 1 − λ
and s = t/2. Suppose that the cell levels after the i-th
write, i ∈ [1 : t], are (y′

i,y
′′
i ), where y

′
i and y

′′
i denote

blocks of lengths λn and (1 − λ)n, respectively. Let C1 be
a [λn, s; 2λnR

′

1 , . . . , 2λnR
′

s ] WOM code of length λn with
encoder E ′

i(mi,y
′
i−1), mi ∈ [1 : 2λnR

′

i ], on the i-th write,
i ∈ [1 : s]. Let C2 be a [λ̄n, s; 2λ̄nR

′′

1 , . . . , 2λ̄nR
′′

s ] WOM code
of length λ̄n with encoder E ′′

i (mi,y
′′
i−1), mi ∈ [1 : 2λ̄nR

′′

i ], on
the i-th write, i ∈ [1 : s]. Let R2i−1 = λR′

i and R2i = λ̄R′′
i ,

∀i ∈ [1 : s]. An [n, t; 2nR1, . . . , 2nRt ] consecutive two-step
WOM code C of length n is constructed as follows. The
cells are partitioned into block 1 with length λn and block 2
with length λ̄n. On the i-th write, the encoder i assigns the
codeword xi = (x′

i,x
′′
i ) as follows:

1) For odd i = 2j − 1, write message mi ∈ [1 : 2nRi ] to
block 1 using the encoder on the j-th write from C1 and
keep block 2 unchanged, i.e.,

x
′
i = E ′

j(mi,y
′
i−1).

2) For even i = 2j, write message mi ∈ [1 : 2nRi ] to block
2 using the encoder on the j-th write from C2 and keep
block 1 unchanged, i.e.,

x
′′
i = E ′′

j (mi,y
′′
i−1). �

It can be seen that C is a consecutive two-step WOM code.
If R′

i = R′′
i , ∀i ∈ [1 : s], the sum-rate of C in Construction 1 is

1In all the following constructions, the decoders of the WOM codes for
Problems 1, 2, and 3 are similar to the decoders of the traditional WOM
codes that are assumed to exist in each construction, and thus we omit the
details of the decoders here.

∑t
i=1 Rt =

∑s
i=1 λR

′
i +

∑s
i=1 λ̄R

′′
i =

∑s
i=1 R

′
i. Therefore,

if C1 and C2 are sum-rate optimal, then C achieves the sum-
capacity log2(

t
2 +1). For odd t, a consecutive two-step WOM

code can be constructed similarly.

III. ARBITRARY TWO-STEP WOM
In this section we study the arbitrary two-step WOM de-

fined in Problem 2. Note that if a WOM code C is a t-write
arbitrary two-step WOM code, then we can construct from
it a t-write consecutive two-step WOM code. Therefore, the
sum-capacity C2

sum(t) of the arbitrary two-step WOM is upper
bounded as C2

sum(t) � C1
sum(t) = log2(

⌈
t
2

⌉
+ 1).

Now we give a construction that strictly outperforms the
construction in the introduction and achieves 2/3 of C1

sum(t)
of the consecutive two-step WOM, while keeping track of ar-
bitrary messages as required. Partition the set of all cells into
three blocks as illustrated in Table II. In the first two blocks,
we write in the exactly same manner as for the consecutive
two-step WOM. The third block is updated with Ms(i) every
other write to help retrieve the desired message of the arbi-
trary demand. This can be improved by further enlarging the
number of blocks as given in Construction 2.

TABLE II
WRITING ARRANGEMENT OF THE ARBITRARY 2-STEP WOM CODE

block 1 block 2 block 3
1st write M1

2nd write M1 M2 Ms(2)

3rd write M3 M2 Ms(2)

4th write M3 M4 Ms(4)

5th write M5 M4 Ms(4)

Construction 2 Let � and t be positive integers such that t is
a multiple of �. The cells consist of � + 1 blocks, each of size
n′; thus n = n′(l + 1). After the i-th write, i ∈ [1 : t], the cell
levels are (y

(1)
i ,y

(2)
i , . . . ,y

(�+1)
i ), where y

(j)
i , j ∈ [1 : � + 1],

denotes the j-th block of length-n′ cells. Let CW be an
[n′, t/�; 2n

′R′

1 , . . . , 2n
′R′

t/� ] WOM code of length n′ with
encoder E ′

i(mi,yi−1), mi ∈ [1 : 2n
′R′

i ], on the i-th write,
i ∈ [1 : t/�]. An [n, t; 2nR1 , 2nR2 , . . . , 2nRt ] arbitrary two-step
WOM code C is constructed, where Ri = R′

�i/��, i ∈ [1 : t].
On the i-th write, i ∈ [1 : t], the encoder i assigns the code-
word xi = (x

(1)
i ,x

(2)
i , . . . ,x

(�+1)
i ) using the following rules.

