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Bounds on the Size of Permutation Codes
With the Kendall τ -Metric
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Abstract— The rank modulation scheme has been proposed
for efficient writing and storing data in nonvolatile memory
storage. Error correction in the rank modulation scheme is done
by considering permutation codes. In this paper, we consider
codes in the set of all permutations on n elements, Sn, using
the Kendall τ -metric. The main goal of this paper is to derive
new bounds on the size of such codes. For this purpose, we
also consider perfect codes, diameter perfect codes, and the size
of optimal anticodes in the Kendall τ -metric, structures which
have their own considerable interest. We prove that there are
no perfect single-error-correcting codes in Sn, where n > 4 is
a prime or 4 ≤ n ≤ 10. We present lower bounds on the size
of optimal anticodes with odd diameter. As a consequence, we
obtain a new upper bound on the size of codes in Sn with even
minimum Kendall τ -distance. We present larger single-error-
correcting codes than the known ones in S5 and S7.

Index Terms— Anticodes, bounds, flash memory, Kendall
τ -metric, perfect codes, permutations.

I. INTRODUCTION

FLASH memory is a non-volatile technology that is
both electrically programmable and electrically erasable.

It incorporates a set of cells maintained at a set of levels
of charge to encode information. While raising the charge
level of a cell is an easy operation, reducing the charge level
requires the erasure of the whole block to which the cell
belongs. For this reason charge is injected into the cell over
several iterations. Such programming is slow and can cause
errors since cells may be injected with extra unwanted charge.
Other common errors in flash memory cells are due to charge
leakage and reading disturbance that may cause charge to
move from one cell to its adjacent cells. In order to overcome
these problems, the novel framework of rank modulation
codes was introduced in [20]. In this setup the information
is carried by the relative ranking of the cells charge levels and
not by the absolute values of the charge levels. This allows
for more efficient programming of cells, and coding by the
ranking of the cells’ levels is more robust to charge leakage
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than coding by their actual values. In this model codes are
subsets of Sn , the set of all permutations on n elements, where
each permutation corresponds to a ranking of n cells’ levels.
Permutation codes were mainly studied in this context using
three metrics, the infinity metric, the Ulam metric, and the
Kendall τ -metric. Codes in Sn under the infinity metric were
considered in [24], [36], [38], and [40]. Anticodes in Sn under
the infinity metric were considered in [23], [37], and [39].
Codes in Sn under the Ulam metric were considered in [16].
Permutation codes with other metrics were considered in
many papers. A survey on metrics related to permutations is
given in [11].

In this paper we consider codes using the
Kendall τ -metric [22]. Under the Kendall τ -metric, codes
in Sn with minimum distance d should correct up to

⌊ d−1
2

⌋

errors that are caused by small charge leakage and read
disturbance. For large charge leakage and read disturbance
the Ulam metric is used [16]. Let P(n, d) denote the size of
the largest code in Sn with minimum Kendall τ -distance d .
A comprehensive work on error-correcting codes in Sn

using the Kendall τ -metric and bounds on P(n, d) were
considered in [21]. In that paper there is also a construction
of single-error-correcting codes using codes in the Lee metric.
This method was generalized in [3] for the construction of
t-error-correcting codes that are of optimal size up to
a constant factor, where t is fixed. More constructions
of error-correcting codes were given in [28]. Systematic
single-error-correcting codes in Sn of size (n − 2)! were
constructed in [41] and [42]. The constructed codes are of
optimal size, assuming that perfect single-error-correcting
codes do not exist. But, only the nonexistence of perfect
single-error-correcting codes for n = 4 was proved. Systematic
t-error-correcting codes were studied in [6], [41], and [42].
Linear programming and semi-definite programming on
permutation codes with the Kendall τ -metric were considered
in [26]. Unfortunately, no bounds better than the sphere
packing bound were found by these methods.

The main goal of this paper is to provide new bounds
on the size of permutation codes in the Kendall τ -metric.
As part of this goal we will prove the nonexistence of perfect
single-error-correcting codes in Sn if n is a prime. Although
this improves the related upper bound on P(n, 3) only by
one, such a result is of interest for itself. This is one of the
two main results of this paper. The second main result is a
new upper bound on the size of permutation codes in the
Kendall τ -metric, where the minimum distance is even. This
bound is obtained by introducing the notion of anticodes in
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the Kendall τ -metric and proving a related code-anticode
theorem. Finally, we present two codes with minimum
distance 3 in S5 and S7, which are considerably larger than
the previous known codes. These codes are of special interest
since the rank modulation scheme is more likely to be
applicable for small values of n.

The rest of this work is organized as follows.
In Section II we define the basic concepts for the
Kendall τ -metric and for perfect codes. In Section III
we prove the nonexistence of a perfect single-error-correcting
code in Sn , using the Kendall τ -metric, where n > 4 is a
prime or 4 ≤ n ≤ 10. This is the first known result in this
direction and it shows that the sphere packing upper bound
can not be attained in these cases. In Section IV we establish
the Delsarte’s code-anticode bound for the Kendall τ -metric
and examine diameter perfect codes in Sn for this metric.
We find the sizes of optimal anticodes in Sn with diameter 2
and diameter 3 and consider the size of optimal anticodes
for larger diameters as well. Trivial diameter perfect codes
are considered in some of these cases. We combine these
results with the code-anticode bound to improve the known
upper bound on the size of a code in Sn for even minimum
distances. In Section V we consider lower bounds on the
size of permutation codes in the Kendall τ -metric for small
values of n. We search for such codes by forcing a structure
and a certain automorphism group on the codes. Two large
single-error-correcting codes for n = 5 and n = 7 are
constructed in this way and yield an improvement on the
related lower bounds. We conclude in Section VI, where we
also present some questions for future research.

