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ABSTRACT
Let P be a set of n points in the plane and let C be a family
of simple closed curves in the plane each of which avoids the
points of P . For every curve C ∈ C we denote by disc(C) the
region in the plane bounded by C. Fix an integer s ≥ 0 and
assume that every two curves in C intersect at most s times
and that for every two curves C, C′ ∈ C the intersection
disc(C)∩disc(C′) is a connected set. We consider the family
F = {P ∩ disc(C) | C ∈ C}. When s is even, we provide
sharp bounds, in terms of n, s, and k, for the number of
sets in F of cardinality k, assuming that ∩C∈Cdisc(C) is
nonempty. In particular, we provide sharp bounds for the
number of halving pseudo-parabolas for a set of n points in
the plane. Finally, we consider the VC-dimension of F and
show that F has VC-dimension at most s + 1.

Categories and Subject Descriptors
G.2.1 [Combinatorics]

General Terms
Theory
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1. INTRODUCTION
Let C be a simple closed Jordan curve in the plane. By

Jordan’s Theorem C divides the plane into two regions, only
one of which is bounded. We call the bounded region the
disc bounded by C and we denote this region by disc(C).
Any point p inside disc(C) is said to be surrounded by C
and C is said to be surrounding p.

A bi-infinite x-monotone curve is a curve that crosses ev-
ery vertical line at precisely one point. Any graph of a con-
tinuous function defined on the real numbers is an example
for such a curve. If C is a family of bi-infinite x-monotone
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curves, every two of which cross an even number of times,
then it is easy to see that C can be realized as a family of
simple closed curves with the connected-intersection prop-
erty. This can be done by identifying the two ends at infinity
for each curve in C.

Any arrangement of lines in the plane is an example for
a 1-intersecting family of bi-infinite x-monotone curves. In
fact, any arrangement of x-monotone pseudo-lines is yet an-
other such example.

Let P be a set of n points in general position in the plane.
A k-set of P is a subset of k points from P which is the
intersection of P with a closed half-plane. It is a well-known
open problem to determine f(k, n), the maximum possible
cardinality of a family of k-sets of a set P of n points in the
plane. The current records are f(k, n) = O(nk1/3) by Dey

([5]) and f(k, n) ≥ neΩ(
√

log k) by Tóth ([11]).
This notion of a k-set can be easily generalized for any

collection of bi-infinite x-monotone curves with respect to a
set P of n points in the plane. Let P be a set of n points
in the plane and let C be a family of bi-infinite x-monotone
curves. Call a subset S ⊂ P of cardinality k a k-set of P
with respect to C, if there is a curve C ∈ C such that C lies
above each point of S and below each point of P \ S.

In fact, Dey’s bound of O(nk1/3) is a valid bound for the
number of k-sets of a set of n points with respect to any fam-
ily C of 1-intersecting bi-infinite x-monotone curves, that is,
x-monotone pseudo-lines. In [12], Tamaki and Tokuyama

show how to extend Dey’s bound of O(nk1/3) for the com-
plexity of the k’th level in an arrangement of n lines to
arrangements of n pseudo-lines. Then one can use for exam-
ple the result in [2], which provides duality between points
and pseudo-lines, to derive the same upper bound for the
number of k-sets of a set of n points with respect to a set
of pseudo-lines in the plane. Surprisingly, we can provide
sharp bounds for the number of k-sets of a set P of n points
in the plane with respect to any family C of s-intersecting
bi-infinite x-monotone curves, for s even:

Theorem 1. Let s ≥ 0 be a fixed even number. Let P be a

set of n points in the plane and let C be a family of bi-infinite

x-monotone curves, every two of which intersect at most s
times. Assume that no curve in C passes through a point of

P . Then for every k ≤ n
2
, P has at most O(ks/2ns/2) k-sets

with respect to C. This bound is best possible.

As we shall remark after the proof of Theorem 1, using
Dey’s bound and the (inductive) proof of Theorem 1, we can
provide ’good’ bounds for the number of k-sets above also
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when s is odd. As far as we know this generalization of the
notion of k-sets has never been considered before, and hence
these are the first bounds for this question when s is greater
than 1.

