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Abstract— Multi-permutations and in particular permutations
appear in various applications in an information theory. New
applications, such as rank modulation for flash memories, have
suggested the need to consider error-correcting codes for multi-
permutations. In this paper, we study systematic error-correcting
codes for multi-permutations in general and for permutations
in particular. For a given number of information symbols k,
and for any integer t , we present a construction of (k + r, k)
systematic t-error-correcting codes, for permutations of length
k + r , where the number of redundancy symbols r is relatively
small. In particular, for a given t and for sufficiently large k,
we obtain r = t + 1, while a lower bound on the number of
redundancy symbols is shown to be t . The same construction is
also applied to obtain related systematic error-correcting codes
for any types of multi-permutations.

Index Terms— Kendall τ -metric, multi-permutations,
permutations, systematic error-correcting codes.

I. INTRODUCTION

FLASH memory is one of the most widely used
non-volatile technologies. In flash memories, cells usually

represent multiple levels, which correspond to the amount of
electrons trapped in each cell. Currently, one of the main
challenges in flash memory cells is to program each cell
exactly to its designated level. In order to overcome this
difficulty, the novel framework of rank modulation codes
was introduced in [15]. In this setup, the information is
carried by the relative values between the cells rather than
by their absolute levels. Thus, every group of cells induces a
permutation, which is derived by the ranking of the level of
each cell in the group. There are several works which study
the correction of errors under the setup of permutations for
the rank modulation scheme; see e.g. [1], [9], [16], [22], [23],
[26], [27]. In all these works t-error-correcting codes were
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considered for the set Sn , which consists of all permutations
on n elements, with either the Kendall τ -metric, the infinity
metric, or the Ulam metric. Permutation codes were originally
studied with the Hamming distance in the work of Slepian
for the transmission of bandlimited signals over Gaussian
channels [21] and in many other papers, e.g. [2], [3], [11].
Recently, to improve the number of rewrites, the model of
rank modulation was extended such that multiple cells can
share the same ranking [12], [13]. Thus, the cells no longer
determine permutations but rather multi-permutations. Error-
correcting codes for multi-permutations subject to the Kendall
τ -metric were presented in [20] and also studied in [7]. The
goal of this paper is to construct systematic error-correcting
codes for permutations and multi-permutations. In such a code
with permutations there are k! codewords, where k is the
number of information symbols. Similarly, in such a code
with multi-permutations there are α(k) codewords, where α(k)
is the number of multi-permutations that can be defined on
the k information symbols.

A. Previous Work

As mentioned above, the rank modulation scheme was
proposed in [15] to improve programming performance for
flash memory, where n cells represent a permutation according
to the ranking of their levels. This scheme was suggested to
be useful also for data retention, as it was noticed that the
ranking of the cells’ levels is more robust to charge leakage
than the absolute values of the cells’ levels.

In [16] the rank modulation scheme was combined with
error-correction capability by using the Kendall τ -metric.
This metric highly reflects the error behavior of flash
memory cells, mainly due to dominant error sources, e.g.
charge leakage and read disturbance [16]. Error-correcting
codes were constructed in [16] and later in [1] and [19]
by using a metric embedding of the set of all permuta-
tions of length n, Sn , with the Kendall τ -metric to the
space Z

n−1
q , q ≥ n, with the Lee metric. This metric embed-

ding allows to construct t-error-correcting codes in Sn with
the Kendall τ -distance from t-error-correcting codes in Z

n−1
q

with the Lee distance. The embedding was extended
in [20] to construct error-correcting codes for balanced
multi-permutations.

Bounds on the size of error-correcting codes in the Kendall
τ -metric were given in [1], [5], [6], and [16]. In [1],
t-error-correcting codes in Sn that achieve the sphere packing
bound up to a constant factor, where n is sufficiently large,
were presented. Upper bounds on the size of codes with even
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minimum distances were proposed in [5] and [6], which also
investigated the existence question of perfect codes.

The concept of systematic codes for permutations was sug-
gested in [26], where systematic error-correcting codes were
studied in the Kendall τ -metric. Systematic error-correcting
codes with the Kendall τ -distance were further studied in [8]
and in [27]. In [27], a variation of systematic error-correcting
codes with the infinity distance were also explored. A code
C ⊆ Sn is an (n, k) systematic code if each permutation of Sk

is a sub-permutation of exactly one codeword of C. In [27] four
constructions of (n, k) systematic t-error-correcting codes in
the Kendall τ -metric were presented. All these constructions
are based on error-correcting codes in the Lee metric via
the metric embedding from [16]. Two of the constructions
from [27] (Constructions A and B) are for systematic single-
error-correcting codes that use two redundancy symbols.
One of the constructions from [27] (Construction C) is for
systematic t-error-correcting codes, for a general t . In particu-
lar, t could be as large as �(n2). The constructed codes use r
redundancy symbols, where r is shown to be less than or equal
to 2t+1. However, it is not clear whether r can be smaller than
2t + 1. Finally, Construction D from [27] yields (k + t + 1, k)
systematic t-error-correcting codes for a fixed t ≥ 1, provided
that k is sufficiently large.

B. Our Contribution

In this paper we present a general method to construct (n, k)
systematic t-error-correcting codes. This method is based
on two ingredients. The first one is a partition of Sk into
t-error-correcting codes with the Kendall τ -distance. The
second one is a code for multi-permutations on the multi-set
{0k, k + 1, . . . , k + r} with minimum Kendall τ -distance 2t .

We apply this method to construct (n, k) systematic t-error-
correcting codes and analyze the asymptotic behavior of the
number of redundancy symbols r , for t = �(kε) and ε ≥ 0.
We present an (n, k) systematic single-error-correcting codes
with r = 2 redundancy symbols for every k ≥ 1. For a
fixed t and for large enough k, the constructed codes use t + 1
redundancy symbols. For t = �(kε), the constructed codes
use r = �(1 + ε + δ)t� redundancy symbols, if 0 < ε ≤ 1, and
r = ⌈

(1 + ε−1 + δ)t
⌉

redundancy symbols, if ε > 1, where k
is sufficiently large, r − 1 is a power of a prime, and δ > 0
can be arbitrarily small.