II. BASIC CONCEPTS

Let Sn be the set of all permutations on the set of n elements

[n]def={1, 2, . . . , n}. We denote a permutation σ ∈ Sn by
σ = [σ(1), σ (2), . . . , σ (n)]. For two permutations σ, π ∈ Sn ,
their multiplication π ◦ σ is defined as the composition of
σ on π , namely, π ◦ σ(i) = σ(π(i)), for all 1 ≤ i ≤ n.
Under this operation, the set Sn is a noncommutative group,
known as the symmetric group of order n!. We denote by

ε
def=[1, 2, . . . , n] the identity permutation of Sn . Given a

permutation σ ∈ Sn , an adjacent transposition, (i, i + 1), for
some 1 ≤ i ≤ n − 1, is an exchange of the two adjacent
elements σ(i) and σ(i +1) in σ . The result is the permutation
π = [σ(1), . . . , σ (i − 1), σ (i + 1), σ (i), σ (i + 2), . . . , σ (n)].
Observe that the notation (i, i + 1) is also used for
the cycle decomposition of the permutation [1, 2, . . . ,
i − 1, i + 1, i, i + 2, . . . , n] and the permutation π can
also be written as π = (i, i + 1) ◦ σ . In other words,
left multiplication by (i, i + 1) exchanges the elements
in positions i, i + 1. Right multiplication by (i, i + 1)
exchanges the elements i, i + 1. Two adjacent transpositions
(i, i + 1) and ( j, j + 1) are called disjoint if either i + 1 < j
or j + 1 < i . For two permutations σ , π ∈ Sn , the
Kendall τ -distance between σ and π , dK (σ, π), is defined
as the minimum number of adjacent transpositions needed to
transform σ into π [22]. For σ ∈ Sn , the Kendall τ -weight
of σ , wK (σ ), is defined as the Kendall τ -distance between

σ and the identity permutation ε. The following expression
for dK (σ, π) is well known [21], [25].

dK (σ, π)

= |{(i, j) : σ−1(i) < σ−1( j) ∧ π−1(i) > π−1( j)}|. (1)

For a permutation σ = [σ(1), σ (2), . . . , σ (n)] ∈ Sn , the

reverse of σ is the permutation σ r def=[σ(n), σ (n − 1), . . . ,
σ (2), σ (1)]. It follows from equation (1) that for every σ ,
π ∈ Sn , dK (σ, π) ≤ (n

2

)
and dK (σ, π) = (n

2

)
if and only if

π = σ r . The following lemma is an immediate consequence
from the expression to compute the Kendall τ -distance
given in (1).

Lemma 1: For every σ, π ∈ Sn,

dK (σ, π) + dK (σ r , π) = dK (σ, σ r ) =
(

n

2

)
.

The Kendall τ -metric is right invariant [7], [11], i.e. for
every three permutations σ, π, ρ ∈ Sn we have dK (σ, π) =
dK (σ ◦ ρ, π ◦ ρ). Note, that the Kendall τ -metric is not left
invariant. The Kendall τ -metric on Sn is graphic, i.e. for every
two permutations σ, π ∈ Sn their Kendall τ -distance is equal
to the length of the shortest path between σ and π in the
graph Gn , whose vertex set is the set Sn , and two vertices are
connected by an edge if and only if their Kendall τ -distance
is one.

A distance measure d(·, ·) over a space V , is called bipartite
if every three elements x, y, z ∈ V satisfy the equality
d(x, y) + d(y, z) ≡ d(x, z) (mod 2), i.e. the related graph
is bipartite. The Kendall τ -metric on Sn is bipartite as stated
in the next lemma.

Lemma 2: The Kendall τ -metric over Sn is bipartite.
Proof: Just note that by (1) two permutations which differ

in exactly one adjacent transposition have different weights
modulo 2. This implies that the related graph Gn and the
Kendall τ -metric are bipartite.

Corollary 1: If σ and π are two permutations in Sn then
wK (σ ) + wK (π) ≡ wK (σ ◦ π) (mod 2).

Proof: Since the Kendall τ -metric is right invariant, it
follows that wK (π) = dK (π, ε) = dK (ε, π−1) = wK (π−1).
Hence, by the definition of the Kendall τ -weight and
by Lemma 2, we have that

wK (σ ) + wK (π)

= wK (σ ) + wK (π−1)

= dK (σ, ε) + dK (π−1, ε) ≡ dK (σ, π−1) (mod 2). (2)

Since the Kendall τ -metric is right invariant, it follows that

dK (σ, π−1) = dK (σ ◦ π, ε) = wK (σ ◦ π) (3)

Thus, by (2) and (3), we have that wK (σ ) + wK (π) ≡
wK (σ ◦ π) (mod 2).

Given a metric space, one can define codes. We say that
C ⊆ Sn has minimum distance d if dK (σ, π) ≥ d , for every
two distinct permutations σ, π ∈ C. For a given space V with
a distance measure d(·, ·), a subset C of V is a perfect code
with radius R if for every element x ∈ V there exists exactly
one codeword c ∈ C such that d(x, c) ≤ R. For a point x ∈ V ,
the ball of radius R centered at x , B(x, R), is defined
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by B(x, R)
def={y ∈ V : d(x, y) ≤ R}. In the Kendall τ -metric

the size of a ball does not depend on the center of the ball.
This is a consequence of the fact that the Kendall τ -distance
is right invariant. It is readily verified that

Theorem 1: Let V be a space with a distance measure
d(·, ·). For a code C ⊆ V with minimum distance 2R + 1
and a ball B with radius R we have |C| · |B| ≤ |V|, where
|S| is the size of the set S.

Theorem 1 is known as the sphere packing bound (even so
it is really a ball packing bound). In a code C which attains
this bound, i.e. |C| · |B| = |V|, the balls with radius R around
the codewords of C form a partition of V . Such a code is a
perfect code. A perfect code with radius R is also called a
perfect R-error-correcting code.

Perfect codes is one of the most fascinating topics in
coding theory. These codes were mainly considered for the
Hamming scheme, see [15], [29], [31]–[33]. They were also
considered for other schemes such as the Johnson scheme,
see [12], [14], [35], the Grassmann scheme [8], [27], and to
a larger extent also in the Lee and the Manhattan metrics,
see [13], [17], [18], [34]. Note, that the minimum distance
of a perfect code is always an odd integer. A more general
concept in which codes can have even minimum distances
as well, is a diameter perfect code [1]. This concept is based
on Delsarte’s code-anticode bound [10] for distance regular
graphs. Since the Kendall τ -metric over Sn does not induce
a distance regular graph, Delsarte’s theorem may not apply
for this metric. However, an alternative proof shows that such
type of a bound is also valid for the Kendall τ -metric.

III. THE NONEXISTENCE OF SOME PERFECT CODES

In this section we prove that there are no single-error-
correcting codes in Sn , where n is a prime greater than 4.
Similarly, we also show that there are no perfect single-error-
correcting codes in Sn , for 4 ≤ n ≤ 10.

