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Abstract—Multipermutations appear in various applications in
information theory. New applications such as rank modulation for
flash memories and voting have suggested the need to consider
error-correcting codes for multipermutations. The construction
of codes is challenging when permutations are considered and
it becomes even a harder problem for multipermutations. In this
paper we discuss the general problem of error-correcting codes for
multipermutations. We present some tight bounds on the size of
error-correcting codes for several families of multipermutations.
We find the capacity of the channels of multipermutations and
characterize families of perfect codes in this metric which we
believe are the only such perfect codes.

I. INTRODUCTION

A permutation is a full order of some fixed number of

elements, say n, and the set of all permutations is denoted

by Sn, where |Sn| = n!. The natural generalization of a

permutation becomes a multipermutation, which is the case

where every element can appear more than once. Assume there

are m elements which we often call ranks. We denote by

ri the multiplicity of the i-th rank, 1 ≤ i ≤ m. Let n be

the length of the multipermutation, then we first have that

n =
∑m

i=1 ri. For 1 ≤ i ≤ m, σ−1(i) is the set of all

positions with rank i, i.e., σ−1(i) = {j | σ(j) = i}. We call

the vector −→r = (r1, r2, . . . , rm) the multiplicity vector of the

multipermutation. The set of all multipermutations with m ranks

and multiplicity vector −→r is denoted by Pm,−→r , and its size is

Pm,−→r = n!∏m
i=1 ri!

. Hence, σ = (σ(1), σ(2), . . . , σ(n)) ∈ Pm,−→r
if and only if for all 1 ≤ i ≤ m, |σ−1(i)| = ri. In case that

r = ri for all 1 ≤ i ≤ m, we denote the set Pm,−→r simply

by Pm,r, and we will follow the same analogy in the other

definitions which include the multiplicity vector −→r .

Multipermutations are an important tool which can be found

in several applications. In [14], Slepian introduced multipermu-

tation codes for transmission over a Gaussian channels. Later,

these codes were further studied and generalized; see for exam-

ple [10], [12], [13]. Recently, multipermutations were applied

in codes for the ubiquitous flash memory. In flash memories,

cells usually represent multiple levels, which correspond to the

amount of electrons trapped in each cell. Currently, one of the

main challenges in flash memory cells it to exactly program

each cell to its designated level. In order to overcome this

difficulty, the novel framework of rank modulation codes was

introduced in [5]. In this setup, the information is carried by the

relative values between the cells rather than by their absolute

levels. Thus, every group of cells induces a permutation, which

is derived by the ranking of the level of each cell in the group.

There are several works which study the correction of errors

under the setup of permutations for the rank modulation scheme;

see e.g. [1], [6], [16]. Recently, to improve the number of

rewrites, the model of rank modulation was extended such that

multiple cells can share the same ranking [2], [3]. Thus, the

cells no longer determine a permutation but rather a multiper-

mutation. Lastly, error-correcting codes for multipermutations

subject to the Kendall’s τ -metric were presented in [11].

In this paper we consider error-correcting codes for mul-

tipermutations under the well-known Kendall’s τ -metric. In

Section II we present basic properties of the metric. We de-

rive a mapping which transforms a multipermutation with any

multiplicity vector to a permutation. This mapping is the key

for efficiently calculating the Kendall’s τ -distance between any

two multipermutations. In addition, this mapping is instrumental

for codes constructions: In Section III we present two simple

constructions of error-correcting codes for this metric. The first

construction is of error-correcting codes for multipermutations

that are derived from error-correcting codes for permutations

while the second construction shows the reverse direction.

We demonstrate this idea by constructing systematic error-

correction codes for multipermutations that are based on a con-

struction for permutations that was recently presented in [16].

In Section IV, we prove that the first construction in Section III

is asymptotically optimal for some multiplicity vectors. In

Section V we prove that if
log2 r
log2 m → 0 then the channel capacity

for Pm,r and any distance d is equal to the capacity of the

channel for Sn and the same distance d. In Section VI we

discuss the existence of perfect codes in this metric. Due to

lack of space we have omitted many of the proofs.