One advantage of our method is that it can be easily adapted
to systematic t-error-correcting codes for multi-permutations.
It can also be used for other metrics, e.g. the Ulam metric and
the Hamming metric, provided that one can construct multi-
permutation codes and partitions into error-correcting codes in
these metrics. For balanced multi-permutations we construct
systematic t-error-correcting codes with t + 1 redundancy
symbols for sufficiently large k. Finally, we prove that at least t
redundancy symbols are required when k is large enough and
the multiplicity of each information symbol is bounded.

C. Organization

The rest of this work is organized as follows. In Section II
we present the basic concepts concerning permutations,

multi-permutations, and systematic codes for permutations and
multi-permutations. We introduce in Section III the metric
used in this paper, the Kendall τ -metric, and present basic
properties of this metric. Next, we present in Section IV our
main construction for systematic t-error-correcting codes for
permutations. The construction is based on a combination
of two coding concepts. The first one is a partition of a
set of permutations into t-error-correcting codes. The second
one is an error-correcting code for a certain family of multi-
permutations. In Section V we review and generalize some
of the known constructions of error-correcting codes for per-
mutations and multi-permutations via the metric embedding
from [16]. These constructions will be used to design the
two coding concepts for the main construction. Then, in
Section VI, specific systematic codes for permutations based
on the discussion in the preceding sections are given, and
in Section VII the constructions are generalized for multi-
permutations. In Section VIII, we study an asymptotic lower
bound on the number of redundancy symbols in systematic
t-error-correcting codes. We conclude in Section IX.

II. PERMUTATION, MULTI-PERMUTATIONS,
AND SYSTEMATIC CODES

Let [n] denote the set of n integers {1, 2, . . . , n}
and let [a, b], a < b, denote the set of b − a + 1 inte-
gers {a, a + 1, a + 2, . . . , b}. A permutation on a set X of n
elements is a bijection σ : [n] → X . A permutation σ on X
is denoted by σ = [σ(1), σ (2), . . . , σ (n)]. Let Sn be the
set of all permutations on [n] and let S([a, b]) be the set
of all permutations on [a, b]. The concept of permutations
is generalized to multi-permutations as follows. A multi-set
M = {vm1

1 , vm2
2 , . . . , v

m�
� } is a collection of the elements

{v1, v2, . . . , v�} in which vi appears mi times, i ∈ [�]. The
elements of {v1, v2, . . . , v�} are called ranks, while the positive
integer mi , for all i ∈ [�], is called the multiplicity of the i th
rank vi . If m1 = m2 = · · · = m� = m then M is
called a balanced multi-set and the related multi-permutations
are called balanced multi-permutations. A multi-permutation
on the multi-set M is a mapping σ : [n] → {v1, v2, . . . , v�},
where n = ∑�

i=1 mi , such that |{ j ∈ [n] : σ( j) = vi }| = mi ,
for all i ∈ [�]. A permutation is a special case of a multi-
permutation, where all the multiplicities are equal to one.
We denote by S(M) the set of all multi-permutations on M.
Clearly, the size of S(M) is equal to n!

	�i=1mi ! . As for

permutations, we denote a multi-permutation σ ∈ S(M)
by σ = [σ(1), σ (2), . . . , σ (n)], where the meaning will be
clear from the context.

Example 1: If M = {13, 22, 32}, then σ = [3, 1, 3, 1,
2, 1, 2] is a multi-permutation on M.

For a permutation α ∈ Sn and for k ∈ [n], define α↓k to
be the permutation in Sk obtained from α by deleting all the
elements of {k + 1, k + 2, . . . , n} from α.

Example 2: If α = [2, 5, 4, 1, 3, 6] and k = 3
then α↓k = [2, 1, 3].

A metric space (V, d(·, ·)) is a set V together with a
mapping d : V × V → R≥0 such that, for every x, y, z ∈ V
1) d(x, y) = 0 if and only if x = y; 2) d(x, y) = d(y, x);
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3) d(x, y) + d(y, z) ≥ d(x, z). The mapping d is called a
metric. Let (V, d(·, ·)) be a metric space. A code C ⊆ V has
minimum distance d if d(x, y) ≥ d , for every two distinct
codewords x, y ∈ C. A code C ⊆ V is a t-error-correcting
code if it has minimum distance at least 2t + 1.

Motivated by the rank modulation scheme [15], the con-
cept of systematic codes for permutations was proposed
in [26] and [27]. A code C ⊆ Sn is an (n, k) systematic
code if each permutation of Sk is a sub-permutation of
exactly one codeword of C, i.e. for every σ ∈ Sk there exists
exactly one codeword (permutation) α ∈ C such that α↓k = σ .
Therefore, the size of an (n, k) systematic code is k!. If an
(n, k) systematic code C is also a t-error-correcting code,
then C is called an (n, k) systematic t-error-correcting code,
while the metric will be clear from the context. The number of
redundancy symbols of an (n, k) systematic code is r = n − k.

III. THE KENDALL τ -METRIC ON PERMUTATIONS

AND MULTI-PERMUTATIONS

Given a multi-permutation σ = [σ(1), σ (2), . . . , σ (n)] ∈
S(M), an adjacent transposition is an exchange of
two distinct adjacent elements σ( j), σ ( j + 1) in σ , for
some j ∈ [n − 1]. The result of such an adjacent transposition
is the multi-permutation [σ(1), . . . , σ ( j − 1), σ ( j + 1), σ ( j),
σ ( j + 2), . . . , σ (n)]. The Kendall τ -distance between two
multi-permutations σ, π ∈ S(M), denoted by dK (σ, π), is the
minimum number of adjacent transpositions required to obtain
the multi-permutation π from the multi-permutation σ .

Example 3: If σ = [3, 1, 3, 1, 2, 1, 2], and π = [3, 3, 1,
2, 1, 2, 1] then dK (σ, π) = 3, since three is the mini-
mum number of adjacent transpositions required to trans-
fer the multi-permutation σ to π: [3, 1, 3, 1, 2, 1, 2] →
[3, 3, 1, 1, 2, 1, 2] → [3, 3, 1, 2, 1, 1, 2] → [3, 3, 1, 2, 1, 2, 1].

The Kendall τ -metric was originally defined for permuta-
tions [17]. It is well known [16], [18] that for two permutations
σ, π ∈ Sn , the value dK (σ, π) can be expressed as the number
of pairs of elements of [n] that do not appear in the same order
in σ and π , i.e.

dK (σ, π) =
∣
∣
∣
∣

{
(i, j) : ∀ 1 ≤ i, j ≤ n, σ−1(i) < σ−1( j)

and π−1(i) > π−1( j)

}∣
∣
∣
∣ .