Let h = (i− 1 mod �) and j = � i
��.

1) Write message mi ∈ [1 : 2n
′Ri ] to the (h + 1)-st block,

using the encoder on the j-th write from CW and keep the
rest of the first n′� cells unchanged, i.e.,

x
(h+1)
i = E ′

j(mi,y
(h+1)
i−1 ).

2) If h = 0 and i �= 1, write message ms(i) to the (�+ 1)-st
block, using the encoder on the (j−1)-st write from CW ,
i.e.,

x
(�+1)
i = E ′

j−1(ms(i),y
(�+1)
i−1 ).

Otherwise, the last block is kept unchanged. �

Proposition 3. If the WOM code CW is sum-rate optimal, then
the code C in Construction 2 is an arbitrary two-step WOM
code with sum-rate

R2
sum(t) =

�

�+ 1
log2

(
t

�
+ 1

)
.
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For large t, let � = log2 t. Then the asymptotic sum-rate is

R2
sum(t) =

log
2
t

log
2
t+1 log2(

t
log

2
t +1) = log2 t−O(log2(log2 t)).

Since an upper bound on the sum-capacity is log2
(⌈

t
2

⌉
+ 1
)
,

this construction is asymptotically optimal in t.
If t is not a multiple of � we slightly modify Construction 2.

We use a
⌈
t
�

⌉
-write WOM code for the first (t mod �) blocks

and a
⌊
t
�

⌋
-write WOM code for the last (� + 1 − (t mod �))

blocks. The constructions yield the following corollary.
Corollary 1 A lower bound of C2

sum(t) is given by

max
�∈[1:t]

(t mod �) log2(
⌈
t
�

⌉
+ 1) + (�− (t mod �)) log2(

⌊
t
�

⌋
+ 1)

�+ 1
.

IV. INCREMENTAL WOM
We study the incremental WOM model in Problem 3.

Theorem 2. The sum-capacity of the t-write incremental WOM
is

C3
sum(t) = log2(t+ 1).

The optimal trade-off between the common-message sum-rate
Rc

sum :=
∑n

i=1 R
c
i and the private-message sum-rate Rp

sum :=∑n
i=1 R

p
i is the set of rate pairs (Rc

sum, R
p
sum) such that

Rc
sum �

t−1∏
i=1

pi,

Rc
sum +Rp

sum �

t−1∏
i=1

pi +

t−1∑
i=1

(
i−1∏
k=1

pk

)
H(pi)

for some p1, p2, . . . , pt−1 ∈ [ 12 , 1].
Theorem 2 follows by noting that Rc

1 = Rc
2 = · · · =

Rc
t−1 = 0 is optimal for the sum-rate trade-off.
Now we focus on the symmetric sum-capacity C3

ssum(t),
defined as the maximum achievable sum-rate when Rc

1 =
Rp

1 = Rc
2 = Rp

2 = · · · = Rc
t = Rp

t = R. We denoted by
[n, t; 2nR] the t-write symmetric incremental WOM code. It
can be proved that the symmetric sum-capacity of the t-write
incremental WOM is upper bounded as

C3
ssum(t) � 2−

2

t+ 1
< 2.

In the following, we give a construction of t-write sym-
metric incremental WOM codes. To illustrate the basic idea,
we show a construction for t = 3. Suppose that every pri-
vate/common message represents k = nR bits. Partition the
n cells into three blocks. Write M c

1 to the first block. Parti-
tion Mp

1 into two messages Mp
11 with λk bits and Mp

12 with
(1 − λ)k bits. Write Mp

11 and M c
2 to the second block and

Mp
12,M

p
2 , (M

c
3 ,M

p
3 ) to the third block. Thus, in the first block

we use a one-write WOM code, in the second block we use a
two-write WOM code and in the third block we use a three-
write WOM code, as illustrated in Table III.