Given a finite set of points P in the plane and a simple
closed curve C in the plane that avoids the points of P , we
denote by PC the set P ∩ disc(C).

Definition 1.1. Let C be a family of simple closed curves

in the plane. We say that C has the s-intersection property
if any two curves in C intersect properly in at most s points.

We say that C has the connected intersection property if for

every C, C′ ∈ C the set disc(C)∩disc(C′) is either connected

or empty.

Let F be a family of subsets of {1, . . . , n}. A subset S ⊂
{1, . . . , n} is said to be shattered by F if for any subset
B of S there exists F ∈ F with B = F ∩ S. The VC-

dimension ([13]) of F is the largest cardinality of a set S
that F shatters.

One of the most fundamental results on VC-dimension is
the Perles-Sauer-Shelah theorem ([8, 9]), which says that a
family F of subsets of {1, . . . , n} that has VC-dimension d
consists of at most

`

n
0

´

+ . . . +
`

n
d

´

= O(nd) members.
In Section 3 we study the VC-dimension of the family

F = {PC | C ∈ C} for a fixed set of n points P in the
plane and a family C of simple closed curves which has both
the s-intersection property, for some fixed s ≥ 2, and the
connected intersection property. We show that the VC-
dimension of such a family is at most s + 1 (Theorem 7).

2. PROOF OF THEOREM 1
In order to prove Theorem 1, we perform a small pertur-

bation of the points of P so that no two points of P have
the same x-coordinate. We assign to each curve in C a vec-
tor in {0, 1}n as follows. Let p1, . . . , pn denote the points
of P ordered according to the increasing order of their x-
coordinates. To a curve C ∈ C we assign the vector vC

whose i’th coordinate is 0 if pi lies above C, and is 1 if pi

lies below C.
For a set of vectors V ⊂ {0, 1}m, we say that V has the

t-intersection property if there are no two vectors u1, u2 ∈ V
and t+2 indices 1 ≤ j1 < . . . < jt+2 ≤ m such that for every
1 ≤ m ≤ t + 2 the jm’th coordinate of u1 equals 1 if m is
odd and equals 0 if m is even, and the jm’th coordinate of
u2 equals 0 if m is odd and equals 1 if m is even.

Observe that because the family of curves C has the s-
intersection property, the set of vectors {vC | C ∈ C} must
have the s-intersection property.

Theorem 1 will therefore follow from the following theo-
rem on sets of vectors in {0, 1}n.

Theorem 2. Let V ⊂ {0, 1}n be a set of vectors which

has the s-intersection property for some fixed even number

s ≥ 0. Assume further that every vector in V has precisely

k 1-entries, where k ≤ n
2
. Then |V | = O(ks/2ns/2). This

bound is best possible.

Proof. We prove the theorem by induction on s. If s = 0,
then clearly V may consist of at most one vector. Assume
that s ≥ 2.

For a vector v ∈ V denote by vi the vector in {0, 1}i which
consists of the first i coordinates of v. For every 1 ≤ i ≤ n

denote by Ti the set Ti = {vi | v ∈ V }. Observe that if u
is a vector in Ti+1, then the vector in {0, 1}i obtained from
u by removing its (i + 1)’th coordinate is a member of Ti.
This is because if u ∈ Ti+1, then u = vi+1 for some v ∈ V .
Hence ui = vi ∈ Ti.

Since we are interested in bounding the cardinality of Tn =
V , let us consider how large can |Ti+1| be compared to |Ti|.
Define a bipartite graph H whose vertices are the vectors in
Ti and the vectors in Ti+1. We connect a vector u ∈ Ti to
a vector v ∈ Ti+1 if the first i coordinates of v are identical
with those of u, that is, if vi = u. Clearly, every vector
u ∈ Ti is connected in H to either one or two vectors in Ti+1.
Denote by T ′

i the set of vectors in Ti that are connected in
H to two vectors in Ti+1. Observe that we always have
|Ti+1| = |Ti|+ |T ′

i |. This is because every vector v ∈ Ti+1 is
connected in H to precisely one vector, namely vi, in Ti. We
claim that |T ′

i | = O(k
s

2 n
s

2
−1) for every 1 ≤ i ≤ n − 1. To

see this we show that for every fixed 0 ≤ j ≤ k the subset of
T ′

i which consists of all those vectors having precisely j 1-
entries, consists of O(k

s

2
−1n

s

2
−1) vectors. Since the number

of 1-entries in each vector in T ′
i is at most k, the assertion

|T ′
i | = O(k

s

2 n
s

2
−1) will follow.