(1)

For a multi-permutation σ ∈ S(M), where M = {vm1
1 ,

vm2
2 , . . . , v

m�
� }, we distinguish between the appearances of

the same rank in σ , by their positions in σ . We consider
the increasing order of these positions. By abuse of nota-
tion we sometimes write σ( j) = (vi )r and j = σ−1((vi )r ) to
indicate that the r th appearance of vi is in the j th position
of σ , i.e. σ( j) = vi and the multiplicity of vi in the multi-
permutation [σ(1), σ (2), . . . , σ ( j)] is r . The computation of
the Kendall τ -distance given in (1) between two permutations
can be generalized to two multi-permutations σ, π ∈ S(M).
More explicitly, it can be expressed as the number of pair of
elements of {(i, r) : i ∈ [�], r ∈ [mi ]} that do not appear in
the same order in σ and π , i.e.

dK (σ, π) =
∣∣
∣
∣

{
((i, r), ( j, s)) : σ

−1((vi )r ) < σ−1((v j )s)

π−1((vi )r ) > π−1((v j )s)

}∣∣
∣
∣ .

(2)

Let n0 = 0 and let ni = ∑i
j=1 m j , i ∈ [�], where n = n�.

In other words, ni is the number of symbols in the multi-
set M whose rank is at most i . For θ ∈ Sn , the assign-
ment of the permutation θ in a multi-permutation σ ∈ S(M)
is the permutation α = θ � σ ∈ Sn defined as follows. For
each i , 1 ≤ i ≤ �, the segment of the permutation [θ(ni−1+1),
θ(ni−1 + 2), . . . , θ(ni−1 + mi )] is substituted, in this order, in
the mi positions of the rank vi in σ . This means that for
each j ∈ [n], if σ( j) = (vi )r then α( j) = θ(ni−1 + r).

Example 4: Let σ = [3, 1, 3, 1, 2, 1, 2] ∈ S({13, 22, 32})
and let θ = [2, 1, 3, 4, 5, 7, 6]. After substituting [2, 1, 3] in
positions 2, 4, and 6 in which 1 appears in σ , and similarly,
substituting [4, 5] and [7, 6] in the positions in which 2 and 3
appears, respectively, we obtain the permutation θ � σ =
[7, 2, 6, 1, 4, 3, 5].

Lemma 1: Let σ, π ∈ S(M), let θi , ηi ∈
S([ni−1 + 1, ni ]), for all i ∈ [�], and let θ, η ∈ Sn,
where θ(ni−1 + r) = θi (r) and η(ni−1 + r) = ηi (r), for
all i ∈ [�] and r ∈ [mi ]. Then

dK (θ � σ, η � π) ≥ dK (σ, π)+ dK (θ, η).

Proof: If d = dK (θ �σ, η�π), then by the definition of the
Kendall τ -distance, there exists a sequence τ = τ1, τ2, . . . , τd

of d adjacent transpositions that transfers θ � σ to η � π .
Let τmult = τs1, τs2, . . . , τsdmult

be the subsequence of τ that
consists of all the adjacent transpositions of the sequence τ

that exchange two distinct symbols x ∈ [ni−1 + 1, ni ]
and y ∈ [n j−1 + 1, n j ], for some i, j ∈ [�], i �= j .

For all i ∈ [�], let τ (i) = τi,1, τi,2, . . . , τi,di be the
subsequence of τ that consists of all the adjacent transpo-
sitions of the sequence τ that exchanges some two distinct
symbols x, y ∈ [ni−1 + 1, ni ].

Each adjacent transposition in the sequence τ exchanges
two distinct symbols x and y, x ∈ [ni−1 + 1, ni ]
and y ∈ [n j−1 + 1, n j ], for some i, j ∈ [�], where either i = j

or i �= j . Hence, τmult and τ (1), τ (2), . . . , τ (�) form a partition

of τ to subsequences and dmult + ∑�
i=1 di = d .

By the definitions of the assignment of a permutation
in a multi-permutation and of θ and η, for every κ ∈ [�]
the permutations θκ and ηκ are substituted in the posi-
tions of the rank vκ in σ and π , respectively. Since τ

transfers θ � σ to η � π , it follows that τmult transfers σ
to π and for every i ∈ [�], τ (i) transfers the segment
of θ , θi = [θ(ni−1 +1), θ(ni−1 +2), . . . θ(ni )], to the segment
of η, ηi = [η(ni−1 + 1), η(ni−1 + 2), . . . η(ni )]. There-
fore, dmult ≥ dK (σ, π) and for all i ∈ [�], di ≥ dK (θi , ηi ).
Furthermore,

∑�
i=1 dK (θi , ηi ) = dK (θ, η), and thus

dK (θ � σ, η � π) = dmult +
�∑

i=1

di ≥ dK (σ, π)

+
�∑

i=1

dK (θi , ηi ) = dK (σ, π)+ dK (θ, η).

�
Lemma 1 provides a lower bound on dK (θ � σ, η � π) in

terms of dK (σ, π) and dK (θ, η). This lower bound may not
always be tight, as the next example shows.
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Example 5: Let σ = [3, 1, 3, 1, 2, 1, 2], π = [3, 3, 1, 2, 1,
2, 1], θ1 = [2, 1, 3], η1 = [3, 2, 1], θ2 = η2 = [4, 5],
θ3 = [7, 6], and η3 = [6, 7]. Then, θ = [2, 1, 3, 4, 5,
7, 6], η = [3, 2, 1, 4, 5, 6, 7], dK (θ, η) = 3, and dK (σ, π) = 3.
However, dK (θ � σ, η � π) = dK ([7, 2, 6, 1, 4, 3, 5],
[6, 7, 3, 4, 2, 5, 1]) = 8 and thus

dK (θ � σ, η � π) > dK (σ, π)+ dK (θ, η) = 6.

The Kendall τ -metric on S(M) is graphic, i.e. for every
two multi-permutations σ, π ∈ S(M) their Kendall τ -distance
is equal to the length of the shortest path between σ and π
in the graph G(M) whose vertex set is the set S(M), and
two vertices are connected by an edge if and only if their
Kendall τ -distance is one.

A metric d(·, ·) on a set V , is called bipartite if, for every
three elements x, y, z ∈ V , the congruence d(x, y)+d(y, z) ≡
d(x, z) (mod 2) is satisfied, i.e. the related graph is bipartite.
The Kendall τ -metric on S(M) is bipartite as stated in the
next lemma.