For each i , 1 ≤ i ≤ n, we define Tn,i
def={σ : σ ∈ Sn,

σ (i) = 1}, i.e. σ ∈ Sn is an element of Tn,i if 1 appears in
the i th position of σ . Clearly, |Tn,i | = (n − 1)!.

Assume that there exists a perfect single-error-correcting
code C ⊂ Sn . For each i , 1 ≤ i ≤ n, let

Ci
def=C ∩ Tn,i and xi

def=|Ci |.
We say that a codeword σ ∈ C covers a permutation π ∈ Sn

if dK (σ, π) ≤ 1. Since C is a perfect single-error-correcting
code, it follows that each permutation in Tn,1 must be at
distance at most one from exactly one codeword of C and this
codeword must belong to either C1 or C2. Every codeword
σ ∈ C1 covers exactly n − 1 permutations in Tn,1. It covers
itself and the n − 2 permutations in Tn,1 obtained from σ by
exactly one adjacent transposition (i, i + 1), 1 < i < n. Each
codeword σ ∈ C2 covers exactly one permutation π ∈ Tn,1,
π = (1, 2) ◦ σ . Therefore, we have that

(n − 1)x1 + x2 = (n − 1)!. (4)

Similarly, by considering how the permutations of Tn,n are
covered by the codewords of C, we have that

xn−1 + (n − 1)xn = (n − 1)!. (5)

For each i , 2 ≤ i ≤ n − 1, each permutation in Tn,i is
covered by exactly one codeword that belongs to either Ci−1,
Ci , or Ci+1. Each codeword σ ∈ Ci covers exactly n − 2
permutations in Tn,i . It covers itself and the n−3 permutations
in Tn,i obtained from σ by exactly one adjacent transposition
( j, j + 1), where 1 ≤ j < i − 1 or i < j < n. Each codeword
in Ci−1 ∪ Ci+1 covers exactly one permutation from Tn,i .
Therefore, for each i , 2 ≤ i ≤ n − 1, we have that

xi−1 + (n − 2)xi + xi+1 = (n − 1)!. (6)

Let x = (x1, x2, . . . , xn) and let 1 denote the all-ones
column vector. Equations (4), (5), and (6) can be written in a
matrix form as

AxT = (n − 1)! · 1, (7)

where A = (ai, j ) is an n × n matrix defined by

A=

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

n −1 1 0 0 · · · 0 0 . . . 0
1 n − 2 1 0 · · · 0 0 . . . 0
0 1 n − 2 1 · · · 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
...

...
0 . . . 0 0 · · · 1 n − 2 1 0
0 . . . 0 0 · · · 0 1 n − 2 1
0 . . . 0 0 · · · 0 0 1 n − 1

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since the sum of every row in A is equal to n it follows
that the linear equation system defined in (7) has a solution
yT = (n−1)!

n · 1. We will show that if n > 3 then A is a
nonsingular matrix and hence y is the unique solution of (7),
i.e. x = y. To this end, we need the following theorem known
as the Levy-Desplanques Theorem [19, p. 125].

Theorem 2: Let B = (bi, j ) be an n × n matrix. If |bi,i | >∑
j �=i |bi, j | for all i , 1 ≤ i ≤ n, then B is nonsingular.

For every n > 4 we have that for each i , 1 ≤ i ≤ n,
ai,i ≥ n−2 > 2 ≥ ∑

j �=i ai, j . Hence, by Theorem 2 it follows
that A is nonsingular. For n = 4 it can be readily verified
that the matrix A is nonsingular. As a consequence we have
that xT = (n−1)!

n · 1 for every n ≥ 4. If n = 4 or n is a
prime greater than 4 then (n−1)!

n is not an integer and therefore,
a perfect single-error-correcting code does not exist, i.e.

Theorem 3: There is no perfect single-error-correcting
code in Sn, where n > 4 is a prime or n = 4.

Remark 1: It was brought to our attention that
Theorem 3 is a special case of [9, Th. 5]. However, there
is a crucial mistake in the proof of this theorem, which
cannot be resolved. The proof follows by induction on n,
where the induction step is based on a partition of Sn into

(n
k

)

classes, 2 ≤ k ≤ n − 2, according to the set of the k first
elements in the permutations. It is stated that if C ⊂ Sn

is a code with minimum distance 3 and C is contained in
one of these classes, then the projection of C into Sk has also
minimum distance 3. This argument is clearly wrong. For
example, the code {[1, 2, 3, 4, 5], [3, 1, 2, 5, 4]} has minimum
distance 3 and the first three elements in each of its codewords
belong to {1, 2, 3}. However, its projection into S3 is the
code {[1, 2, 3], [3, 1, 2]}, which has minimum distance 2.
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A similar example can be found for every n ≥ 4 and for each
2 ≤ k ≤ n − 2.

The following theorem proved in [5] implies that perfect
single-error-correcting codes must have a very symmetric
and uniform structure. This might be useful to rule out the
existence of these codes for other parameters as well. The
proof of this theorem is a generalization of the technique used
to prove Theorem 3. It is omitted here since the theorem is
not used in the sequel.

Theorem 4: Assume that there exists a perfect single-error-
correcting code C ⊂ Sn, where n > 11. If r < n

4 then for
each sequence of r distinct elements of [n], i1, i2, . . . , ir , and
for each set of r positions, 1 ≤ j1 < j2 < · · · < jr ≤ n, there

are exactly (n−r)!
n codewords σ ∈ C, such that σ( j�) = i�, for

each �, 1 ≤ � ≤ r .
For n = 6, 8, 9, 10, we use similar arguments and obtain

systems of linear equations. We used a computer to show that
these systems have no solutions over the nonnegative integers,
and to conclude that perfect single-error-correcting codes
in Sn do not exist for these values of n. More details on these
cases can be found in Appendix A.

Corollary 2: P(n, 3) < (n − 1)! if n is a prime greater
than 4 or 4 ≤ n ≤ 10.

Proof: The size of a ball with radius one in Sn , when
the Kendall τ -metric is used, is n. Hence, by Theorem 1
and the discussion which follows this theorem we have that,
a single-error-correcting code C ⊂ Sn is perfect if and only
if |C| = (n − 1)!. Since such codes do not exist if n is
a prime greater than 4 or if 4 ≤ n ≤ 10, it follows that
P(n, 3) < (n − 1)!.

