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Abstract—The rank modulation scheme has been pro-
posed for efficient writing and storing data in non-volatile
memory storage. Error-correction in the rank modulation
scheme is done by considering permutation codes. In this
paper we consider codes in the set of all permutations on n
elements, Sn, using the Kendall’s τ -metric. We prove that
there are no perfect single-error-correcting codes in Sn,
where n > 4 is a prime or 4 ≤ n ≤ 10. We also prove that
if such a code exists for n which is not a prime then the
code should have some uniform structure. We define some
variations of the Kendall’s τ -metric and consider the related
codes and specifically we prove the existence of a perfect
single-error-correcting code in S5. Finally, we examine the
existence problem of diameter perfect codes in Sn and
obtain a new upper bound on the size of a code in Sn

with even minimum Kendall’s τ -distance.

I. INTRODUCTION

Flash memory is a non-volatile technology that is both
electrically programmable and electrically erasable. It
incorporates a set of cells maintained at a set of levels of
charge to encode information. While raising the charge
level of a cell is an easy operation, reducing the charge
level requires the erasure of the whole block to which the
cell belongs. For this reason charge is injected into the
cell over several iterations. Such programming is slow
and can cause errors since cells may be injected with
extra unwanted charge. Other common errors in flash
memory cells are due to charge leakage and reading
disturbance that may cause charge to move from one
cell to its adjacent cells. In order to overcome these
problems, the novel framework of rank modulation codes
was introduced in [15]. In this setup the information is
carried by the relative ranking of the cells charge levels
and not by the absolute values of the charge levels.
This allows for more efficient programming of cells, and
coding by the ranking of the cells’ levels is more robust to
charge leakage than coding by their actual values. In this
model codes are subsets of Sn, the set of all permutations
on n elements, where each permutation corresponds to a
ranking of n cells’ levels. Permutation codes were mainly
studied in this context using two metrics, the infinity
metric and the Kendall’s τ -metric.

Codes in Sn under the infinity metric were considered
in [19], [28], [30], [32]. Anticodes in Sn under the infinity
metric were considered in [18], [29], [31].

In this paper we consider codes using the Kendall’s
τ -metric and some variation of the Kendall’s τ -metric.
Under the Kendall’s τ -metric, codes in Sn with minimum
distance d should correct up to

⌊
d−1
2

⌋
errors that are

caused by charge leakage and read disturbance. A com-
prehensive work on error-correcting codes in Sn using
the Kendall’s τ -metric [17], is given in [16]. In that
paper [16] there is also a construction of single-error-
correcting codes using codes in the Lee metric. This
method was generalized in [3] for the construction of
t-error-correcting codes that are of optimal size, up to a
constant factor, where t is fixed. In [33], systematic-error-
correcting codes were proposed. In particular, they con-
structed a systematic single-error-correcting code in Sn
of size (n− 2)!, which is of optimal size, assuming that
a perfect single-error-correcting code does not exist. But,
they only prove the nonexistence of perfect single-error-
correcting codes for n = 4.

The first part of this paper is devoted to perfect single-
error-correcting codes in Sn, using the Kendall’s τ -metric
and related structures. Perfect codes is one of the most
fascinating topics in coding theory. A perfect code in a
given metric is a code in which the set of spheres with
a given radius R around its codewords forms a partition
of the space. These codes were mainly considered for
the Hamming scheme, e.g. [10], [22], [23], [24], [25].
They were also considered for other schemes such as
the Johnson scheme, e.g. [7], [9], [27], the Grassmann
scheme [5], [21], and to a larger extent in the Lee and
the Manhattan metrics, e.g. [8], [12], [13], [26]. Perfect
codes were also considered on Cayley graphs [14] and
for distance-transitive graphs [4].

The rest of this work is organized as follows. In
Section II we define the basic concepts for the Kendall’s
τ -metric and for perfect codes. In Section III we prove
the nonexistence of a perfect single-error-correcting code
in Sn, using the Kendall’s τ -metric, where n > 4 is a
prime or 4 ≤ n ≤ 10. We also show that perfect single-
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error-correcting codes must have a uniform structure. If
we slightly modify the Kendall’s τ -distance to define a
cyclic Kendall’s τ -distance, then we have at least one
perfect single-error-correcting code in S5. This code and
more variations of the Kendall’s τ -metric are discussed
in Section IV. In Section V we examine diameter perfect
codes in Sn, using the Kendall’s τ -metric, and improve
some known upper bounds on the size of a code in Sn
with even minimum Kendall’s τ -distance. We conclude
in Section VI where we also present some questions for
future research.