Lemma 2: The Kendall τ -metric over S(M) is bipartite.
Proof: Fix a multi-permutation γ ∈ S(M) and note

that by (2) two multi-permutations which differ in exactly
one adjacent transposition have different distances mod-
ulo 2 from γ. This implies that the related graph G(M) is
bipartite. �

IV. SYSTEMATIC ERROR-CORRECTING

CODES FOR PERMUTATIONS

In this section the main construction of systematic t-error-
correcting codes for permutations is presented. This construc-
tion will be generalized in Section VII for multi-permutations.

Let r be a positive integer and let Mk,r = {0k, k + 1,
k + 2, . . . , k + r}. For every permutation σ ∈ Sk and for every
multi-permutation ρ ∈ S(Mk,r ), the assignment of σ in ρ is
the permutation α = σ � ρ ∈ Sk+r which is obtained by
substituting σ , in the k positions where 0 appears in ρ. Note,
that σ � ρ = θ � ρ, where θ = [σ(1), σ (2), . . . , σ (k), k + 1,
k + 2, . . . , k + r ]. Hence, by Lemma 1 we have

Corollary 1: Let σ, π ∈ Sk and ρ1, ρ2 ∈ S(Mk,r ). Then

dK (σ � ρ1, π � ρ2) ≥ dK (ρ1, ρ2)+ dK (σ, π).

The next lemma is readily verified and so we omit its proof.
Lemma 3: For every ρ ∈ S(Mk,r ) and σ ∈ Sk we have

that (σ � ρ)↓k = σ .
Example 6: If k = 4, r = 3, ρ = [0, 6, 0, 0, 5, 7, 0],

and σ = [2, 4, 1, 3] then σ � ρ = [2, 6, 4, 1, 5, 7, 3] and
(σ � ρ)↓k = [2, 4, 1, 3] = σ .

We are now in a position to present our construction
of systematic error-correcting codes for permutations in the
Kendall τ -metric.

Theorem 1: Let C1, C2, . . . , CF be a partition of Sk into
t-error-correcting codes in the Kendall τ -metric and
let Cmult ⊆ S(Mk,r ) be a code with minimum Kendall
τ -distance 2t and size at least F. Let ρ1, ρ2, . . . , ρF be dis-
tinct codewords in Cmult . Then the code Csys ⊆ Sk+r defined by

Csys
def=

F⋃

j=1

{σ � ρ j : σ ∈ C j }

is a (k + r, k) systematic t-error-correcting code with the
Kendall τ -distance.

Proof: Since the codes C1, C2, . . . , CF form a partition
of Sk , it follows that for every σ ∈ Sk there exists exactly
one j ∈ [F] such that σ ∈ C j . By Lemma 3 it follows that
α = σ � ρ j is the unique permutation in Csys such that
α↓k = σ . Hence, the code Csys is (k + r, k) systematic.

To show that the minimum Kendall τ -distance of Csys

is at least 2t + 1, let σ � ρ j1, π � ρ j2 be two distinct
codewords in Csys . By Lemma 3 and since Csys is (k + r, k)
systematic, it follows that σ �= π and therefore dK (σ, π) ≥ 1.
We distinguish now between two cases:

1) If j1 = j2 then σ, π ∈ C j1 . Since C j1 is
a t-error-correcting code and by Corollary 1, it follows
that dK (σ � ρ j1, π � ρ j2) ≥ dK (σ, π) ≥ 2t + 1.

2) If j1 �= j2 then ρ j1 �= ρ j2 . Since Cmult has minimum
Kendall τ -distance at least 2t , it follows by Corollary 1
that dK (σ � ρ j1, π � ρ j2) ≥ dK (ρ j1, ρ j2)+dK (σ, π) ≥
2t + 1.

Thus, we proved that Csys is a (k + r, k) systematic
code with minimum Kendall τ -distance at least 2t + 1, as
required. �

For the construction of the code Csys in Theorem 1 two
ingredients are required. The first one is a partition of Sk into
t-error-correcting codes. The second one is a code in S(Mk,r )
with minimum Kendall τ -distance 2t . In the next section we
review some of the known constructions of error-correcting
codes for multi-permutations. These constructions will be used
to generate partitions of Sk into t-error-correcting codes, and
partitions of multi-permutations into t-error-correcting codes
(which will be used in Section VII). These results will also
produce the second ingredient of codes in S(Mk,r ) with
minimum Kendall τ -distance 2t .

V. ERROR-CORRECTING CODES AND PARTITIONS

VIA METRIC EMBEDDING

The primary goal of this section is to generate error-
correcting codes and partitions for multi-permutations.
In Subsection V-A, we review a known method to gener-
ate error-correcting codes for multi-permutations via metric
embedding. Then, in Subsection V-B, we describe the
resulting code constructions based on this method. Finally,
in Subsection V-C, we derive partitions of permutations and
multi-permutations into t-error-correcting codes.

A. Constructions From Metric Embedding

The first constructions of error-correcting codes for per-
mutations in the Kendall τ -metric were given in [16].
In particular, a general method was presented to construct
codes from error-correcting codes in the Lee metric. This
method was used in [1] to produce codes which correct multi-
ple errors, and in [20], it was extended for the construction of
error-correcting codes for balanced multi-permutations in the
Kendall τ -metric. For the completeness of the results in the
paper, we will review the full details of this method, with some
modifications which will be explained later in the section.
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Let Z
N
q be the set of all vectors of length N over the

alphabet Zq . For any two vectors x, y ∈ Z
N
q , the Lee distance

dL(x, y) is defined by

dL(x, y) =
N∑

i=1

min{|xi − yi |, q − |xi − yi |}.

The Lee weight of a vector x ∈ Z
N
q is defined

as wL(x) = dL(x, 0), where 0 is the all-zero vector. A vector
x = (x1, x2, . . . , xs) ∈ [0, b]s , where b and s are two positive
integers, is called monotone if xi ≥ xi+1, for all 1 ≤ i ≤ s−1.
Denote by [0, b]s� the set of all monotone vectors in [0, b]s .
Let

A(M)
def= [0, n1]m2� × [0, n2]m3� × · · · × [0, n�−1]m�� .

Lemma 4: For every multi-set M,

|A(M)| = |S(M)|.
Proof: For every positive integers b and s the size

of [0, b]s� is equal to the number of choices of s elements
from [0, b], with repetitions, i.e.

|[0, b]s�| =
(

b + s

s

)
.