II. BASIC PROPERTIES OF KENDALL’S τ -METRIC

The Kendall’s τ -distance [7] between two permutations

σ, π ∈ Sm is denoted by dK(σ, π) and is defined to be the

minimum number of adjacent transpositions required to obtain

the permutation π from the permutation σ. It is also known [6],

[8] that dτ (σ, π) can be expressed as

dK(σ, π) = |{(i, j) : i �= j, σ−1(i) < σ−1(j), π−1(i) > π−1(j)}|.

The generalization of Kendall’s τ -distance for two multiper-

mutations σ, π ∈ Pm,−→r is defined similarly as the minimum

number of adjacent transpositions to obtain the multipermu-

tation π from the multipermutation σ. This distance will be

denoted also by dK(σ, π) as this is a generalization of the

definition for permutations. For example, if σ = [1, 1, 2, 2] and

π = [2, 1, 2, 1], then dτ (σ, π) = 3, because to change the per-

mutation from σ to π, we need at least 3 adjacent transpositions:

[1, 1, 2, 2]→ [1, 2, 1, 2]→ [2, 1, 1, 2]→ [2, 1, 2, 1].
Let −→r be a multiplicity vector and n =

∑m
i=1 ri. We define

a mapping from Pm,−→r to Sn,

T : Pm,−→r → Sn,

such that for every σ ∈ Pm,−→r , T (σ) is a permutation with n
ranks such that the first r1 ranks of T (σ) are in increasing order

in the r1 locations of the first rank in σ. The following r2 ranks
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of T (σ) are in increasing order in the r2 locations of second

rank in σ, and so on. For example,

T ((121331323)) = (142673859).

The mapping T is useful for the computation of the Kendall’s

τ -distance between two multipermutations because it helps

reduce it to computation of the distance on the corresponding

permutations.

Lemma 1: For every σ, μ ∈ Pm,−→r , we have

dK(σ, μ) = dK(T (σ), T (μ)).

For example, if σ = [1, 1, 2, 2], μ = [2, 1, 2, 1], then dK(σ, μ) =
3. Also, by the lemma, dK(T ([1, 1, 2, 2]), T ([2, 1, 2, 1])) =
dK([1, 2, 3, 4], [3, 1, 4, 2]) = 3.

An important tool to find properties about metrics is their

representation by a graph. For a multiplicity vector −→r the graph

G(−→r ) is defined as follows. Each multipermutation in Pm,−→r
is represented by a vertex in G(−→r ). Two vertices in G(−→r ),
representing the multipermutations σ and μ are connected by

an edge if dK(σ, μ) = 1. Two simple and important properties

of the Kendall’s τ -metric with regards to multipermutations are

summarized in the following two lemmas.

Lemma 2: If x, y, z, are three vertices in G(−→r ), then

dK(x, y) + dK(y, z) ≡ dK(x, z) (mod 2).
Corollary 1: For any given multiplicity vector −→r the graph

G(−→r ) is a bipartite graph.

A multipermutation σ will be called a ranks-run if all the

symbols of each rank form a single run. In Pm,r there are

exactly m! ranks-run multipermutations. For a multipermutation

σ = (σ(1), σ(2), . . . , σ(n)) the reverse multipermutation σR is

defined by σRdef
=(σ(n), . . . , σ(2), σ(1)).

Lemma 3: Let μ be a multipermutation in G(−→r ). Then

dK(σ, μ)+dK(σR, μ) = dK(σ, σR) if and only if σ is a ranks-

run multipermutation.