IV. ANTICODES AND DIAMETER PERFECT CODES

In all the perfect codes of a graphic metric the minimum
distance of the code is an odd integer. If the minimum distance
of the code C is an even integer then C cannot be a perfect
code. The reason is that for any two codewords c1, c2 ∈ C
such that d(c1, c2) = 2δ, there exists a word x such that
d(x, c1) = δ and d(x, c2) = δ. For this case another concept
is used, a diameter perfect code, as was defined in [1]. This
concept is based on the code-anticode bound presented by
Delsarte [10]. An anticode A of diameter D in a space V is a
subset of words from V such that d(x, y) ≤ D for all x, y ∈ A.

Theorem 5: If a code C, in a space V of a distance regular
graph, has minimum distance d and in an anticode A of the
space V the maximum distance is d − 1 then |C| · |A| ≤ |V|.

Theorem 5 which was proved in [10] is a generalization
of Theorem 1 (the sphere packing bound) and it can be
applied to the Hamming scheme since the related graph is
distance regular (see [4] for the definition of a distance regular
graph). It cannot be applied to the Kendall τ -metric since
the related graph is not distance regular if n > 3. This
can be easily verified by considering the three permutations
ε = [1, 2, 3, 4, 5, . . . , n], σ = [3, 1, 2, 4, 5, . . . , n], and
π = [2, 1, 4, 3, 5, . . . , n] in Sn . Clearly, dK (ε, σ ) =
dK (ε, π) = 2 and there exists exactly one permutation α
for which dK (ε, α) = 1 and dK (α, σ ) = 1, while there
exist exactly two permutations β, γ for which dK (ε, β) = 1,

dK (β, π) = 1, dK (ε, γ ) = 1, and dK (γ, π) = 1. Fortunately,
an alternative proof which was given in [1] and was modified
in [13] will work for the Kendall τ -metric.

Theorem 6: Let CD be a code in Sn with Kendall
τ -distances between codewords taken from a set D. Let
A ⊂ Sn and let C ′

D be the largest code in A with Kendall
τ -distances between codewords taken from the set D. Then

|CD|
n! ≤ |C ′

D|
|A| .

Proof: Let Bdef={(σ, π) : σ ∈ CD, π ∈ Sn, σ ◦ π ∈ A}.
For a given codeword σ ∈ CD and a word α ∈ A, there is
exactly one element π ∈ Sn such that α = σ ◦ π . Therefore,
|B| = |CD| · |A|.

Since the Kendall τ -metric is right invariant it follows that

for every π ∈ Sn , the set Cπ
def={σ ◦ π : σ ∈ CD} has the

same Kendall τ -distances as in CD, i.e. the Kendall τ -distances
between codewords of Cπ are taken from the set D. Together
with the fact that C ′

D is the largest code in A, with
Kendall τ -distances between codewords taken from the set D,
it follows that for any given word π ∈ Sn the set {σ : σ ∈ CD,
σ ◦ π ∈ A} has at most |C ′

D| codewords. Hence, |B|≤|C ′
D| · n!.

Thus, since |B| = |CD| · |A|, we have that |CD| · |A| ≤
|C ′

D| · n! and the claim is proved.
Corollary 3: If a code C ⊆ Sn has minimum

Kendall τ -distance d and in an anticode A ⊂ Sn the
maximum Kendall τ -distance is d − 1 then |C| · |A| ≤ n!.

Proof: Let D = {d, d + 1, . . . ,
(n

2

)} and let CD ⊆ Sn

be a code with minimum Kendall τ -distance d . Let A be a
subset of Sn with Kendall τ -distances between words of A
taken from the set {1, 2, . . . , d − 1}, i.e. A is an anticode
with diameter d − 1. Clearly, the largest code in A with
Kendall τ -distances from D has only one codeword. Applying
Theorem 6 on D, CD , and A, implies that |CD| · |A| ≤ n!.

If there exists a code C ⊆ Sn with minimum
Kendall τ -distance d = D + 1 and an anticode A with
diameter D such that |C| · |A| = n! then C is called a
D-diameter perfect code. In this case, A must be an anticode
with maximum distance (diameter) D of the largest possible
size, and A is called an optimal anticode of diameter D.
If D = 2R and the ball of radius R is an optimal anticode
then a D-diameter perfect code is a perfect R-error-correcting
code. It is interesting to find the optimal anticodes in Sn and to
determine their sizes. Using the sizes of such optimal anticodes
we can obtain by Corollary 3 upper bounds on P(n, 2δ). In the
rest of this section we will mostly consider bounds on the size
of optimal anticodes and use these bounds to obtain new upper
bounds on P(n, 2δ). The proof of the next theorem is given
in Appendix B.

Theorem 7: Every optimal anticode with diameter 2 (using
the Kendall τ -distance) in Sn, n ≥ 5, is a ball with radius one
whose size is n.

We will now consider lower bounds on the size of optimal
anticodes with odd diameter. These bounds will imply new
lower bounds on P(n, 2δ). To this end we will define a double
ball of radius R. For a given space V with a distance measure
d(·, ·) and for two elements x, y ∈ V such that d(x, y) = 1,
the double ball of radius R centered at x and y is defined
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TABLE I

SIZES OF THE LARGEST KNOWN ANTICODES OF DIAMETER D IN Sn

by DB(x, y, R)
def= B(x, R) ∪ B(y, R). Let Bn,R be a ball of

radius R in Sn . W.l.o.g., we may assume that Bn,R = B(ε, R).
For every n ≥ 1 and R ≥ 0, we denote by DBn,R the double
ball of radius R in Sn centered at the identity permutation ε
and the permutation (1, 2).

Lemma 3: Let V be a space with a distance measure d(·, ·).
For every x, y ∈ V such that d(x, y) = 1 we have
(1) DB(x, y, R) is an anticode of diameter at most 2R + 1.
(2) |DB(x, y, R)| = |B(x, R)| + |B(y, R)| − |B(x, R) ∩

B(y, R)|.
(3) If d(·, ·) over V is bipartite then B(x, R) ∩ B(y, R) =

DB(x, y, R − 1).
Proof: (1) follows immediately from the triangle

inequality and (2) is trivial.
If z ∈ B(x, R)∩B(y, R) then d(x, z) ≤ R and d(y, z) ≤ R.