Therefore,

|A(M)| =
(

n1 + m2

m2

)
·
(

n2 + m3

m3

)
· · · · ·

(
n�−1 + m�

m�

)

=
�∏

i=2

(
ni

mi

)
=

�∏

i=2

(
ni

ni−1

)
=

�∏

i=2

ni !
ni−1!mi !

= n!
n1! ∏�

i=2 mi !
= n!

∏�
i=1 mi !

= |S(M)|.

�
Define the following mapping ψ : S(M) → A(M).

For every σ ∈ S(M), ψ(σ) is the vector x ∈ A(M),
x = (x2, x3, . . . , x�), where for each i ∈ [2, �], xi =
(xi,1, xi,2, . . . , xi,mi ), and for each r ∈ [mi ], xi,r is the number
of ranks v j , for all j <i , which appear to the right of (vi )r .
That is,

xi,r
def=

∣
∣
∣
∣

{
( j, s) : σ

−1((v j )s) > σ
−1((vi )r ),

j < i, s ∈ [mi ]
}∣
∣
∣
∣ .

Note, that for every i ∈ [2, �] and r ∈ [mi ], we
have xi,r ∈ [0, ni−1]. Moreover, if r < mi then since (vi )r+1
appears to the right of (vi )r it follows that xi,r ≥ xi,r+1.
Hence, xi ∈ [0, ni−1]mi� for all i ∈ [2, �] and thus x ∈ A(M),
i.e. the mapping ψ is correctly defined.

Example 7: If M = {13, 22, 32}, σ = [3, 1, 3, 1, 2, 1, 2],
and ψ(σ) = x = (x2, x3), then A(M) = [0, 3]2� × [0, 5]2�
and x2 = (1, 0), since in the multi-permutation σ the rank 1
appears once to the right of 21, while it does not appear to
the right of 22. Similarly, x3 = (5, 4), since in the multi-
permutation σ there are five elements smaller than 3 to the
right of 31 and four elements smaller than 3 to the right of 32.
Thus, x = ((1, 0), (5, 4)) ∈ A(M).

Lemma 5: The mapping ψ is bijective.

Proof: By Lemma 4, we have that |S(M)| = |A(M)|,
and hence it is sufficient to prove that the mapping ψ is an
injection.

For two distinct multi-permutations σ, π ∈ S(M),
let x = ψ(σ) and y = ψ(π). Let b ∈ [n] be the largest
integer such that σ(b) �= π(b) and let σ(b) = (vi )r
and π(b) = (v j )s , where i, j ∈ [�], i �= j , r ∈ [mi ],
and s ∈ [m j ]. Assume w.l.o.g. that j < i and let c ∈ [n] be
such that π(c) = (vi )r . Since [σ(b+1), σ (b+2), . . . , σ (n)] =
[π(b + 1), π(b + 2), . . . , π(n)] it follows that c < b and
every rank vκ , where κ < i , that appears to the right of (vi )r
in σ , also appears to the right of (vi )r in π . Moreover, the
rank (v j )s appears to the right of (vi )r in π , but not in σ .
Hence, yi,r ≥ xi,r + 1. Thus, x �= y, which implies that ψ is
an injection. �

Remark 1: A mapping similar to ψ was defined in [20] for
balanced multi-permutations. Here, we extend it for arbitrary
multi-permutations and also we restrict its range such that the
mapping is bijective. The importance of knowing the image of
the embedding is twofold. The first aspect is that it facilitates
encoding. Once the image of the embedding is known, one
can encode massages directly to the image, for example by
using the enumerative encoding algorithm of Cover [10]. The
second aspect is code constructions. By Theorem 2, given in
the sequel, it follows that by constructing error-correcting-
codes with the Lee distance that have a large intersection
with the image of the mapping ψ , one can construct large
error-correcting codes in S(M) in the Kendall τ -metric.

The following lemma was proved in [16] for permutations
and in [20] for balanced multi-permutations. The generaliza-
tion of the lemma and its proof for multi-permutations is
straightforward.

Lemma 6: For any two multi-permutations σ, π ∈ S(M)
we have

dL(ψ(σ),ψ(π)) ≤ dK (σ, π).

The proof of Lemma 6 is based on the observation that
the mapping ψ induces an embedding of the graph G(M)
into the graphic representation of Z

n−m1
q , where q > n�−1, in

the Lee metric. That is, if e = {σ, π} is an edge in G(M)
then ψ(e) = {ψ(σ),ψ(π)} is an edge in the related graph of
the space Z

n−m1
q with the Lee distance. The set A(M) is a

subset of Z
n−m1
q , where q > n�−1. Hence, dL(ψ(σ),ψ(π)) ≤

dK (σ, π) for every two multi-permutations σ, π ∈ S(M).
We are now in a position to present the main construction
of error-correcting codes in S(M), which is a generalization
of the constructions in [1], [16], and [20].

Construction 1: For a code CL ⊆ Z
n−m1
q , where q > n�−1,

define the code CK ⊆ S(M) as follows.

CK def={σ ∈ S(M) : ψ(σ) ∈ CL}.
Theorem 2: If CL ⊆ Z

n−m1
q , where q > n�−1, is a code with

minimum Lee distance d then the code CK ⊆ S(M) from
Construction 1 has minimum Kendall τ -distance at least d
and |CK | = |CL ∩ A(M)|.

Proof: By the definition of CK and by Lemma 5 it follows
that for every two distinct codewords σ, π ∈ CK , their images
under the mapping ψ , ψ(σ) and ψ(π), are distinct codewords
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of CL . Since the minimum Lee distance of CL is at least d and
by Lemma 6 it follows that dK (σ, π) ≥ dL(ψ(σ),ψ(π)) ≥ d .
Hence, the minimum Kendall τ -distance of CK is at least d .

By Lemma 5 we have that ψ is a bijection and
therefore |CK | = |CL ∩ A(M)|. �
B. Error-Correcting Codes for Multi-Permutations

By Theorem 2, error-correcting codes in S(M) with the
Kendall τ -distance can be constructed from error-correcting
codes over Z

n−m1
q with the Lee distance. Next, we present

some of the known constructions of error-correcting codes
in the Lee metric and use Theorem 2 to obtain error-
correcting codes in S(M) and to estimate the size of these
codes.

First, we consider single-error-correcting codes in the Lee
metric. Golomb and Welch [14] presented the following
construction of perfect single-error-correcting codes in the
Lee metric.