III. ERROR-CORRECTING CODES

Here we are interested in constructions and upper bounds on

error-correcting codes for multipermutations with the Kendall’s

τ -distance. As common for other metrics we present the fol-

lowing definitions for the related bounds. Let A(n, d) be the

maximum size of a code in Sn with minimum distance d,

A(m, r, d) be the maximum size of a code in Pm,r with

minimum distance d, and A(−→r , d) be the maximum size of a

code in Pm,−→r with minimum distance d. The first construction

is stated in the following lemma.

Lemma 4: If −→r is a multiplicity vector of length m, where

n =
∑m

i=1 ri, then
A(−→r , d) ≥ A(n, d)∏m

i=1 ri!
.

Surprisingly, if r is relatively small then this bound is quite

strong, as we will show in the sequel.

Another construction can lead to a bound in the other

direction which is rather weak.
Lemma 5:

A(n, d) ≥ A(−→r , d)
m∏
i=1

A(ri, d)

In the rest of this section, we will show an example of

a construction of error-correcting codes for multipermutations

based upon existing codes for permutations. In particular, we

present a modification of the systematic error-correction codes

presented in [16], that applies to multipermutations.

In an (n, k) systematic error-correcting code for permuta-

tions, the information is induced by the permutation of the first

k elements, which are called the information elements while

the last n− k elements are called the redundancy elements. In

encoding, a permutation of the k information elements is given

and accordingly the locations of the redundancy elements are

computed, while the order between the information elements

remains the same. Systematic error-correcting codes for multi-

permutations are defined similarly.

A construction of a (n, n − 2) systematic single error-

correcting code was given in [16]. We modify this construction

for multipermutations with r = 2. In our construction, we will

have to use an additional redundancy symbol resulting in three

redundancy symbols: an (m − 1) and two m’s. The symbol

(m− 1) is used to tell the order between the last two elements

labeled m.

Theorem 1: Let 2m−1 be a prime number. Then, there exists

a (2m, 2m−3) systematic single error-correcting code in Pm,2.

Proof: The existence of the code is introduced by its

construction. Let C be a single (2m, 2m− 2) systematic error-

correction code in Sn with encoder E . The information of the

multipermutation code is carried by the first 2m − 3 elements

1, 1, 2, 2, . . . , (m − 2), (m − 2), (m − 1) and assume it is the

multipermutation π = (π(1), . . . , π(2m− 3)). The encoding is

invoked by the following steps:

1) π′ = (π′(1), . . . , π′(2m − 3), π′(2m − 2)) is the multi-

permutation obtained from π, where the second symbol

(m − 1) (the one that belongs to the redundancy) is

inserted in π after the first (m−1), i.e., right after position

π−1(m− 1).
2) Apply the encoder E on the permutation T (π′). Let

i2m−1 and i2m be the resulting positions of the last two

redundancy elements.

3) If i2m−1 < i2m then insert the two elements of m in π′

in these positions.

4) If i2m−1 > i2m then first move the second element m−1
in π′ to another location at some distance greater than

five from the location of the first element (m− 1) in π′.
Then insert the two elements m in π′ in the corresponding

positions.

For decoding, according to the positions of the elements (m−1),
we determine the the relative order between the elements m.

The rest of the decoding can be implemented by applying the

decoder of the code C, as explained in [16].

IV. A MODIFIED SPHERE PACKING BOUND

In order to evaluate the efficiency of the construction in

Lemma 4, we would like to find upper bounds on A(−→r , d).
The first and most natural upper bound to consider is the

sphere packing bound. However, the size of a ball in Kendall’s

τ -distance for multipermutations which are not permutations,

depends on the center of the ball and the classic bound does not

work in this case. We present a technique to obtain upper bound

which was recently studied in [9] for the deletion channel.
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We follow the same definitions and construction as in [9].