II. BASIC CONCEPTS

Let Sn be the set of all permutations on the set
of n elements [n] = {1, 2, . . . , n}. We denote a
permutation σ ∈ Sn by σ = [σ(1), σ(2), . . . , σ(n)].
For two permutations σ, π ∈ Sn, their multiplication
π ◦ σ is defined as the composition of σ on π, namely,
π ◦ σ(i) = σ(π(i)), for all 1 ≤ i ≤ n. Note that this
operation on Sn is not commutative. Given a permutation
σ ∈ Sn, an adjacent transposition, (i, i + 1), is an
exchange of two adjacent elements σ(i), σ(i + 1) in σ,
for some 1 ≤ i ≤ n−1. The result is the permutation π =
[σ(1), . . . , σ(i− 1), σ(i+ 1), σ(i), σ(i+ 2), . . . , σ(n)].
The permutation π can also be written
as π = (i, i+ 1) ◦ σ, where (i, i + 1) is
the cycle decomposition of the permutation
[1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n].

For two permutations σ, π ∈ Sn, the Kendall’s τ -
distance between σ and π, dK(σ, π), is defined as the
minimum number of adjacent transpositions needed to
transform σ into π [17]. The following expression for
dK(σ, π) is well known (e.g. [16], [20]).

dK(σ, π) = |{(i, j) : σ−1(i) < σ−1(j)∧π−1(i) > π−1(j)}|.

Given a metric space, one can define codes. We say that
C ⊂ Sn is an (n,M, d) code if |C| =M and dK(σ, π) ≥
d for every two permutations σ, π in C (d is called the
minimum distance of the code C).

For a given space V with a distance measure d(·, ·),
a subset C of V is a perfect code with radius R if for
every element x ∈ V there exists a unique codeword
c ∈ C such that d(x, c) ≤ R. For a point x ∈ V , the
sphere of radius R centered at x, S(x,R), is defined
by S(x,R)

def
= {y ∈ V : d(x, y) ≤ R}. In all the

spaces and metrics considered in this paper the size of a
sphere does not depend on the center of the sphere. This
is a consequence from the fact that right multiplication
of permutations is an isometric operation related to the
distance. If C is a code with minimum distance 2R + 1
and S is a sphere with radius R then it is readily verified
that

Theorem 1. For a code C with minimum distance 2R+1
and a sphere S with radius R we have |C| · |S| ≤ |V|.

Theorem 1 known as the sphere packing bound. In
a code C which attains the sphere packing bound, i.e.
|C| · |S| = |V|, the spheres with radius R around the
codewords of C form a partition of V . Hence, such a
code is a perfect code. A perfect code with radius R is
also called a perfect R-error-correcting code.

III. NONEXISTENCE OF SOME PERFECT CODES

In this section we prove that there are no perfect single-
error-correcting codes in Sn, where n is a prime greater
than 4 or 4 ≤ n ≤ 10. For each i, 1 ≤ i ≤ n, let Sn,i be
the subset of Sn which consists of all the permutations
σ ∈ Sn for which σ(i) = 1, i.e., one is in the ith position
in σ. Clearly we have that |Sn,i| = (n− 1)!.

Assume that there exists a perfect single-error-
correcting code C ⊂ Sn. For each i, 1 ≤ i ≤ n, let

Ci = C ∩ Sn,i and xi = |Ci|.

We say that a codeword σ ∈ C covers a permutation
π ∈ Sn if dK(σ, π) ≤ 1. Since C is a perfect single-
error-correcting code, it follows that every permutation
in Sn,1 must be at distance at most one from exactly one
codeword of C and this codeword must belong either to
C1 or C2. Every codeword σ ∈ C1 covers exactly n− 1
permutations in Sn,1. It covers itself and the n−2 permu-
tations in Sn,1 obtained from σ by exactly one adjacent
transposition (i, i+1), 1 < i < n. Each codeword σ ∈ C2
covers exactly one permutation π ∈ Sn,1, π = (1, 2) ◦ σ.
Therefore, we have the following equation

(n− 1)x1 + x2 = (n− 1)! . (1)

Similarly, by considering how the permutations of Sn,n
are covered by codewords of C, we have that

xn−1 + (n− 1)xn = (n− 1)! . (2)

For each i, 2 ≤ i ≤ n − 1, each permutation
in Sn,i is covered by exactly one codeword that belongs
to either Ci−1, Ci, or Ci+1. Each codeword σ ∈ Ci
covers exactly n− 2 permutations in Sn,i. It covers itself
and the n − 3 permutations in Sn,i obtained from σ
by exactly one adjacent transposition (j, j + 1), where
j < i− 1 or j > i. Each codeword in Ci−1 ∪Ci+1 covers
exactly one permutation from Sn,i. Therefore, for each i,
2 ≤ i ≤ n− 1, we have the equation

xi−1 + (n− 2)xi + xi+1 = (n− 1)! . (3)