Construction 2: For every positive integer N and for every
g ∈ Z2N+1 , define the code CL

g ⊆ Z
N
2N+1 as follows.

CL
g

def=
{

x ∈ Z
N
2N+1 :

N∑

i=1

i · xi ≡ g (mod 2N + 1)

}

.

Theorem 3 [14]: For every positive integer N and for every
g ∈ Z2N+1 , the code CL

g from Construction 2 is a single-error-

correcting code in Z
N
2N+1 with the Lee distance.

Construction 2 was used in [16] to obtain single-error-
correcting codes for permutations with the Kendall τ -distance.
Combining Constructions 1 and 2, we conclude with the
following construction.

Construction 3: Assume that 2(n − m1) + 1 > n�−1. For
every g ∈ Z2(n−m1)+1, let CL

g ⊆ Z
n−m1
2(n−m1)+1 be the code from

Construction 2. Define the code CK
g ⊆ S(M) to be the code

that is obtained from Construction 1 by taking CL to be the
code CL

g , that is, CK
g = {σ ∈ S(M) : ψ(σ) ∈ CL

g }.
We finally summarize this discussion with the following

corollary.
Corollary 2: If 2(n − m1) + 1 > n�−1, then for

every g ∈ Z2(n−m1)+1, the code CK
g ⊆ S(M) from Construc-

tion 3 is a single-error-correcting code in the Kendall τ -
metric. Moreover, there exists g ∈ Z2(n−m1)+1, for
which |CK

g | ≥ |S(M)|
2(n−m1)+1 .

Proof: By Theorems 2 and 3 it follows that for
every g ∈ Z2(n−m1)+1, the code CK

g from Construction 3
is a single-error-correcting code in the Kendall τ -metric.
By Lemma 5 it follows that ψ is injective and hence by
the pigeon-hole principle there exists g ∈ Z2(n−m1)+1 for

which |CK
g | ≥ |S(M)|

2(n−m1)+1 . �
Next, we review known constructions of t-error-correcting

code in the Lee metric over Z
N
q . The following construc-

tion is a variation of codes which were first proposed by
Varshamov and Tenengolts [24] (see also [1]) for the correction
of a single asymmetric error.

Construction 4: Let F > N, g ∈ ZF , and
let h1, h2, . . . , hN be integers, 0 < hi < F for all 1 ≤ i ≤ N.
Assume that for every e ∈ Z

N
F with wL(e) ≤ t , the

sums
∑N

i=1 ei · hi are all distinct modulo F. Define the

code CL
g,t ⊆ Z

N
F as follows.

CL
g,t

def=
{

x ∈ Z
N
F :

N∑

i=1

xi · hi ≡ g (mod F)

}

.

Theorem 4 [1]: The code CL
g,t from Construction 4 is

a t-error-correcting code in the Lee metric over Z
N
F .

Construction 5: Let F > max{n − m1, n�−1}, g ∈ ZF ,
and let h1, h2, . . . , hn−m1 be integers, 0 < hi < F for
all 1 ≤ i ≤ n − m1. Assume that for every e ∈ Z

n−m1
F

with wL(e) ≤ t , the sums
∑n−m1

i=1 ei · hi are all distinct mod-
ulo F. Let CL

g,t ⊆ Z
n−m1
F be the code from Construction 4

that corresponds to these choices of F and hi ’s. Define the
code CK

g,t ⊆ S(M) to be the code that is obtained from
Construction 1 by taking CL to be CL

g,t , that is, CK
g,t = {σ ∈

S(M) : ψ(σ) ∈ CL
g,t }.

The following corollary is an immediate consequence of
Theorems 2 and 4.

Corollary 3: The code CK
g,t ⊆ S(M) from Construction 5

is a t-error-correcting code in the Kendall τ -metric.
For every two positive integers M and t let

F(M, t)
def=

{
t (t + 1)M, t is odd

t (t + 2)M, t is even.

In order to use Construction 4 we need the following theorem
by Barg and Mazumdar [1] which is based on a result of
Bose and Chowla [4] for asymmetric error-correcting
codes.

Theorem 5 [1]: If q is a power of a prime and
M = (qt+1 − 1)/(q − 1) then there exist integers
h1, h2, . . . , hq+1, 0 < hi < F(M, t) for all 1 ≤ i ≤ q + 1,
such that for all e ∈ Z

q+1
F(M,t), with wL(e) ≤ t , the

sums
∑q+1

j=1 e j h j are all distinct modulo F(M, t).
Construction 4 for t-error-correcting codes in the

Lee metric, combined with Theorem 5, was used in [1]
to construct t-error-correcting codes for permutations with
the Kendall τ -metric, and also used in [20] to construct
t-error-correcting codes in the Kendall τ -metric for
balanced multi-permutations. By combing Construction 4,
Construction 5, and Theorem 5 we have the following
corollary.

Corollary 4: For M = (qt+1 − 1)/(q − 1),
where q + 1 ≥ n − m1, q is a power of a prime,
and F(M, t) > n�−1, there exists a t-error-correcting
code C ⊆ S(M) in the Kendall τ -metric, whose size

satisfies |C| ≥ |S(M)|
F(M,t) .

Proof: For F = F(M, t), it follows by Theorems 4
and 5 that there exist integers h1, h2, . . . , hn−m1 , 0 < hi < F
for all 1 ≤ i ≤ n − m1, such that for every g ∈ ZF , the
code CL

g,t ⊆ Z
n−m1
F from Construction 4 that corresponds to

these choices of F and hi ’s is a t-error-correcting code in the
Lee metric. Since F > n�−1 and by Corollary 3, it follows
that for every g ∈ ZF , the corresponding code CK

g,t ⊆ S(M)

from Construction 5 is a t-error-correcting code in the Kendall
τ -metric. By Lemma 5, it follows that ψ is injective and
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hence by the pigeon-hole principle there exists g ∈ ZF for

which |CK
g,t | ≥ |S(M)|

F . �

C. Partitions Into Error-Correcting Codes

In this section we discuss partitions of S(M), and in
particular of Sk , into error-correcting codes with the Kendall
τ -distance. These partitions will be derived from partitions
into codes with the Lee distance. The partitions will be used
later as the first ingredient of the construction presented in
Theorem 1 to produce systematic error-correcting codes for
permutations and multi-permutations.

Constructions 2 and 3 can be used to partition S(M), and
in particular Sk , into single-error-correcting codes with the
Kendall τ -metric.