Therefore, fix j between 0 and k and let B be the set of
all vectors in T ′

i with precisely j 1-entries. We claim that
B has the (s − 2)-intersection property. Once we establish
this, it will follow from the induction hypothesis that |B| =

O(k
s

2
−1n

s

2
−1) as required.

Assume to the contrary that B does not have the (s− 2)-
intersection property. This means that there are two vectors
u1 and u2 in B ⊂ T ′

i and s indices 1 ≤ j1 < . . . < js ≤ i such
that for every 1 ≤ t ≤ s the jt’th coordinate of u1 equals 1
if t is odd and equals 0 if t is even, and the jt’th coordinate
of u2 equals 0 if t is odd and equals 1 if t is even.

As u1, u2 ∈ T ′
i , both vectors (u1, 1) and (u2, 0) are in Ti+1.

Let v1 ∈ V be the vector such that vi+1
1 = (u1, 1) and let

v2 ∈ V be the vector such that vi+1
2 = (u2, 0). Observe that

there is one more 1-entry in vi+1
1 than in vi+1

2 . Therefore, as
the number of 1-entries in both v1 and v2 is k, it follows that
there must be an index js+1 such that i + 1 < js+1 ≤ n and
the js+1’th coordinate of v1 is 0 while the js+1 coordinate
of v2 is 1. Considering the coordinates j1, . . . , js, i + 1, js+1

of v1 and v2, we see that V does not have the s-intersection
property, which is a contradiction.

It now follows that

|Ti+1| = |Ti| + |T ′
i | = |Ti| + O(k

s

2 n
s

2
−1)

for every 1 ≤ i < n. Hence, |V | = |Tn| = O(k
s

2 n
s

2 ), as
desired.

To see that the above bound on V is best possible in terms
of k and n, let V be the set of all vectors v ∈ {0, 1}n with
the following properties:

1. The first coordinate of v equals 1.

2. v has precisely k coordinates that are equal to 1.

3. s is the maximum even number such that there exist
s + 1 indices 1 ≤ j1 < . . . < js+1 ≤ n such that for
every odd t between 1 and s + 1 the jt’th coordinate
of v equals 1 and for every even t between 1 and s + 1
the jt’th coordinate of v equals 0.

We show that |V | = Ω(k
s

2 n
s

2 ) and that V has the s-
intersection property.
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Note that the conditions on the vectors in V are equivalent
to the condition that each vector in V is composed of s/2+1
blocks of consecutive entries that equal to 1. Every two such
blocks are separated by at least one 0-entry. In addition the
leftmost block includes the position of the first coordinate,
and the total length of all blocks of 1-entries is k.

It is now an elementary problem in enumerative combina-
torics to determine the cardinality of V precisely. Indeed,
there are precisely

`

k−1
s/2

´

ways to decide about the lengths

of the 1-entries blocks (that in total sum up to a length of
k). Then we just need to decide about how many 0-entries
there are between any two blocks of 1-entries, keeping in
mind that the total length of the vector is n. This can be
done in exactly

`

n−k
s/2

´

ways. Therefore the cardinality of V

is exactly
`

k−1
s/2

´`

n−k
s/2

´

= Ω(ks/2ns/2).

It is left to show that V has the s-intersection property.
Assume it does not, then there are two vectors v1, v2 ∈ V
and s + 2 indices 1 ≤ j1 < . . . < js+2 ≤ n such that that
for every 1 ≤ t ≤ k + 2 the jt’th coordinate of v1 equals 1
if t is odd and equals 0 if t is even, and the jt’th coordinate
of v2 equals 0 if t is odd and equals 1 if t is even. We will
concentrate on v2. Observe that j1 is necessarily greater
than 1 because, as v2 ∈ V , we know that the first coordinate
of v2 is equal to 1. Now, set j0 = 1 and consider the indices
j0 < j1 < . . . < js+2. We know that the j0, j2, . . . , js+2

entries in v2 are all equal to 1 while the j1, j3, . . . , js+1 entries
in v2 are all equal to 0. This means that v2 violates condition
(3) in the requirements on the vectors in V . We have thus
reached the desired contradiction.