Assume that d(·, ·) is bipartite, i.e. every three elements
x̂, ŷ, ẑ ∈ V satisfies the equation d(x̂, ŷ) + d(ŷ, ẑ) ≡
d(x̂, ẑ) (mod 2). If d(x, z) = d(y, z) = R then d(x, y) +
d(y, z) �≡ d(x, z) (mod 2), a contradiction. Hence, d(x, z) ≤
R − 1 or d(y, z) ≤ R − 1 and therefore, z ∈ DB(x, y, R − 1).

On the other hand, if z ∈ DB(x, y, R − 1) then d(x, z) ≤
R − 1 or d(y, z) ≤ R − 1 and since d(x, y) = 1 it follows
from the triangle inequality that d(x, z) ≤ R and d(y, z) ≤ R.
Therefore, z ∈ B(x, R) ∩ B(y, R).

Thus, z ∈ B(x,R) ∩ B(y,R) if and only if z ∈DB(x,y,R−1),
i.e. B(x, R) ∩ B(y, R)= DB(x, y, R − 1).

Corollary 4: |DBn,R | = 2|Bn,R | − |DBn,R−1|.
Proof: By Lemma 3 (2) we have |DBn,R | = 2|Bn,R| −

|B(ε, R) ∩ B((1, 2), R)|. By Lemma 3 (3) we have that
|B(ε, R) ∩ B((1, 2), R)| = |DBn−1,R |. Thus, |DBn,R | =
2|Bn,R| − |DBn,R−1|.

Theorem 8: If n ≥ 4 then DBn,1 is an optimal anticode
of diameter 3, whose size is 2(n − 1).

Proof: The claim can be easily verified for n = 4. By the
first part of Lemma 3 and by Corollary 4 it follows that
DBn,1 is an anticode of diameter 3 and size 2(n − 1).

Let A be an optimal anticode of diameter 3 in Sn , where
n ≥ 5, and let

Ae = {σ ∈ A : wK (σ ) ≡ 0 (mod 2)},
Ao = {σ ∈ A : wK (σ ) ≡ 1 (mod 2)}.

Since the Kendall τ -metric is bipartite, it follows that
Ae and Ao are anticodes of diameter 2. If n ≥ 5 then by
Theorem 7 it follows that |Ae| ≤ n (|Ao| ≤ n, respectively)
and |Ae| = n (|A0| = n, respectively) if and only if Ae

(A0, respectively) is a ball of radius one. The anticodes
Ae and Ao cannot be balls of radius one and therefore,

|Ae| ≤ n − 1 and |Ao| ≤ n − 1. Thus, |A| = |Ae| + |Ao| ≤
2(n − 1), for n ≥ 5.

As a consequence of Corollary 3 and the fact that DBn,R is
an anticode of diameter 2R + 1 we have the following upper
bound on P(n, 2δ), which generally considerably improves the
known upper bounds.

Corollary 5:

P(n, 2(R + 1)) ≤ n!
|DBn,R | .

Corollary 6:

P(n, 4) ≤ n!
2(n − 1)

.

Note, that P(n, 4) ≥ (n)!
2(2n−1) [21] and hence the size of the

best known code is within a factor of two from the new upper
bound.

Note also, that since we proved that DBn,1 is an optimal
anticode of diameter 3, the upper bound of Corollary 6 is the
best bound that can be derived from Corollary 3. An intriguing
question is whether Bn,R is an optimal anticode of

diameter D = 2R, where 0 ≤ R <
(n

2)
2 , and whether DBn,R is

an optimal anticode of diameter 2R+1, where 0 ≤ R <
(n

2)−1
2 .

Table I presents the sizes of the largest known anticodes of
diameter D in Sn , for 4 ≤ n ≤ 12 and 2 ≤ D ≤ max

{(n
2

)
, 20

}
.

For even values of D, the bound is the size of the related ball
of radius D

2 and was computed by computer. A formula to
compute some of these values is given in [25] and [30] and also
in [21]. Odd values of D were computed using Corollary 4.
Related bounds on P(n, d) will be presented in Section V.

For completeness, we will present in the next few results
some simple optimal anticodes and the related perfect codes
and diameter perfect codes in Sn , which might be considered
as trivial. If D = (n

2

)
then an optimal anticode of diameter D

in Sn is Sn itself. Hence, if (n
2)
2 ≤ R <

(n
2

)
then an optimal

anticode with diameter 2R ≥ (n
2

)
is Sn . Since |Bn,R| < n!, for

(n
2)
2 ≤ R <

(n
2

)
, it follows that Bn,R is not an optimal anticode

with diameter 2R. Similarly, if (n
2)−1

2 ≤ R <
(n

2

) − 1 then
|DBn,R | < n! and hence, DBn,R is not an optimal anticode
with diameter 2R + 1.

Theorem 9: A ⊂ Sn is an optimal anticode of diameter(n
2

) − 1 if and only if A contains either σ or σ r , for each
σ ∈ Sn.

Proof: If A is an optimal anticode of diameter
(n

2

) − 1
then by Lemma 1, for every σ ∈ Sn , A cannot contain both
σ and σ r . On the other hand, if π �= σ r then dK (σ, π) ≤(n

2

) − 1. Thus, the theorem follows.
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TABLE II

BEST KNOWN LOWER AND UPPER BOUND ON P(n, d)

Corollary 7: An optimal anticode A ⊂ Sn of diameter(n
2

) − 1 has size n!
2 and can be chosen in 2

n!
2 different ways.

Corollary 8:
• For each σ ∈ Sn, the set {σ, σ r } is a D-diameter perfect

code, D = (n
2

) − 1.
• If 2R + 1 = (n

2

)
then {σ, σ r } is a perfect R-error-

correcting code.
Theorem 10: If 2

3

(n
2

)
< d ≤ (n

2

)
then P (n, d) = 2.

Proof: Any code of the form {σ, σ r } has minimum
Kendall τ -distance at least d , and therefore P(n, d) ≥ 2.

Assume to the contrary that P(n, d) ≥ 3, i.e. there exists
a code C ⊂ Sn with minimum Kendall τ -distance d and
of size 3. Since the Kendall τ -metric is right invariant,
we can assume w.l.o.g. that C = {ε, σ, π}. We have
that d ≤ wK (σ ), d ≤ wK (π), and d ≤ dK (σ, π).
By Lemma 1 we have that dK (σ, εr ) ≤ (n

2

) − d and
dK (π, εr ) ≤ (n

2

) − d . By the triangle inequality it follows that
dK (σ, π) ≤ 2

(n
2

) − 2d < 2
(n

2

) − 2 2
3

(n
2

)
< d .