A hypergraph H = (X, E) is a pair, where X is its set of

vertices and E is a collection of nonempty subsets of X , called

hyperedges, such that
⋃

E∈E E = X . A matching in H is a

collection of pairwise disjoint hyperedges E1, . . . , E� ∈ E . The

matching number of H, denoted by ν(H), is the size of the

largest matching. A transversal of a hypergraph H is a subset

T ⊆ X that intersects every hyperedge in E . The transversal
number of H, denoted by τ(H), is the size of the smallest

transversal. Assume that there are n vertices, x1, . . . , xn, and m
hyperedges is E1, . . . , Em. The matrix A ∈ {0, 1}n×m defined

by A(i, j) = 1 if and only if xi ∈ Ej , is called the incidence
matrix of H. The matching number is clearly the solution of

the integer linear programming problem:

ν(H) = max{wL1
(z) : Az ≤ 1, z ∈ {0, 1}m},

and the transversal number is the solution of the integer linear

programming problem:

τ(H) = min{wL1
(y) : ATy ≥ 1,y ∈ {0, 1}n}.

Furthermore, it can be verified that ν(H) ≤ τ(H), and these

two problems satisfy weak duality. These last two problems can

be slightly changed such that the vectors in the minimization

and maximization problems do not have be to binary, so

ν(H) = max{wL1(z) : Az ≤ 1, z ∈ Z
m
+},

τ(H) = min{wL1
(y) : ATy ≥ 1,y ∈ Z

m
+},

where Z+ is the set of nonnegative integers.

It can be easily verified that the integer solutions are equal to

the binary solutions. The problems can be further relaxed with

the following linear programming problems:

ν∗(H) = max{wL1
(z) : Az ≤ 1, z ∈ R

m
+},

τ∗(H) = min{wL1
(y) : ATy ≥ 1,y ∈ R

m
+},

where R+ is the set of nonnegative numbers.

The real solutions can be significantly different from the

integer solutions. ν∗(H) and τ∗(H) satisfy strong duality and

hence
ν∗(H) = τ∗(H).

Finally, the following property holds

ν(H) ≤ ν∗(H) = τ∗(H) ≤ τ(H),

and in particular,

ν(H) ≤ τ∗(H) ≤ wL1(u), (1)

for any fractional transversal u.

We distinguish between d = 3 and d ≥ 5, i.e. single-error-

correcting codes and t-error-correcting codes, t ≥ 2.

A. Single-error-correcting codes

The size of a ball B1(σ) of radius one for every multipermu-

tation σ ∈ Pm,−→r satisfies m ≤ |B1(σ)| ≤ n. Hence, a trivial

upper bound on the size of multipermutation codes in Pm,−→r ,

where −→r is a multiplicity vector of length m, which correct a

single error is n!

m
∏m

i=1 ri!
. (2)

For simplicity let’s consider now multipermutations only in

Pm,2. By Lemma 4, if there exists an optimal single-error-

correcting code in Sn whose size is (n−1)!, then there exists a

single error-correcting code in Pm,2 whose size is
(n−1)!
2m , while

the upper bound (2) is

n!

m · 2m = 2 · (n− 1)!

2m
. (3)

We will try to close on this gap.

A first observation on the size of a ball with radius one is

that its minimum size is attained for permutations where similar

ranks appear together and the maximum size is attained when

no two similar ranks appear together. For σ ∈ Pm,2 let us denote

by u(σ) the number of runs in σ. It can be easily verified that

|B1(σ)| = u(σ).

We define a hypergraph H = (X, E), whose set of vertices is

X = Pm,2 and the hyperedges represents the balls with radius

one around the elements of Pm,2, i.e.

E = {B1(σ) : σ ∈ Pm,2}.
The number of vertices and the number of hyperedges in H is

equal to M = n!
2m . Each single-error-correcting code in Pm,2

corresponds to a matching in the hypergraph H. Therefore, an

upper bound on the size of such codes is the matching number

ν(H). By (1), for any fractional transversal u we obtain an

upper bound wL1
(u) on the size of such codes, where wL1

(v)
is the sum of the elements in the vector v.