Remark 1. It is not difficult and in fact rather straight-
forward to show that the construction in Theorem 2 which
shows that the bound O(ks/2ns/2) is best possible, can be
used to yield a construction of a family C of bi-infinite x-
monotone curves with the s-intersection property and a set
P of n points in the plane such that P has Ω(ks/2ns/2)
k-sets with respect to C. We will omit the details and
just sketch the construction. Let P be the set of points
(1, 0), (2, 0), . . . , (n, 0) on the x-axis. Let V be a set of

vectors in {0, 1}n of cardinality Ω(k
s

2 n
s

2 ) which has the s-
intersection property such that each vector in V has pre-
cisely k 1-entries. For every vector v ∈ V we construct
a bi-infinite x-monotone curve C such that v = vC . This
can be done by drawing a bi-infinite x-monotone curve that
goes above the point (i, 0), if the i’th coordinate of v equals 1
and which goes below (i, 0), if the i’th coordinate of v equals
0. The fact that V has the s-intersection property can be
used to show that the set of curves C thus constructed has
the s-intersection property if we avoid unnecessary crossings
between the constructed curves. The only delicate point is
to determine the order of the curves from top to bottom
at minus infinity. This should be determined according to
the lexicographic order of the vectors in V , where u < v for
two verctors u, v ∈ V if for some i between 1 and n such
that ui−1 = vi−1, the i’th coordinate of u equals 0 while
the i’th coordinate of v equals 1. See also [2] for a similar
construction in the case of pseudo-lines.

Remark 2. In view of the lower bounds known for the
maximum number of k-sets with respect to a family of 1-
intersecting bi-infinite x-monotone curve, that is, for the
function f(k, n) introduced earlier, it is evident that the
bounds of Theorem 1 are not valid when s is odd. The
crucial point where the proof of Theorem 1 will collapse is

the basis of induction, namely, the case s = 1. However,
using Dey’s upper bound ([5]) for f(k, n) we can apply the
induction step in the proof of Theorem 1 in the case when
s is odd and obtain the following result:

Theorem 3. Let s ≥ 1 be a fixed odd number. Let P be a

set of n points in the plane and let C be a family of bi-infinite

x-monotone curves, every two of which intersect at most s
times. Assume that no curve in C passes through a point of

P . Then P has at most

f(k, n)O(k
s−1

2 n
s−1

2 ) = O(k( s

2
− 1

6
)n

s+1

2 )

k-sets with respect to C.

Returning to Theorem 1, we can now immediately draw
some simple corollaries in the case s = 2.

A family C of bi-infinite x-monotone curves is called a
family of pseudo-parabolas if every two curves in C are ei-
ther disjoint, or properly cross in at most two points. In
other words, a family of pseudo-parabolas is nothing else
but a family of bi-infinite x-monotone curves with the 2-
intersection property.

A family C of simple closed curves in the plane is called
a family of pseudo-circles if every two curves in C are either
disjoint, or properly cross at precisely two points.

By a result of Snoeyink and Hershberger ([10]), any family
of pseudo-circles surrounding a common point can be swept

by a ray. In other words, it can be realized as a family of
2-intersecting bi-infinte x-monotone curves (see [10] for the
formal definition of a sweeping) and this can be done by a
one to one continuous transformation of the plane, after we
identify the two ends at infinity of each curve.

Hence, we immediately get the following theorem:

Theorem 4. Let P be a set of n points in the plane. Let

C be a family of pseudo-circles that avoid the points of P .

Assume that there is a point which belongs to disc(C) for

every C ∈ C and that each C ∈ C surrounds precisely k
points of P . If no two curves in C surround the same set of

points of P , then |C| = O(kn).

As a corollary we get the same bound under somewhat
weaker conditions on C, as follows.