Corollary 9: If 2R = (n
2

) − 1 then Bn,R is an optimal
anticode of diameter

(n
2

) − 1.
Proof: Follows from Lemma 1, Theorem 9, and

Corollary 7.
Lemma 4: If 2R + 1 = (n

2

) − 1 then DBn,R is an optimal
anticode of diameter

(n
2

) − 1.
Proof: Recall that ε and (1, 2) are the centers of DBn,R .

By Theorem 9 it is sufficient to show that for every σ ∈ Sn ,
either σ ∈ DBn,R or σ r ∈ DBn,R . If wK (σ ) ≤ R then by
Lemma 1 wK (σ r ) = (n

2

) − wK (σ ) > R + 1 and therefore,
σ ∈ DBn,R and σ r �∈ DBn,R . Similarly, if wK (σ ) > R + 1
then σ �∈ DBn,R and σ r ∈ DBn,R . If wK (σ ) = R + 1 then
by Lemma 1 wK (σ r ) = R + 1. By Lemma 2 and since
wK ((1, 2)) = 1 it follows that either dK (σ, (1, 2)) = R or
dK (σ, (1, 2)) = R +2. Similarly, either dK (σ r , (1, 2)) = R or
dK (σ r , (1, 2)) = R + 2. By Lemma 1 we conclude that either
dK (σ, (1, 2)) = R or dK (σ r , (1, 2)) = R.

The next theorem can be easily verified.
Theorem 11: Any set {σ, π} such that dK (σ, π) = 1 is

an optimal anticode of diameter one. The set of all permu-
tations of even Kendall τ -weight, known as the alternating
group, An, is a 1-diameter perfect code. Similarly, the set
of all permutations of odd Kendall τ -weight, Sn\An, is an
1-diameter perfect code. These codes are the only 1-diameter
perfect codes in Sn.

V. CONSTRUCTIONS OF LARGE CODES AND

A TABLE OF THE BOUNDS

In this section we present two large codes with minimum
Kendall τ -distance 3 in S5 and S7. These two codes have
large automorphism groups and can be represented only by
one or two codewords, respectively. We hope that the method
in which we constructed these codes can be applied for other
values of n and minimum Kendall τ -distances. In addition, we
present a table of the lower and upper bounds on P(n, d) for
small values of n. Throughout this section the positions and
elements of permutations of length n are taken from the set
{0, 1, 2, . . . , n − 1} (instead of the set [n]).

By Theorem 3, there is no perfect single-error-correcting
code in S5, using the Kendall τ -distance. However, if we
add to the set of adjacent transpositions, which defines the
Kendall τ -metric, the transposition (0, n − 1), we obtain a
new metric in which the code C5, consists of the following
20 codewords, is a perfect single-error-correcting code in S5.

[0, 1, 2, 3, 4], [0, 2, 4, 1, 3], [0, 3, 1, 4, 2], [0, 4, 3, 2, 1]
[1, 2, 3, 4, 0], [2, 4, 1, 3, 0], [3, 1, 4, 2, 0], [4, 3, 2, 1, 0]
[2, 3, 4, 0, 1], [4, 1, 3, 0, 2], [1, 4, 2, 0, 3], [3, 2, 1, 0, 4]
[3, 4, 0, 1, 2], [1, 3, 0, 2, 4], [4, 2, 0, 3, 1], [2, 1, 0, 4, 3]
[4, 0, 1, 2, 3], [3, 0, 2, 4, 1], [2, 0, 3, 1, 4], [1, 0, 4, 3, 2]
Note, that if [σ(0), σ (1), . . . , σ (4)] is a codeword then

[σ(1), . . . , σ (4), σ (0)] and [2σ(0), 2σ(1), . . . , 2σ(4)] are also
codewords, where the computations are performed modulo 5.
Hence, this code can be represented by only one codeword
[0, 1, 2, 3, 4] and it has an automorphism group of size 20.
Note, also that the minimum Kendall τ -distance of this code
is at least 3 (since the Kendall τ -distance can only be increased
by removing the transposition (0, n − 1)) and hence,

Theorem 12:

P(5, 3) ≥ 20.

In general, we suggest to search for codes in Sn , for
small n, n prime, and small minimum Kendall τ -distance as
follows. We require that if σ = [σ(0), σ (1), . . . , σ (n − 1)] is a
codeword in the code C then [σ(1), . . . , σ (n − 1), σ (0)],
[σ(0)−1, σ (1)−1, . . . , σ (n−1)−1], and [ασ(0), ασ(1), . . . ,
ασ(n − 1)] are also codewords, where the computations
are done modulo n and α is a primitive root modulo n.
Note, that [σ(0) − 1, σ (1) − 1, . . . , σ (n − 1) − 1] = σ ◦
[1, 2, . . . , n − 1, 0]. A computer search for such a code
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is easier since the code has a large automorphism group.
We leave as a nice exercise to the reader to verify that a
codeword in such a code represents either n(n −1) codewords
(if and only if [0, 1, . . . , n − 1] is one of the represented
codewords, as in C5) or n2(n − 1) codewords.

Theorem 13:

P(7, 3) ≥ 588.

Proof: Verify that the two representatives μ = [0, 1, 2,
4, 3, 6, 5] and ν = [0, 1, 2, 3, 6, 4, 5] yield the require code of
size 588.

The previous known lower bounds on P(5, 3) and P(7, 3)
were 18 and 526, respectively [21]. We summarise with the
best known bounds on P(n, d), for 5 ≤ n ≤ 7 and 3 ≤ d ≤ 9,
which are presented in Table II.

VI. CONCLUSIONS AND OPEN PROBLEMS

We have considered several questions related to bounds
on the size of codes in the Kendall τ -metric. We gave
a novel technique to exclude the existence of perfect
single-error-correcting codes using the Kendall τ -metric.
We applied this technique to prove that there are no perfect
single-error-correcting codes in Sn , where n > 4 is a prime
or 4 ≤ n ≤ 10, using the Kendall τ -metric. We examine the
existence question of diameter perfect codes in Sn and the sizes
of optimal anticodes with the Kendall τ -distance. We obtained
a new upper bound on the size of a code in Sn with even
Kendall τ -distance. Finally, we constructed two large codes
with large automorphism groups in S5 and S7.