TABLE III
WRITING ARRANGEMENT OF THE 3-WRITE INCREMENTAL WOM CODE

block 1 block 2 block 3

1st write Mc
1 M

p
11 M

p
12

2nd write Mc
1 Mc

2 M
p
2

3rd write Mc
1 Mc

2 (Mc
3 ,M

p
3 )

Suppose that the lengths of the first, second, and third
blocks are n1, n2, and n3, respectively. For the fixed k, the

problem of maximizing the symmetric sum-rate is identical
to minimizing the value of n = n1 +n2+n3 as a function of
λ. Now we state the construction formally and then present
the symmetric sum-rate analysis.

Construction 3 Let k be a positive integer, λ ∈ [0, 1], and
n1 = k. Suppose that the cell levels after the i-th write are
(y′

i,y
′′
i ,y

′′′
i ), where y

′
i,y

′′
i , and y

′′′
i denote blocks of length

n1, n2, and n3, respectively. Let C1 be an [n1, 1; 2
k] WOM code

with encoder E ′
1(m1) for the first write, C2 be an [n2, 2; 2

λk, 2k]
WOM code with encoders E ′′

i (mi,y
′′
i−1), i ∈ [1 : 2], for the

first two writes, and C3 be an [n3, 3; 2
(1−λ)k, 2k, 22k] WOM

code with encoder E ′′′
i (mi,y

′′′
i−1), i ∈ [1 : 3], for all three

writes. An [n, 3; (2k, 2k)] symmetric incremental WOM code
C is constructed. On the i-th write, encoder i assigns the
codeword xi = (x′

i,x
′′
i ,x

′′′
i ) using the following encoding

rules:
1) If i = 1, then write message mc

1 ∈ [1 : 2k] to block
1 using the encoder from C1, write message mp

11 ∈ [1 :
2λk] to block 2 using the encoder for the first write from
C2, and write message mp

12 ∈ [1 : 2(1−λ)k] to block 3
using the encoder for the first write from C3, i.e.,

(x′
1,x

′′
1 ,x

′′′
1 ) =

(
E ′
1(m

c
1), E

′′
1

(
mp

11

)
, E ′′′

1

(
mp

12

))
.

2) If i = 2, then the first n1 cells are unchanged, write mes-
sage mc

2 ∈ [1 : 2k] to block 2 using the encoder for the
second write from C2, and write message mp

2 ∈ [1 : 2k]
to block 3 using the encoder for the second write from C3,
i.e.,

(x′′
2 ,x

′′′
2 ) =

(
E ′′
2 (mc

2,y
′′
1 ) , E

′′′
2

(
mp

2,y
′′′
1

))
.

3) If i = 3, then the first n1 + n2 cells are unchanged and
write message (mc

3,m
p
3) ∈ [1 : 22k] to block 3, using the

encoder for the third write from C3, i.e.,
x
′′′
3 = E ′′′

3

(
(mc

3,m
p
3),y

′′′
2

)
. �

The symmetric sum-rate of the code C is given by 6k/n.
As k is fixed, this value is maximized when n is minimized.
We denote by n2(λ) the minimum length of an [n2, 2; 2

λk, 2k]
WOM code and similarly n3(λ) is the minimum length of an
[n3, 3; 2

(1−λ)k, 2k, 22k] WOM code. Then, the problem is to
find the value of minλ∈[0,1](n2(λ) + n3(λ)).

Proposition 4. The minimum value of n in Construction 3 is
n = 4.386k, which is achieved by setting λ = 0.3116. The
corresponding symmetric sum-rate is R3

ssum(3) = 1.3679.
Proof: Let us first find the value of n2(λ). That is, we

find a WOM code of minimum length n2(λ) such that its
rate on the first write is R1 = λk/n2(λ) and its rate on the
second write is R2 = k/n2(λ). Thus, we have R1/R2 =
λ. Since the capacity region of the two-write WOM is given
by {(R1, R2)|R1 � h(p1), R2 � p1, for some p1 ∈ [1/2, 1]},
and we find a WOM code of minimum length, the ratio of R1

and R2 satisfies

h(p1)/p1 = λ, (1)

for some p1 ∈ [1/2, 1]. Note that if λ is positive then
equation (1) always has a solution, which we denote by
p1(λ). Now, we deduce from R2 = k/n2 = p1 that
n2(λ) = k/p1(λ).
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Similarly, the capacity region of the three-write WOM is
given by {(R1, R2, R3)|R1 � h(p2), R2 � p2h(p3), R3 �

p2p3, for some p2, p3 ∈ [1/2, 1]}. Thus, it can be shown that
the values of p2, p3 ∈ [1/2, 1] that give the minimum code
length for n3(λ) satisfy

h(p2)/(p2h(p3)) = 1− λ, (2)
h(p3)/p3 = 1/2. (3)