Corollary 5. Let P be a set of n points in the plane.

Let C be a family of pseudo-circles that avoid the points of

P . Assume that each curve in C surrounds precisely k points

of P and that every two curves in C properly cross. If no

two curves in C surround the same set of points of P , then

|C| = O(kn).

Proof. We need the following easy observation proved in
[1].

Lemma 6. Among any five pseudo-discs bounded by the

elements of C, there are at least three that have a point in

common.

Let p ≥ q ≥ 2 be integers. We say that a family F of
sets has the (p, q) property if among every p members of F
there are q that have a point in common. We say that a
family of sets F is pierced by a set T if every member of F
contains at least one element of T . The set T is often called
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a transversal of F . Fix p ≥ q ≥ d + 1. Alon and Kleitman
[4] proved that there exists a transversal of size at most
r = r(p, q, d) for any finite family of convex sets in R

d with
the (p, q)-property. In [3], this result was extended to any
finite family F of open regions in d-space with the property
that the intersection of every subfamily of F is either empty
or contractible. Their result implies the following. There is
an absolute constant r such that any family of discs bounded
by pairwise intersecting pseudo-circles can be pierced by at
most r points.

Now fix a set {o1, o2, . . . , or} of r points that pierces disc(C)
for every C ∈ C. Let Ci consist of all elements of C that
surround oi, for i = 1, 2, . . . , r. From Theorem 4 it fol-
lows that |Ci| = O(kn) for every 1 ≤ i ≤ r. Hence |C| ≤
|C1| + . . . + |Cr| = O(kn).

3. VC-DIMENSION OF S-INTERSECTING
CURVES

In this section we prove the following theorem:

Theorem 7. Let P be a set of n points in the plane and

let C be a family of simple closed curves avoiding the points

of P . Assume that C has both the s-intersection property, for

some fixed s ≥ 2, and the connected intersection property.

Then the family F = {PC | C ∈ C} has VC-dimension at

most s + 1.

For the proof of Theorem 7 we will need some prelimi-
nary results. The next lemma is a generalization of Helly’s
theorem ([6]) proved by Molnár ([7]):

Lemma 8. Any finite family of at least three regions in

the plane has a nonempty simply connected intersection, pro-

vided that any two of its members have a connected inter-

section and any three have a nonempty intersection.

We will need also the following lemma that can be found
in [1]:

Lemma 9. Let D be a family of closed curves such that

any pair of discs bounded by curves in D has a connected in-

tersection. Assume that all the curves in D have a common

point O that they all surround. Then the union of any set

of discs bounded by curves in D is simply connected.

Before getting to the proof of Theorem 7, we need one
more crucial lemma:

Lemma 10. Let D be a finite family of closed curves. As-

sume that the union of any number of discs bounded by

curves in D is simply connected. Let y be an arbitrary point

in R
2 \ ∪C∈DC. Consider the family Dy ⊆ D of all the

curves in D which surround y. Then there exists a Jordan

arc, connecting y to a point at infinity, which intersects ev-

ery curve in Dy exactly once and avoids all the curves in

D \ Dy.

Proof. We shall prove the lemma by induction on |Dy |. The
case |Dy | = 0 is easy because in this case y /∈ ∪C∈Ddisc(C).
We assume that the union of all discs is simply connected
and hence R

2\∪C∈Ddisc(C) is a connected set. In particular
there exists a Jordan arc, contained in R

2 \ ∪C∈Ddisc(C),
that connects y to a point at infinity.

Suppose |Dy | > 0. The induction hypothesis states that
for any point p ∈ R

2 \∪C∈DC with |Dp| < |Dy |, there exists
an arc, connecting p to a point at infinity, which intersects
every curve in Dp exactly once and avoids all the curves in
D \ Dp. The arrangement of curves in D can be viewed as
a drawing of a planar graph with a vertex set V , consisting
of all the intersection points of curves in D, together with a
set of edges E, consisting of all the connected components in
∪C∈DC\V . There exists a face Fy of this arrangement which
contains y. The face Fy must be bounded since |Dy | > 0.
An edge of Fy will be called an inner edge if it is a portion
of a curve in Dy . We claim that Fy must have an inner edge.
To see this, assume to the contrary that Fy does not have
an inner edge. Consider the set of all curves in D which
contain an edge of Fy and let U be the union of all the discs
bounded by these curves. By our assumption, U is a simply
connected region. Observe that y /∈ U , and any arc from y
to infinity must cross U . Thus R

2\U is not connected, hence
U is not simply connected, which yields a contradiction. We
conclude that Fy must have an inner edge.