Let σ1, σ2, . . . , σM be an order of the M multipermutations

in Pm,2. We define a vector y = (y1, . . . , yM ) such that for each

i, 1 ≤ i ≤M , yi =
1

u(σi)−2 , where u(σi) is the number of runs

in σi. We will show now that y is a fractional transversal. It is

clear that y ∈ R
M
+ . Thus, we only need to show that ATy ≥ 1.

For a given j, 1 ≤ j ≤M ,

(ATy)j =

M∑
i=1

ai,jyi =
∑

σi∈B1(σj)

yi =
∑

σi∈B1(σj)

1

u(σi)− 2

≥
∑

σi∈B1(σj)

1

u(σj)
= |B1(σj)| · 1

u(σj)
=

u(σj)

u(σj)
= 1.

Note that the inequality follows from the property that a

single adjacent transposition can change the number of runs

by at most two. Hence, for each i and j, such that σi ∈ B1(σj)
we have u(σi)− 2 ≤ u(σj).

Now, we have to calculate the value of wL1
(y) (or an upper

bound on this value), which will give an upper bound on

A(m, 2, 3). The number of runs for each σ ∈ Pm,2 is between

m and 2m. The number of multipermutations with exactly

2m − � runs (� ranks are together in the multipermutations)

for 0 ≤ � ≤ m is computed by using the inclusion-exclusion

principle. This number is equal to:

N� =

(
m

�

)m−�∑
i=0

(−1)i
(
m− �

i

)
(2m− (�+ i))!

2m−(�+i)
.

Finally, we have

wL1
(y) =

m∑
�=0

N� · 1

2m− �− 2
. (4)

The following table presents numerical values of the bounds

on A(m, 2, 3).
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m bound in (3) bound in (1) and (4)

3 30 34

4 630 526

5 22680 16552

6 1247400 842262

7 97297200 62441159

8 10216206000 6324770781

The following lemma is required for the next result.

Lemma 6: For every positive integers t and a such that a > t
the following identity holds:

t∑
�=0

(−1)t−�

(
t

�

)
1

a− �
=

t!∏t
�=0(a− �)

.

Lemma 7: For m ≥ 7, the value wL1
(y) satisfies

wL1
(y) ≤ (2m)!

2m · (2m− 2)

(
1 +

1

m

)
.

Proof: Let S ⊆ [m] = {1, . . . ,m} and let NS be the

number of multipermutations such that for each rank s ∈ S,

the two ranks appear together, and for each other rank, the two

rank do not appear together. Hence,

NS =
∑

T⊆[m],S⊆T

(−1)|T\S| (2m− |T |)!
2m−|T |

. (5)

Now, we have wL1
(y) =

∑
S⊆[m]

1
2m−|S|−2 · NS . Together

with (5) we conclude

wL1(y) =
∑

S⊆[m]

1

2m− |S| − 2
·NS

=
∑

S⊆[m]

1

2m− |S| − 2
·

∑
T⊆[m],S⊆T

(−1)|T\S| (2m− |T |)!
2m−|T |

=
∑

T⊆[m]

(2m− |T |)!
2m−|T |

∑
S⊆[m],S⊆T

(−1)|T\S| 1

2m− |S| − 2

=
∑

T⊆[m]

(2m− |T |)!
2m−|T |

|T |∑
�=0

(−1)|T |−�

(
|T |
�

)
1

2m− 2− �

=(a)
∑

T⊆[m]

(2m− |T |)!
2m−|T |

· |T |!∏|T |
�=0(2m− 2− �)

=
∑

T⊆[m]

(2m− |T |)!
2m−|T |

· 1

(2m− 2)
(
2m−3
|T |

)
=

m∑
t=0

(
m

t

)
(2m− t)!

2m−t
· 1

(2m− 2)
(
2m−3

t

)
=

m∑
t=0

(2m)!

2m · (2m− 2)
· (2m− t)!2t · (m

t

)
(2m)!

(
2m−3

t

)
=

(2m)!