Theorem 6: If 2(n − m1) + 1 > n�−1 then there exists a
partition of S(M) into at most 2(n − m1) + 1 single-error-
correcting codes in the Kendall τ -metric.

Proof: For every g ∈ Z2(n−m1)+1, it follows from Theo-
rem 3 that the code CL

g ⊆ Z
n−m1
2(n−m1)+1 from Construction 2 is a

single-error-correcting code in the Lee metric. By Corollary 2
it follows that for every g ∈ Z2(n−m1)+1, the code CK

g ⊆ S(M)
from Construction 3 is a single-error-correcting code in the
Kendall τ -metric.

The set {CL
g : g ∈ Z2(n−m1)+1} forms a partition

of Z
n−m1
2(n−m1)+1 into single-error-correcting codes in the Lee

metric. By Lemma 5 it follows that ψ is an injection and
therefore the set {CK

g : g ∈ Z2(n−m1)+1} forms a partition
of S(M) into single-error-correcting codes in the Kendall
τ -metric. �

Construction 4, Construction 5, and Theorem 5 provide us
with partitions of S(M), and in particular Sk , into t-error-
correcting codes in the Kendall τ -metric.

Theorem 7: For M = (qt+1 − 1)/(q − 1), where q + 1 ≥
n − m1, q is a power of a prime, and F(M, t) > n�−1,
there exists a partition of S(M) into at most F(M, t) t-error-
correcting codes in the Kendall τ -metric.

Proof: For F = F(M, t), it follows by Theorems 4 and 5
that there exist integers h1, h2, . . . , hn−m1 , 0 < hi < F for
all 1 ≤ i ≤ n − m1, such that for every g ∈ ZF , the code
CL

g,t ⊆ Z
n−m1
F from Construction 4 that corresponds to these

choices of F and hi ’s is a t-error-correcting code in the Lee
metric. Since F > n�−1 and by Corollary 3, it follows that
for every g ∈ ZF , the corresponding code CK

g,t ⊆ S(M)
from Construction 5 is a t-error-correcting code in the Kendall
τ -metric.

The set {CL
g,t : g ∈ ZF } forms a partition of Z

n−m1
F

into t-error-correcting codes in the Lee metric. By Lemma 5
it follows that ψ is an injection and therefore the set {CK

g,t :
g ∈ ZF } forms a partition of S(M) into t-error-correcting
codes in the Kendall τ -metric. �

VI. CONSTRUCTIONS OF SYSTEMATIC

ERROR-CORRECTING CODES

FOR PERMUTATIONS

In this section we construct (n, k) systematic t-error-
correcting codes for permutations. We distinguish between
three cases for the value of t , namely t = 1, fixed t , and

t = �(kε) where ε > 0. In all three cases we apply Theorem 1
with its two ingredients of partitions and multi-permutation
codes. For the first ingredient of the partition of Sk we use the
results from Section V-C. For the cases where t = 1 and t is
fixed, we provide explicit constructions of multi-permutation
codes as the second ingredient. Lastly, for t = �(kε) we use
the multi-permutation codes from Corollary 4.

We first construct systematic single-error-correcting codes.
To this end we need the following simple observations.

Construction 6: For a code C ⊆ S(M) and a multi-
permutation γ ∈ S(M), define the codes Ce

γ , Co
γ ⊆ C as

follows.

Ce
γ

def= {σ ∈ C : dK (σ, γ ) ≡ 0 (mod 2)} and

Co
γ

def= {σ ∈ C : dK (σ, γ ) ≡ 1 (mod 2)}.
Theorem 8: If C ⊆ S(M) is a code with minimum

Kendall τ -distance 2t + 1, for some t ≥ 0, then for every
multi-permutation γ ∈ S(M), the codes Ce

γ and Co
γ from

Construction 6 have minimum Kendall τ -distance at

least 2t + 2 and max{|Ce
γ |, |Co

γ |} ≥ |C|
2 .

Proof: Lemma 2 implies that for every γ ∈ S(M),
the minimum Kendall τ -distance of Ce

γ and Co
γ is even and

since the minimum distance of C is 2t + 1 it follows that the
minimum distance of both Ce

γ and Co
γ is at least 2t +2. Clearly,

the size of Ce
γ or Co

γ is at least |C|
2 and the lemma follows. �

Corollary 5: There exists a code in S(M) with minimum

Kendall τ -distance 2 and of size at least |S(M)|
2 .

Theorem 9: For every integer k ≥ 1, there exists a (k+2, k)
systematic single-error-correcting code.

Proof: Since 2(k −1)+1 > k −1 and by Theorem 6, there
exists a partition of Sk into at most 2(k − 1)+ 1 single-error-
correcting codes in the Kendall τ -metric. By Corollary 5, there
exists a code in S(Mk,2) with minimum distance 2 and of

size at least |S(Mk,2)|
2 . For all k ≥ 1, we have that |S(Mk,2)|

2 =
(k+2)(k+1)

2 ≥ 2(k − 1)+ 1 and hence by Theorem 1 it follows
that there exists a (k + 2, k) systematic single-error-correcting
code. �

Next, we construct (k + t + 1, k) systematic t-error-
correcting codes, where t is a fixed integer and k is sufficiently
large. For this task we need the following construction of
multi-permutation codes in S(Mk,r ) of minimum Kendall
τ -distance 2t .

Construction 7: For all positive integers k, r , and t, define
the code Ck,r,t ⊆ S(Mk,r ) as follows.

Ck,r,t
def=

{
σ ∈ S(Mk,r ) : σ( j) = 0 for all j ∈ [k + r ]

such that j �≡ 1 (mod 2t)

}
.

Theorem 10: The code Ck,r,t from Construction 7 has min-

imum Kendall τ -distance at least 2t and size
(⌈ k+r

2t

⌉

r

)
r !.

Proof: For two distinct codewords σ, π ∈ Ck,r,t , there
exists j ≡ 1 (mod 2t) such that σ( j) �= π( j). Assume
w.l.o.g. that σ( j) �= 0. Since nonzero elements appear
only in positions which are congruent to 1 modulo 2t and
since π( j) �= σ( j) it follows that |π−1(σ ( j))− j | ≥ 2t . Any
sequence of adjacent transpositions that transfer σ to π must
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exchange σ( j) at least |π−1(σ ( j)) − j | times. Therefore, at
least 2t adjacent transpositions are required to transfer σ to π .
Hence, the minimum distance of Ck,r,t is at least 2t .