Let x = (x1, x2, . . . , xn) and let 1 denote the all-ones
vector. Equations (1), (2), and (3) can be written in matrix
form as

Ax = (n− 1)! · 1, (4)

2014 IEEE International Symposium on Information Theory

2392



where A = (ai,j) is defined by

A =



n− 1 1 0 0 · · · 0 0 . . . 0
1 n− 2 1 0 · · · 0 0 . . . 0
0 1 n− 2 1 · · · 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
...

...
0 . . . 0 0 · · · 1 n− 2 1 0
0 . . . 0 0 · · · 0 1 n− 2 1
0 . . . 0 0 · · · 0 0 1 n− 1


.

Since the sum of every row in A is equal to n it
follows that the linear equation system (4) has a solution
y = (n−1)!

n · 1. We will show that if n > 3 then A
is a nonsingular matrix and hence y is the unique
solution of (4), i.e., x = y. To this end, we need the
following lemma, that can be easily verified, and is also
an immediate conclusion of the well known Gerschgorin
circle theorem [11].

Lemma 1. Let B = (bi,j) be an n×n matrix. If |bi,i| >∑
j 6=i |bi,j | for all i, 1 ≤ i ≤ n, then B is nonsingular.

For n > 4, we have that for each i, 1 ≤ i ≤ n,
ai,i ≥ n − 2 > 2 ≥

∑
j 6=i ai,j . By Lemma 1 it follows

that A is nonsingular. For n = 4 it can be readily verified
that the matrix A is nonsingular. Hence, for all n ≥ 4,
xi =

(n−1)!
n for all 1 ≤ i ≤ n. If n = 4 or n is a prime

greater than 4, then xi is not an integer and therefore,
a perfect single-error-correcting code does not exist for
these parameters.

By using similar methods, we prove the nonexistence
of perfect single-error-correcting codes in Sn for n ∈
{6, 8, 9, 10}. For each of these cases, we obtained a
system of linear equations, which we solved by computer.
For n > 11, the system of linear equations is very large
and the computer failed to solve it. We summarize our
result in the following theorem.

Theorem 2. There is no perfect single-error-correcting
code in Sn, where n > 4 is a prime or 4 ≤ n ≤ 10.

By similar methods we can also prove the following
property of perfect single-error-correcting codes.

Theorem 3. Assume that there exists a perfect single-
error-correcting code C ⊂ Sn, where n > 11. If r <
n
4 , then for every sequence of r distinct elements of [n],
i1, i2, . . . , ir, and for every set of r positions 1 ≤ j1 <
j2 < . . . < jr ≤ n, there are exactly (n−r)!

n codewords
σ ∈ C, such that σ(j`) = i`, for each `, 1 ≤ ` ≤ r.

Theorem 3 implies that perfect single-error-correcting
codes must have some kind of symmetry. This might be
useful to rule out the existence of these codes for other
parameters as well.

IV. THE CYCLIC KENDALL’S τ -METRIC

In this section we discuss a new metric which naturally
risen in the context of the Kendall’s τ -metric.

Given a permutation σ ∈ Sn, a c-adjacent transposi-
tion is either an adjacent transposition or the exchange
of the elements σ(1) and σ(n).

For two permutations σ, π ∈ Sn, the cyclic Kendall’s
τ -distance between σ and π, dκ(σ, π), is defined as the
minimum number of c-adjacent transpositions needed to
transform σ into π.

For example, if σ = [1, 2, 3, 4] and π = [4, 3, 2, 1],
then dκ(σ, π) = 2, since two c-adjacent transpositions
are enough to change the permutation from σ to π:
[1, 2, 3, 4] → [4, 2, 3, 1] → [4, 3, 2, 1], and we need
at least two c-adjacent transpositions for this purpose.
Clearly, dκ(σ, ρ) ≤ dK(σ, ρ) and therefore, if C has
minimum cyclic Kendall’s τ -distance d then C also has
minimum Kendall’s τ -distance at least d.

By Theorem 2 there is no perfect single-error-
correcting code in S5, using the Kendall’s τ -distance.
However, there exists a perfect single-error-correcting
code in S5, using the cyclic Kendall’s τ -distance. For
example, the following 20 codewords form such a code.