2m · (2m− 2)

(
1 +

1

2m− 3
+

m∑
t=2

(2m− t)!2t · (m
t

)
(2m)!

(
2m−3

t

)
)

≤(b) (2m)!

2m · (2m− 2)

(
1 +

1

2m− 3
+

(m− 1) · 2(m− 1)

(2m− 1)(2m− 3)(2m− 4)

)

≤(c) (2m)!

2m · (2m− 2)

(
1 +

1

m

)

where equality (a) follows from Lemma 6. Inequality (b)
follows from the property that for all t ≤ m

(2m− t)!2t · (mt )
(2m)!

(
2m−3

t

) ≥ (2m− (t+ 1))!2t+1 · ( m
t+1

)
(2m)!

(
2m−3
t+1

) ,

and Inequality (c) is true for m ≥ 7.

Since the largest size of a ball in this case is 2m, it follows

that the result of Lemma 7 implies that asymptotically a sphere

packing bound with the largest possible ball is obtained.

B. t-error-correcting codes, t ≥ 2

Our goal is to generalize Lemma 7 for t-error-correcting

codes, t ≥ 2. For a multipermutation σ ∈ Pm,2, let Bt(σ) be the

ball with radius t, whose center is σ, and let bt(σ) = |Bt(σ)|.
Let σ1, σ2, . . . , σM be an order of the M multipermutations in

Pm,2. The vector yt = (yt,1, . . . , yt,M ) is defined as follows

yt,i =
1

minμ∈Bt(σi){bt(μ)}
.

It can be verified as before that ATyt ≥ 1, and hence wL1
(yt)

is an upper bound on the size of a t-error-correcting code.

For t = 2 we can show that for every σ ∈ Pm,2,(
m+ 2

2

)
− 2 ≤ b2(ρ) ≤

(
2m+ 1

2

)
− 1 .

Similarly to the case t = 1 we can prove that asymptotically

an upper bound on wL1
(yt), for t ≥ 2, is

(2m)!

2m·(2m−2t−1
t )

.

The size of a ball in the metric is very important in the context

of the sphere packing bound and also to obtain a lower bound

with the Gilbert-Varshamov. When the sphere depends on its

center, a Gilbert-Varshamov lower bound was developed in [15].

It depends on the size of the balls and the number of words for

each such size. Therefore, these calculations are so important.

In our case, we can use the lower bound in [15] for minimum

distance 3, while for other distances it is a future research work.

V. THE CAPACITY OF MULTIPERMUTATION CODES

For every positive d the capacity of codes in Sn with

minimum distance d is defined as

C(d) = lim
n→∞

log2 A(n, d)

log2 n!
.

The following theorem was proved in [1].
Theorem 2: The value C(d) satisfies

C(d) =

⎧⎨
⎩

1 if d = O(n)
1− ε if d = O(n1+ε), 0 < ε < 1
0 if d = Θ(n2)

Similarly, we define the capacity of multipermutations codes

with minimum distance d and fixed r to be

C(r, d) = lim
m→∞

log2 A(m, r, d)

log2 |Pm,r| = lim
m→∞

log2 A(m, r, d)

log2

(
(mr)!
(r!)m

) .

Lemma 8: If
log2 r
log2 m → 0 and d ≥ 1 then C(r, d) ≥ C(d).

Lemma 9: If
log2 r
log2 m → 0 and d ≥ 1 then C(r, d) ≤ C(d).

Proof: Let C be a multipermutation code of minimum

distance d. We introduced earlier the mapping T from Pm,r

to Sn which preserves distances. Hence, if we define the code

C′ = T (C) = {T (c) : c ∈ C },
then we have that C′ is a code in Sn with minimum distance d
as well. It implies that A(m, r, d) ≤ A(n, d). Therefore,
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C(r, d) = lim
n→∞

log2 A(m, r, d)

log2 |Pm,r| ≤ log2 A(n, d)

log2

(
(mr)!
(r!)m

)
=

log2 A(n, d)

log2(mr)!−m log2 r!
=

log2 A(n, d)

log2(mr)!
·
(

log2(mr)!

log2(mr)!−m log2 r!