The value of p3 is independent of λ and is given by p3 =
0.9055, and p2(λ) is the solution to equation (2). Hence, n3(λ)
satisfies n3(λ) = 2k/((p2(λ)p3).

We are now left to solve the minimization problem

minimize
(

1

p1(λ)
+

2

p2(λ)p3

)
, (4)

with λ ∈ [0, 1], where p1(λ), p2(λ), and p3 satisfy equa-
tions (1), (2), and (3) respectively.

From Equation (3), p3 was already calculated numerically.
From Equation (1) and (2), we have

h(p1(λ))

p1(λ)
+

h(p2(λ))

p2(λ)h(p3)
= 1.

Therefore, we can formulate the minimization problem as

minimize
(

1

p1
+

2

p2p3

)
with p1, p2 ∈ [ 12 , 1], subject to

h(p1)

p1
+

h(p2)

p2h(p3)
= 1, where p3 = 0.9055.

It follows that p1 = p2 = 0.9479 and we get λ =
h(p1)/p1 = h(p3)/(h(p3) + 1) = 0.3116. Therefore,
n = n1 + n2(λ) + n3(λ) = 4.386k and R3

ssum(3) satisfies

R3
ssum(3) = 6R =

6k

n
=

6k

n1 + n2(λ) + n3(λ)
= 1.3679.

This completes the proof.
We are now ready to generalize the construction for

an arbitrary number of writes t. Each of the messages
M c

1 ,M
p
1 , . . . ,M

c
t ,M

p
t represents k = nR bits, and the n

cells are partitioned into t blocks. Message Mp
i , i ∈ [1 : t−2],

is partitioned into t− i parts (Mp
i1,M

p
i2, . . . ,M

p
i,t−i). The ar-

rangement of these messages when written into the memory
is depicted in Table IV.

TABLE IV
WRITING ARRANGEMENT OF THE t-WRITE INCREMENTAL WOM CODE

block 1 · · · · · · · · · · · · · · · block t

1 Mc
1 M

p
11 M

p
12 · · · · · · M

p
1,t−2 M

p
1,t−1

2 Mc
1 Mc

2 M
p
21 · · · · · · M

p
2,t−3 M

p
2,t−2

3 Mc
1 Mc

2 Mc
3 M

p
31 · · · M

p
3,t−4 M

p
3,t−3

...
...

...
...

...
. . .

...
...

Mc
1 Mc

2 Mc
3 Mc

4 · · · M
p
t−2,1 M

p
t−2,2

Mc
1 Mc

2 Mc
3 Mc

4 · · · Mc
t−1 M

p
t−1

t Mc
1 Mc

2 Mc
3 Mc

4 · · · Mc
t−1 (Mc

t ,M
p
t )

According to this layout, the i-th block, for i ∈ [1 : t], con-
sists of ni cells and is used to construct an i-write WOM code.
Assume that message Mp

ij for i ∈ [1 : t − 2], j ∈ [1 : t − i]

represents λi,jk bits, where
∑t−i

j=1 λi,j = 1. Then for i ∈ [2 :
t − 1], messages (Mp

1,i−1,M
p
2,i−2, . . . ,M

p
i−1,1,M

c
i ) will be

written as an i-write WOM code of length ni, and messages(
Mp

1,t−1,M
p
2,t−2, . . . ,M

p
t−2,2,M

p
t−1, (M

c
t ,M

p
t )
)

will be writ-
ten as a t-write WOM code of length nt, where (M c

t ,M
p
t )

represents 2k bits.
Figure 2 shows the achievable symmetric sum-rate of the

time-sharing scheme described in the introduction and our con-
struction based on the optimal partition strategy, λi,j , i ∈ [1 :
t− 2], j ∈ [1 : t− i], that maximizes R3

ssum(t).
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Fig. 2. Lower and upper bounds on C3
ssum(t)
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