[0, 1, 2, 3, 4], [0, 2, 4, 1, 3], [0, 3, 1, 4, 2], [0, 4, 3, 2, 1]
[1, 2, 3, 4, 0], [2, 4, 1, 3, 0], [3, 1, 4, 2, 0], [4, 3, 2, 1, 0]
[2, 3, 4, 0, 1], [4, 1, 3, 0, 2], [1, 4, 2, 0, 3], [3, 2, 1, 0, 4]
[3, 4, 0, 1, 2], [1, 3, 0, 2, 4], [4, 2, 0, 3, 1], [2, 1, 0, 4, 3]
[4, 0, 1, 2, 3], [3, 0, 2, 4, 1], [2, 0, 3, 1, 4], [1, 0, 4, 3, 2].

Note that the permutations in each column are cyclic
shifts of the first permutation in the column. More-
over, the permutations in the first row are of the form
[0, α, 2α, 3α, 4α], where 1 ≤ α ≤ 4, and multiplication
is taken modulo 5. A similar code of size n · (n − 1)
can be formed for each prime n > 5. These codes
can be represented by another related distance mea-
sure. We consider the following equivalence relation E
on Sn. For two permutations σ = [σ1, σ2, . . . , σn]
and π = [π1, π2, . . . , πn] we have that (σ, π) ∈ E
if there exist an integer i, 1 ≤ i ≤ n, such that
σ = [πi, πi+1, . . . , πn, π1, . . . , πi−1]. Clearly, E is
an equivalence relation on Sn with (n− 1)! equivalence
classes, each one of size n. Let Scn denote the set of these
(n− 1)! equivalence classes. Two elements of Scn are at
distance one if there exist two representatives of the two
equivalence classes whose Kendall’s τ -distance in one. If
C is a code with minimum Kendall’s τ -distance (of Scn)
d then there exists a code C′ in Sn, of size n|C|, with
minimum cyclic Kendall’s τ -distance d. Moreover, there
exists also a code of size |C| in Sn−1 with minimum
cyclic Kendall’s τ -distance d.

The computations of related distances, constructions
of codes, and the structure of the two related graphs
are intriguing research topics. Some breaking records
codes are derived from these graphs. The results will be
presented only in the full version of this work.
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V. DIAMETER PERFECT CODES

In all the perfect codes the minimum distance of the
code is an odd integer. If the minimum distance of the
code C is an even integer then C cannot be a perfect
code. The reason is that for any two codewords c1, c2 ∈ C
such that d(c1, c2) = 2δ, there exists a word x such that
d(x, c1) = δ and d(x, c2) = δ. For this case another
concept is used, a diameter perfect code, as was defined
in [1]. This concept is based on the code-anticode bound
presented by Delsarte [6]. An anticode A of diameter D
in a space V is a subset of words from V such that
d(x, y) ≤ D for all x, y ∈ A.

Theorem 4. If a code C, in a space V of a distance reg-
ular graph, has minimum distance d and in an anticode
A of the space V the maximum distance is d − 1 then
|C| · |A| ≤ |V|.

Theorem 4 which is proved in [6] is a generalization
of Theorem 1 and it can be applied to the Hamming
scheme since the related graph is distance regular. It
cannot be applied to the Kendall’s τ -metric since the
related graph is not distance regular if n > 3. This can
be easily verified by considering the three permutations
σ = [1, 2, 3, 4, 5, . . . , n], π = [3, 1, 2, 4, 5, . . . , n], and
ρ = [2, 1, 4, 3, 5, . . . , n] in Sn. Clearly, dK(σ, π) =
dK(σ, ρ) = 2 and there exists exactly one permuta-
tion α for which dK(σ, α) = 1 and dK(α, π) = 1,
while there exist exactly two permutations α, β for
which dK(σ, α) = 1, dK(α, ρ) = 1, dK(σ, β) = 1, and
dK(β, ρ) = 1. Fortunately, an alternative proof which was
given in [1] and was modified in [8] will work for the
Kendall’s τ -metric.

Theorem 5. Let CD be a code in Sn with Kendall’s τ -
distances between codewords taken from a set D. LetA ⊂
Sn and let C′D be the largest code in A with Kendall’s τ -
distances between codewords taken from the set D. Then

|CD|
n!
≤ |C

′
D|
|A|

.

Corollary 1. Theorem 4 holds for the Kendall’s τ -metric,
i.e. if a code C ⊂ Sn, has minimum Kendall’s τ -distance
d and in an anticode A ⊂ Sn the maximum Kendall’s
τ -distance is d− 1 then |C| · |A| ≤ n!.