Our discussion raises many open problems from which we
choose a few as follows.

1) Prove the nonexistence of perfect codes in Sn , using
the Kendall τ -metric, for more values of n and/or other
distances.

2) Do there exist more D-diameter perfect codes in Sn

with the Kendall τ -metric, for 2 ≤ D <
(n

2

) − 1?
We conjecture that the answer is no.

3) Is a ball with radius R in Sn always optimal
as an anticode with diameter 2R in Sn , for
2 ≤ R <

(n
2)
2 ?

4) Is the double ball with radius R in Sn always optimal
as an anticode with diameter 2R + 1 in Sn , for
2 ≤ R <

(n
2)−1

2 ?
5) What is the size of an optimal anticode in Sn with

diameter D?
6) Improve the lower bounds on the sizes of codes in Sn

with even minimum Kendall τ -distance.
7) Can the codes in S5 and S7 from Section V be

generalized for higher values of n and to larger
distances? Are these codes of optimal size?

APPENDIX A
In Theorem 3 we proved that a perfect

single-error-correcting code in Sn with the Kendall τ -metric
does not exist if n > 4 is a prime or if n = 4. The proof
of Theorem 3 is based on a certain linear equations system,
where the existence of a perfect single-error-correcting
code in Sn implies the existence of a solution to the
linear equations system over the integers, and thus, by

showing the nonexistence of such solution we derive the
nonexistence of a perfect single-error-correcting code.
By using similar techniques we prove the nonexistence of
perfect single-error-correcting codes in Sn for n ∈ {6, 8, 9, 10}.
For each such n, let C be a perfect single-error-correcting code
in Sn . We will describe the corresponding linear equations
system and use a computer to show that this linear equations
system does not have a solution over the integers.

1) n = 6: We denote by D6 the set of all vectors of
{1, 2, 3}6 in which each of the elements 1, 2, 3 appears
twice. For each v ∈ D6 we define Sv to be the set of
eight permutations in S6, such that the elements 1 and 2
appear in the two positions in which 1 appears in v,
the elements 3 and 4 appear in the two positions in
which 2 appears in v, and the elements 5 and 6 appear
in the two positions in which 3 appears in v. Let
xv = |C ∩ Sv| and let x = (xv1, xv2, . . . , xvm ), where
m = |D6| = 6!

2!2!2! . By considering how the elements of
Sv are covered (similarly to the way it was done in the
proof of Theorem 3), for each v ∈ D6, we obtain a linear
equations system of the form AxT = |Sv| · 1 = 8 · 1,
where A is a square matrix of order m. The kernel of
A is an one-dimensional vector space which is spanned
by a vector y ∈ {0,−1, 1}9, that has both negative and
positive entries. Every solution for this system is of the
form 8

6 · 1 +α · y, α ∈ R, and therefore, the system does
not have a solution in which all entries are integers.

2) n = 8: We denote by D8 the set of all vectors
v ∈ {1, 2, 3, 4}8 in which each of the elements 1 and 2
appears three times and each of the elements 3 and 4
appears once. For every v ∈ D8 we define Sv to
be the set of 36 permutations in S8, such that the
elements 1, 2, and 3 appear in the three positions in
which 1 appears in v, the elements 4, 5, and 6 appear in
the three positions in which 2 appears in v, the element 7
appears in the position of 3 in v, and the element 8
appears in the position of 4 in v. Let xv = |C ∩ Sv|
and let x = (xv1, xv2, . . . , xvm ), where m = |D8| = 8!

3!3! .
By considering how elements of Sv are covered, for each
v ∈ D8, we obtain a linear equations system of the form
AxT = 36 · 1, where A is a square matrix of order m.
The system has a unique solution, xT = 36

8 · 1, which
has non-integer entries .

3) n = 9: We denote by D9 the set of all vectors
v ∈ {1, 2, 3}9 in which the element 1 appears five times
and each of the elements 2 and 3 appears twice.
For every v ∈ D9 we define Sv to be the set of
480 permutations in S8, such that the elements 1, 2, 3, 4,
and 5 appear in the five positions in which 1 appears
in v, the elements 6 and 7 appear in the two positions
in which 2 appears in v, and the elements 8 and 9
appear in the two positions in which 3 appears in v.
Let xv = |C ∩ Sv| and let x = (xv1, xv2, . . . , xvm ),
where m = |D9| = 9!

5!2!2! . By considering how elements
of Sv are covered, for each v ∈ D9, we obtain a linear
equations system of the form AxT = 480 ·1, where A is
a square matrix of order m. The system has a unique
solution, xT = 480

9 · 1, which has non-integer entries.
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4) n = 10: We denote by D10 the set of all vectors
v ∈ {1, 2, 3}10 in which each of the elements 1 and 2
appears four times and the element 3 appears twice. For
every v ∈ D10 we define Sv to be the set of 1,152 per-
mutations in S10, such that the elements 1, 2, 3, and 4
appear in the four positions in which 1 appears in v,
the elements 5, 6, 7, and 8 appear in the four positions
in which 2 appears in v, and the elements 9 and 10
appear in the two positions in which 3 appears in v.
Let xv = |C ∩ Sv| and let x = (xv1, xv2, . . . , xvm ),
where m = |D10| = 10!

4!4!2! . By considering how elements
of Sv are covered, for each v ∈ D10, we obtain a linear
equations system of the form AxT = 1, 152 · 1, where
A is a square matrix of order m. The system has a unique
solution, xT = 1,152

10 · 1, which has non-integer entries.

APPENDIX B
The purpose of this appendix is to prove Theorem 7 given

in Section IV.
Theorem 7: Every optimal anticode with diameter 2 (using

the Kendall τ -distance) in Sn, n ≥ 5, is a ball with radius
one whose size is n.

Lemma 5: Let σ = (i, i + 1) ◦ (i + 1, i + 2) and let ρ �= σ
be a permutation of weight 2 and distance 2 from σ . Then
ρ = ( j, j + 1) ◦ (i + 1, i + 2) or ρ = (i + 1, i + 2) ◦ (i, i + 1).

Proof: Recall first that for any two permutations α, β,
dK (α, β) = 1 if and only if there exists an adjacent transpo-
sition (k, k + 1), such that α = (k, k + 1) ◦ β. We distinguish
between four cases. In the first two cases the permutation ρ is
at distance 2 from σ .