Let us choose an inner edge of Fy and draw an arc γ,
starting at y, which crosses the inner edge once and does
not cross any other curve. Denote by x the endpoint of
γ. Observe that every curve in D that surrounds x must
surround y as well, i.e. Dx ⊆ Dy . Moreover, |Dx| = |Dy |−1.
By applying the induction hypothesis to x we get an arc γx,
connecting x to a point at infinity, that intersects every curve
in Dx exactly once and avoids any other curve. By adjoining
γ to γx, we obtain the desired arc connecting y to a point
at infinity.

Proof of Theorem 7. We will show that F can not shat-
ter a set of s + 2 points. Assume to the contrary that F
shatters a set S = {v1, ..., vs+2} ⊂ P of s + 2 points, i.e.
for any subset V ⊆ S, there exists a curve C ∈ C with
PC ∩ S = V . For every pair vi, vj ∈ S, consider the set of
curves Cij ⊆ C consisting of all the curves in C that surround
both vi and vj . Consider also the set Rij of all the points in
the plane which are surrounded by every curve in Cij . Since
C has the connected intersection property, Lemma 8 implies
that Rij is a connected region. Upon drawing an edge be-
tween vi and vj inside the region Rij , we obtain a drawing
of Ks+2 as a topological graph in the plane which we denote
by G̃ = (S, E). We shall investigate the special properties

of G̃, which will eventually lead us to a contradiction.

Claim 11. Let x be a point in the plane that lies in the

unbounded region of R
2 \ ∪C∈CC. Then for every vertex

vi ∈ S one can draw an arc γi, connecting vi and x, that

does not intersect any curve C ∈ C with PC ∩ S = S \ {vi}.
Moreover, this drawing can be such that no two arcs γi and

γj cross.

Proof. Let D be the subset of C consisting of all the curves
C ∈ C with |PC ∩ S| = s + 1. Since s ≥ 2 it follows that
|D| ≥ 3 and that any three discs bounded by curves in D
have a non-empty intersection. Furthermore, because D ⊆
C, any two discs bounded by curves in D have a connected
intersection. By Lemma 8, there exists a common interior
point to all curves in D. By Lemma 9, the union of any set
of discs bounded by curves in D is simply connected. Thus,
for every vertex vi ∈ S one can apply Lemma 10 and draw
an arc γi, connecting vi with x, such that γi avoids any
curve C ∈ D with PC ∩ S = S \ {vi} and crosses any other
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curve in D exactly once. From all the possible drawings of
such arcs, we pick one with minimum number of intersection
points among the γi’s. We shall prove that this minimum
is 0. Assume otherwise, then there exists a pair of arcs
γi and γj that cross at a point q. We denote by γi,q and
γj,q the portions of γi and γj , respectively, which connect
q with x. Both γi,q and γj,q avoid the curves in D which
do not surround q and intersect once the curves in D which
surround q. By swapping the portions γi,q with γj,q and
by a small modification of the drawing, we can eliminate
the crossing point q and obtain a new drawing of arcs that
has one less crossing point. This new drawing still satisfies
the property that each γi crosses the curves in D which
surround vi exactly once and avoids all the other curves in
D. This constitutes a contradiction to the minimality of
the number of intersection points among the arcs γi in the
selected drawing.

Let us draw an arc γi for every vi ∈ S according to Claim
11. Pick an arc, say γ1, and define a cyclic order on the arcs
γi, according to the counterclockwise order in which they
reach x, starting with γ1. Assume without loss of generality
that this order is {γ1, . . . , γs+2}.

Claim 12. For every four distinct vertices vi, vj , vl, vm ∈
S the edges (vi, vj) and (vl, vm) in G̃ cross an odd number of

times if and only if i and j separate l and m in the natural

cyclic order of {1, . . . , s + 2}.