If there exists a code C ⊂ Sn with minimum Kendall’s
τ -distance d = D + 1, and an anticode A with diameter
D such that |C| · |A| = n!, then C is called a diameter
perfect code with diameter D. In that case, A must be an
anticode with maximum distance (diameter) D of largest
size, and A is called an optimal anticode of diameter D.
Thus, it is important to determine the optimal anticodes
in Sn and their sizes. Using the size of such optimal
anticodes we can obtain by Corollary 1 an upper bound
on the size of the related code in Sn.

One can verify that any permutation
σ = [σ(1), σ(2), . . . , σ(n)] in Sn and its reverse
[σ(n), . . . , σ(2), σ(1)] form a diameter perfect code with
diameter

(
n
2

)
− 1. An optimal anticode with diameter(

n
2

)
− 1 consists of n!

2 permutations, one permutation
from each pair of permutations, π and its reverse in Sn.

An intriguing question is whether a sphere with ra-
dius R in Sn, using the Kendall’s τ -metric, is an op-
timal anticode of diameter 2R. Such types of ques-
tions for other metrics were considered in [2]. For
n = 4, the sphere with radius 1 has size 4 and it
is an optimal anticode of diameter 2. There exists an
optimal anticode of diameter 2 in S4, which is not
a sphere with radius 1. For example, the set A =
{[1, 2, 3, 4], [2, 1, 3, 4], [1, 2, 4, 3], [2, 1, 4, 3]} is an opti-
mal anticode of diameter 2. A similar example exists
for an optimal anticode of size 9 and diameter 4 in S4.
However, for n ≥ 5, we have the following theorem.

Theorem 6. Every optimal anticode with diameter 2
in Sn, n ≥ 5, using the Kendall’s τ -distance, is a sphere
with radius 1, whose size is n.

Let S be a set of permutations in Sn and let π ∈ Sn.
We define S ◦ π = {σ ◦ π : σ ∈ S}.

Theorem 7. Let e = [1, 2, . . . , n] be the identity permu-
tation of Sn, n ≥ 4. And let S(e, 1) be the sphere of
radius 1 centered at e. Then the set

A = S(e, 1) ∪ S(e, 1) ◦ (1, 2)

is an optimal anticode of diameter 3, whose size is
2(n− 1).

Corollary 2. If C ⊂ Sn is a code with minimum Kendall’s
τ -distance 4, then

|C| ≤ n!

2(n− 1)
.

We conjecture that the largest anticode with maximum
Kendall’s τ -distance 2R is a sphere with radius R if
2R <

(
n
2

)
. We conjecture that the largest anticode

with maximum Kendall’s τ -distance 2R + 1 <
(
n
2

)
is

S(e,R) ∪ S(e,R) ◦ (1, 2). The size of this anticode will
be discussed in the full version of this work. It implies
a new bound on the size of a code in Sn with minimum
Kendall’s τ -distance 2R+ 2.

VI. CONCLUSIONS AND OPEN PROBLEMS

We have considered several questions regarding perfect
codes in the Kendall’s τ -metric. We gave a novel tech-
nique to exclude the existence of perfect codes using the
Kendall’s τ -metric. We applied this technique to prove
that there are no perfect single-error-correcting codes
in Sn, where n > 4 is a prime or 4 ≤ n ≤ 10, using the
Kendall’s τ -metric. We also proved that if such a code
exists for other values of n it should have some uniform
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structure. We showed that if we use a cyclic Kendall’s τ -
metric then a perfect single-error-correcting code exists
in S5. Finally, we examine the existence question of
diameter perfect codes in Sn. We obtained a new upper
bound on the size of a code in Sn with even Kendall’s τ -
distance. Our discussion raises many open problems from
which we choose a few as follows.

1) Prove the nonexistence of perfect codes in Sn,
using the Kendall’s τ -metric, for more values of n
and/or other distances.

2) Do there exist more perfect codes in Sn using the
cyclic Kendall’s τ -metric?

3) Examine the cyclic Kendall’s τ -metric for its prop-
erties, find upper bounds on the size of codes with
this metric, and construct codes with this metric.
The same should be done if we consider the set of
equivalence classes Scn of the relation E.

4) Is the sphere with radius R in Sn always optimal
as an anticode with diameter 2R <

(
n
2

)
in Sn? If

yes, when there are other optimal anticodes with
the same parameters which are not spheres?

5) What is the size of an optimal anticode in Sn with
diameter D?

6) Improve the bounds on the size of codes in Sn with
even minimum Kendall’s τ -distance.

NOTE ADDED

Theorem 2 is a special case of Theorem 5 in [14]
on perfect codes in Cayley graphs. But, the proof of
Theorem 5 in [14] is wrong and some bounds on codes
implied from it are false with infinite counterexamples.
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