I. ρ = ( j, j +1)◦ (i +1, i +2). In this case σ = (i, i +1)◦
( j, j +1)◦ρ and therefore dK (σ, ρ) ≤ 2. By Lemma 2 we
have that the Kendall τ -metric is bipartite and since σ and
ρ are both of even weight it follows that dK (σ, ρ) ≥ 2.
Thus, dK (σ, π) = 2.

II. ρ = (i + 1, i + 2) ◦ (i, i + 1). In this case we have that
σ = ρ ◦ ρ and similarly it follows that dK (σ, ρ) = 2.

III. If ρ = ( j, j+1)◦ (k, k+1), where j �= k and j, k �= i+1,
then by (1) we have that dK (σ, ρ) ≥ |{(i + 2, i),
(i + 2, i + 1), (k, k + 1)}| > 2.

IV. If ρ = (i + 1, i + 2) ◦ ( j, j + 1). We distinguish be
between four subcases.
1) If j �∈ {i, i+1, i+2}, then ρ = ( j, j+1)◦ (i+1, i+2)

and this case was considered in I.
2) j = i was considered in II.
3) If j = i + 1 then ρ = ε, i.e wK (ρ) = 0.
4) If j = i + 2 then ρ = (i + 1, i + 2) ◦ (i + 2, i + 3)

and by (1) we have dK (σ, ρ) = |{(i + 2, i),
(i + 2, i + 1), (i + 1, i + 3), (i + 2,
i + 3)}| = 4.

Lemma 6: Let σ = (i, i + 1) ◦ (i + 1, i + 2) and
π = (i + 1, i + 2) ◦ (i, i + 1), where i ∈ [n − 2], and let
ρ be a permutation of weight 2, ρ �= σ and ρ �= π . Then
either dK (σ, ρ) ≥ 4 or dK (π, ρ) ≥ 4.

Proof: By Lemma 5 it follows that if dK (σ, ρ) = 2 then
ρ = ( j, j + 1) ◦ (i + 1, i + 2) or ρ = π . By symmetry it
follows that if dK (π, ρ) = 2 then ρ = ( j, j + 1) ◦ (i, i + 1)
or ρ = π . Hence, there is no permutation ρ of weight 2 and

distance 2 from both σ and π . By Lemma 2 we also have
that the Kendall τ -metric is bipartite and we conclude that
any permutation of weight 2 other then σ and π must be at
distance at least four from σ or π .

Lemma 7: Let A be an anticode in Sn with diameter 2 such
that ε ∈ A, and let B be the set of all permutations of weight 2
in A. If |B| ≥ 4 then B is contained in a ball of radius one
centered at some permutation σ ∈ Sn of weight one.

Proof: If there exists some i ∈ [n−2] such that (i, i +1)◦
(i + 1, i + 2), (i + 1, i + 2) ◦ (i, i + 1) ∈ B, then by Lemma 6
any other permutation of weight 2 is at distance at least four
from either (i, i +1)◦ (i +1, i +2) or (i +1, i +2)◦ (i, i +1),
and therefore |B| = 2.

If for some i ∈ [n − 2] either (i, i + 1) ◦ (i + 1, i + 2) or
(i + 1, i + 2) ◦ (i, i + 1) belongs to B, say w.l.o.g. (i, i + 1) ◦
(i + 1, i + 2) ∈ B, then every permutation of B\{(i, i + 1) ◦
(i+1, i+2)} must be at distance 2 from (i, i+1) ◦ (i+1, i+2),
and by Lemma 5 it follows that every such permutation
must be of the form ( j, j + 1) ◦ (i + 1, i + 2) for some
j �∈ {i, i + 1}. Therefore, B ⊂ B((i + 1, i + 2), 1).

If each permutation of B is a multiplication of two disjoint
adjacent transpositions then let ρ = (i, i + 1) ◦ ( j, j + 1) ∈ B,
where j �∈ {i −1, i, i +1}. Hence, all permutations of B are of
the form (�, �+1)◦ ( j, j +1), where � �∈ { j, j +1}, or (�, �+
1) ◦ (i, i + 1), where � �∈ {i, i + 1}. Assume w.l.o.g. that π =
(�, � + 1) ◦ ( j, j + 1) ∈ B, π �= ρ. If every permutation of B
is of the form (k, k +1) ◦ ( j, j +1) then B ⊂ B(( j, j + 1), 1).
Otherwise, the only possible other permutation of B is
(i, i + 1) ◦ (�, � + 1) and hence |B| ≤ 3.

Thus, if |B| ≥ 4 then B ⊂ B(σ, 1), for some σ of
weight one.

Proof of Theorem 7: Let A ⊂ Sn , n ≥ 5, be an anticode
of diameter 2. The Kendall τ -metric is right invariant and
hence w.l.o.g. we can assume that ε ∈ A. Therefore, all the
permutations of A are of weight at most two. We distinguish
between four cases:

Case 1: If A does not contain a permutation of weight one
then by Lemma 7 it follows that A is contained in a ball of
radius one centered at a permutation of weight one or |A| ≤ 4.

Case 2: If A contains exactly one permutation σ ∈ Sn

of weight one then by Lemma 2, the distance between σ
and any permutation of weight 2 is an odd integer and
therefore, all permutations of weight 2 in A must be at distance
one from σ . Thus, A ⊆ B(σ, 1).

Case 3: If A contains two permutations of weight one,
σ = (i, i + 1) and π = ( j, j + 1), where σ and π are
disjoint transpositions, then the only permutation of weight 2
and distance one from both σ and π is (i, i + 1) ◦ ( j, j + 1)
and therefore A cannot contain more than one permutation of
weight 2, hence |A| ≤ 4.

Case 4: If A contains two permutations of weight one,
σ = (i, i + 1) and π = (i + 1, i + 2), for some i ∈ [n − 2],
then there is no permutation of weight 2 and distance one from
both σ and π and therefore A cannot contain permutations of
weight 2, hence |A| ≤ 3.

Case 5: If A contains at least three permutations of weight
one then A cannot contain permutations of weight 2 and
therefore A ⊆ B(ε, 1).
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Thus, we proved that either A is contained in a ball of
radius one or |A| ≤ 4. Since the size of a ball of radius one
in Sn is n, it follows that if n ≥ 5 then every optimal anticode
of diameter 2 in Sn is a ball of radius one. �
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