)

=
log2 A(n, d)

log2(mr)!
·
(

1

1− m log2 r!

log2(mr)!

)
→m→∞ C(d)

Corollary 2: If
log2 r
log2 m → 0 and d ≥ 1 then C(r, d) = C(d).

VI. PERFECT CODES

In this section we consider the question of the existence

of perfect codes in G(r1, r2, . . . , rm). C is a perfect code
with covering radius R in G(r1, r2, . . . , rm) if for each vertex

v ∈ G(r1, r2, . . . , rm) there exists exactly one codeword c ∈ C
such that dK(v, c) ≤ R. Trivial perfect codes are similar to

trivial perfect codes in other metrics and they include the whole

graph which is a perfect code with radius 0; one word v is

always a perfect code with covering radius which is equal to

the maximum distance of a vertex in the graph from v.

There are some more families of perfect codes in

G(r1, r2, . . . , rm). Their structure is very simple and therefore

we will call also these perfect codes trivial. The graph repre-

sentation and the results proved in Section II are used to prove

the claims concerning the perfect codes.

1) The first family consists of codes which contain two

reversed codewords for which the distance is an odd

integer 2R + 1. Both codewords should be ranks-run

multipermutations. This type of perfect codes is very

similar to perfect codes in the Johnson scheme which

consist of two complement codewords [4].

2) The second family consists of codes which contain two

codewords from the graph G(r1, r2). Since the multiper-

mutations have two ranks we will assume that the code

is binary (rather than with ranks 1 and 2). If r1 and r2
are odd then there are two types of perfect codes in the

graph. In the first code, one codeword consists of r1 zeroes
followed by r2 ones. The second codeword consists of

r2 ones followed by r1 zeroes. The covering radius of

this code is r1r2−1
2 . Another perfect code in the same

graph is formed by taking one codeword with r1 − 1
zeroes followed by 10 followed by r2 − 1 ones. The

second codeword is the reverse of the first codeword. The

covering radius of this code is r1r2−3
2 . If r1 and r2 have

different parity then there are also two types of perfect

codes in the graph. The covering radius of both codes is
r1r2−2

2 . In the first code one codeword consists of r1− 1
zeroes followed by 10 followed by r2−1 ones. The second

codeword consists of r2 ones followed by r1 zeroes. In

the second code the first codeword consists of r1 zeroes
followed by r2 ones. The second codeword consists of

r2 − 1 ones followed by 01 followed by r1 − 1 zeroes.

3) The third family of codes is in the graph G(1, n−1) (and

similar ones in G(n− 1, 1)). For each R, 1 ≤ R ≤ n− 1
there exist perfect codes with covering radius R in the

graph. The graph has n vertices which are represented

by the n binary words of length n and weight one. If

�n2 	 ≤ R ≤ n − 1 then there exist two perfect codes.

The first code consists of one codeword with the one in

position R+1. The second code consists of one codeword

with the one in position n−R. If n = 2R+ 1 then both

codes coincide. If 1 ≤ R ≤ �n2 	−1 then the code consists

of 
 n
2R+1� codewords. Let j, be an integer between 1 and

2R+1 such that j ≡ n (mod 2R+1). If 1 ≤ j ≤ R+1
then the first codeword can have an one in any position

�, 1 ≤ � ≤ 1 + j. If R + 1 ≤ j ≤ 2R + 1 then the first

codeword can have an one in any position �, j−R ≤ � ≤
R + 1. If in the first codeword the one is in position t
then for each i, 1 ≤ i ≤ 
 n

2R+1� − 1 there is a codeword

with an one in position t+ (2R+ 1)i.

It is an intriguing question whether there exist more perfect

codes in the Kendall’s τ -metric for multipermutation.
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