Proof. We denote by △ij the closed curve that is composed
by the arcs γi, γj and the edge (vi, vj) in G̃. We define
△lm similarly. The curves △ij and △lm meet at x. Observe
that any other intersection point between △ij and △lm must
be an intersection point of the edges (vi, vj) and (vl, vm).
To see this, recall that in our drawing no two of the arcs
γ1, . . . , γs+2 cross. Moreover, an arc γt connecting vt to x
may cross only those edges of G̃ that are incident to vt. This
is because F shatters S and therefore there exists a curve
C ∈ C with PC ∩ S = S \ {vt}. By the construction of γt

it avoids disc(C). Since any edge in G̃, not incident to vt,
is contained in disc(C), γt cannot cross any edge that is not
incident to vt.

We conclude that any intersection point between △ij and
△lm, other than x, must be an intersection point of the edges
(vi, vj) and (vl, vm).

If i and j separate l and m in the natural cyclic order
{1, . . . , s + 2}, then the curves △ij and △lm properly cross

at x. The number of intersection points between two closed
curves is even and therefore the edges (vi, vj) and (vl, vm)
must cross an odd number of times.

If i and j do not separate l and m in the natural cyclic
order, then △ij and △lm touch at x. As all other intersection
points between △ij and △lm are intersection points of (vi, vj)
and (vl, vm), it follows that (vi, vj) and (vl, vm) cross an even
number of times.

We consider the following two subsets S1 and S2 of S:

S1 = {vi ∈ S | i is odd} S2 = {vi ∈ S | i is even}.

Since F shatters S, there exist curves C1, C2 ∈ C such
that PC1

∩ S = S1 and PC2
∩ S = S2. We will show that

the curves C1 and C2 intersect in at least s + 2 points and
obtain a contradiction to the assumption that C has the s-
intersection property.

We call each connected component of disc(C1) \ disc(C2)
an ear. Similarly, each connected component of disc(C2) \
disc(C1) is called an ear. We say that C1 enters C2 at a
crossing point u of C1 and C2 if a small enough portion
of C1 that starts at u and continues in the counterclock-
wise orientation along the curve C1 is contained in disc(C2).
Otherwise we say that C1 leaves C2 at u. We use a similar
terminology with respect to C2.

Claim 13. If C1 and C2 properly cross in exactly m points,

then they create precisely m ears.

Proof. Let u1, u2, ..., um be the set of intersection points of
C1 and C2 arranged in a counterclockwise order along C1.
Let w1, w2, ..., wm be the same set of the intersection points
of C1 and C2 arranged in a counterclockwise order along
C2, and assume without loss of generality that u1 = w1. We
first show that ui = wi for every i = 1, . . . , m. Assume not,
then without loss of generality we can assume that u2 6= w2

(otherwise, let i be the maximum index such that ui = wi

and replace u1 with ui). Without loss of generality assume
that C2 enters C1 at u1. Then C1 leaves C2 at u1. We will
get a contradiction by showing that w2 = u2. Assume to the
contrary that w2 = uj for some 2 < j ≤ m. Then u2 = wl

for some 2 < l ≤ m. The curve C1 must enter C2 at the
point u2 = wl because it leaves C2 at u1. Therefore, C2

leaves C1 at wl and consequently must enter C1 at the point
wl−1. It follows that the portion δ of C2 between w1 and w2

in the counterclockwise direction along C2 is contained in
disc(C1). Similarly, the portion δ′ of C2 between wl−1 and
wl in the counterclockwise direction along C2 is contained in
disc(C1). δ and δ′ split disc(C1) into three regions A1, A2,
and A3, where A1 is the region bounded by δ and a portion
of C1, A2 is the region bounded by both δ and δ′ and two
portions of C1, and A3 is the region bounded by δ′ and a
portion of C1.

The portion γ of C1 between u1 = w1 and u2 = wl in the
counterclockwise direction along C1 is connecting a point on
δ, namely, w1, with a point on δ′, namely, wl. Since u1 and
u2 are the only intersection points of C1 and C2 on γ, it
follows that γ is contained in the boundary of A2.

Because C1 leaves C2 at u1 and enters C2 at u2, it must
be that γ lies entirely outside of disc(C2). It follows that the
interior of A1 must contain points of disc(C1)∩disc(C2), and
similarly, the interior of A3 must contain points of disc(C1)∩
disc(C2). This is a contradiction to the assumption that
the interior of disc(C1) ∩ disc(C2) is a connected set. We
conclude that ui = wi for every i = 1, . . . , m.

For every 1 ≤ i ≤ m the portion of C1 and C2 between ui

and ui+1 forms an ear. Hence, there are at least m ears. We
consider C1 ∪ C2 as a planar graph with m vertices and 2m
edges. By Euler’s formula we have m − 2m + F = 2, where
F is the number of faces created by C1 and C2. Hence,
F = m + 2. This number includes the unbounded face,
namely R

2 \ (disc(C1)∪disc(C2)), as well as the intersection
disc(C1) ∩ disc(C2). We deduce that there are exactly m
ears.

We now show that the curves C1 and C2 cross in at least
s + 2 points and thus obtain a contradiction to our assump-
tion that C has the s-intersection property.

Note that each vertex in S1 is surrounded by C1 but not by
C2. Therefore, each vertex in S1 belongs to an ear. Similarly,
every vertex in S2 belongs to an ear. Obviously, a vertex in
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S1 and a vertex in S2 cannot belong to the same ear. We
claim further that even if vi and vj are two vertices which
belong to S1, then they cannot belong to the same ear (we
argue similarly if the two vertices belong to S2). Assume to
the contrary that vi, vj ∈ S1 belong to the same ear R. R
is contained in disc(C1). Draw an arc γ inside R connecting

vi to vj (see Figure 1). The edge of G̃ connecting vi and

vj together with γ form a closed curve C̃ that lies inside
disc(C1). The vertices vi+1, vj+1 ∈ S2 are surrounded by C2

but not by C1 and therefore, any arc connecting vi+1 and
vj+1 must cross C̃ an even number of times. By Claim 12,
the edge of G̃ between vi+1 and vj+1 crosses the edge of G̃
between vi and vj an odd number of times but does not cross
γ, as γ lies entirely outside disc(C2). Hence, the edge of G̃

connecting vi+1 and vj+1 crosses C̃ an odd number of times,
a contradiction. We conclude that each vertex in S belong
to a unique ear. This implies that there are at least s + 2
ears. It follows from Claim 13 that C1 and C2 intersects in
at least s + 2 points, which is the desired contradiction.

This also concludes the proof of Theorem 7, as we have
shown that F does not shatter any set of s + 2 points.

It is an immediate corollary of Theorem 7 and the Perles-
Sauer-Shelah theorem that if P is a set of n points in the
plane and C is a family of simple closed curves with the
s-intersection property and the connected intersection prop-
erty, then F = {PC | C ∈ C} consists of O(ns+1) members.

We will show, by a construction, that this bound can in-
deed be attained. For every fixed even number s ≥ 0, we will
construct a set of n points and a family C of bi-infinite x-
monotone curves with the s-intersection property such that
the family of all k-sets (for all values of k between 1 and n)
of P with respect to C consists of Ω(ns+1) members. It is
then an easy excercise to modify C to be a family of simple
closed curves with the connected intersection property and
the s-intersection property, closing each curve at infinity.

Let P be the set of integer lattice points P = {(a, b) |

1 ≤ a ≤ k + 1 and 1 ≤ b ≤ n
s+1

}. Then for every (s + 1)-

tuple (b1, . . . , bs+1) ∈ {1, . . . , n
s+1

}s+1, let Cb1,...,b
s+1

be the
graph of the polynomial of degree at most s passing through
each of the points (i, bi + 1

2
) for i = 1, . . . , k + 1. Let C

be the collection of all these curves. Because each of the
curves in C is a graph of a polynomial of degree at most s, it
follows immediately that C has the s-intersection property.
Observe that each curve in C defines a unique k-set (for
some k). Finally, note that the number of curves in C is
( n

s+1
)s+1 = Ω(ns+1), as required.
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