The size of Ck,r,t is
(⌈ k+r

2t

⌉

r

)
r !, since there are

⌈ k+r
2t

⌉

positions which are congruent to 1 modulo 2t , and there are
(⌈ k+r

2t

⌉

r

)
r ! distinct ways to distribute the r distinct nonzero

elements k + 1, k + 2, . . . , k + r , in these positions. �
Theorem 11: For a fixed positive integer t and for suffi-

ciently large k, there exists a (k + t + 1, k) systematic t-error-
correcting code.

Proof: There exists a power of a prime q (e.g. a power
of 2) such that k − 2 ≤ q ≤ 2k. If M = (qt+1 − 1)/(q − 1)
then F(M, t) ≥ t (t + 1)M ≥ 2(q + 1) ≥ 2(k − 1) > k − 1.
By Theorem 7, it follows that there exists a partition of Sk

into at most F(M, t) t-error-correcting codes in the Kendall
τ -metric. By Theorem 10, it follows that the code Ck,r,t

from Construction 7, where r = t + 1, is a code with

minimum Kendall τ -distance 2t and of size
(
⌈

k+t+1
2t

⌉

t+1

)
(t + 1)!.

Since
(
⌈

k+t+1
2t

⌉

t+1

)
(t + 1)! = ∏t

i=0(
⌈ k+t+1

2t

⌉ − i) it follows that

(⌈ k+t+1
2t

⌉

t + 1

)
(t + 1)! ≥

(
k + t + 1

2t
− t

)t+1

.

Since t is fixed, it follows that for sufficiently large k we have
that

(
k + t + 1

2t
− t

)t+1

≥ t (t + 2)2t+1kt . (3)

For every x ≥ 2 we have that (xt+1 − 1)/(x − 1) ≤ 2xt .
Hence, M ≤ 2qt ≤ 2t+1kt and therefore by (3) it follows that

|Ck,r,t | ≥ t (t + 2)2t+1kt ≥ t (t + 2)M ≥ F(M, t).

By Theorem 1 we conclude that there exists a (k + t + 1, k)
systematic t-error-correcting code. �

In the next theorem we analyze the number of redundancy
symbols in an (n, k) systematic t-error-correcting code, where
t = �(kε) and ε ≥ 0. The proof is given in Appendix A.

Theorem 12: Let k ≥ 1 be an integer, t = �(kε) be a
positive integer, and r = �μt�, such that r − 1 is a power of
a prime and

μ >

{
1 + ε for 0 ≤ ε ≤ 1

1 + 1
ε for 1 < ε.

Then, for sufficiently large k there exists a (k +r, k) systematic
t-error-correcting code.

VII. SYSTEMATIC ECC FOR MULTI-PERMUTATIONS

In this section we generalize the construction in
Theorem 1 to obtain systematic error-correcting codes for
multi-permutations. The first question that we face is
how to define systematic error-correcting codes over multi-
permutations? In the most general definition we have a multi-
set K of size k with information symbols and a multi-set R
of size r with redundancy symbols.1 The intersection between

1The size of a multi-set refers to the total number of symbols, including
repetitions.

K and R must be empty, i.e. K and R do not have com-
mon symbols. The codewords are multi-permutations over the
multi-set2 K ∪ R. The number of codewords must be the
number of distinct multi-permutations over the multi-set K.
In a (K ∪ R,K) systematic code C each multi-permutation
over the multi-set K appears exactly once as a sub-multi-
permutation of a codeword from C, which consists exactly
from all the symbols of K. Note, that K might be a set,
which implies that multi-permutations over K are simply
permutations in Sk . The construction for systematic multi-
permutations will be a direct generalization of the construction
in Theorem 1. Instead of the multi-set Mk,r we use the multi-

set Mk,R defined by M def= {0k} ∪ R, where 0 �∈ R.
For two multi-permutations σ ∈ S(K), ρ ∈ S(Mk,R),

the assignment of σ in ρ results with the multi-permutation
α = σ � ρ ∈ S(K ∪ R) obtained by substituting σ , in its
order, in the k positions in which 0 appears in ρ.

Example 8: If K = {12, 22, 3}, R = {42, 53}, ρ = [0, 4, 5,
0, 0, 5, 0, 4, 0, 5], and σ = [1, 3, 2, 2, 1] then K∪R = {12, 22,
3, 42, 53} and σ � ρ = [1, 4, 5, 3, 2, 5, 2, 4, 1, 5] ∈ S(K∪R).

The generalization of the construction in Theorem 1 is
described in the next theorem, which is proved along the same
lines as Theorem 1.

Theorem 13: Let C1, C2, . . . , CF be a partition
of S(K) into t-error-correcting codes in the Kendall
τ -metric, and let Cmult ⊆ S(Mk,R) be a code with
minimum Kendall τ -distance 2t and of size at least F.
Let ρ1, ρ2, . . . , ρF be distinct elements in Cmult . Then the
code C ⊆ S(K ∪ R) defined by

C = ∪F
j=1{σ � ρ j : σ ∈ C j }

is a (K ∪ R,K) systematic t-error-correcting code in the
Kendall τ -metric.

As for permutations, the challenge for systematic multi-
permutation codes is to minimize the number of redundancy
symbols of the codes. However, for systematic error-correcting
codes for multi-permutations there is a tradeoff between the
number of the redundancy ranks and the magnitudes of their
multiplicities. For example, in a (K∪R,K) systematic code for
multi-permutations, where R has only one redundancy rank v,
the multiplicity of v might be large. However, if R has two
redundancy ranks then the sum of their multiplicities should be
smaller. The construction in Theorem 13 allows any desirable
number of redundancy ranks.

Although Theorem 13 can be applied for every multi-set K
and for various choices of the number of redundancy ranks and
their multiplicities, we will apply it only for K and R such that
K and K∪R are both balanced multi-sets. Hence, w.l.o.g. we
assume in the rest of this section that K = {1m, 2m, . . . , �m}
and R = {(� + 1)m, (� + 2)m, . . . , (� + �)m}, which implies
that k = �m. We also define for every three positive integers
m, �, � the set Mm,�,� = {0k} ∪ {(� + 1)m, (� + 2)m, . . . ,
(� + �)m}. Note, that for balanced multi-permutations
Mk,R = Mm,�,�. Furthermore, Mm,�,� is a generalization

2The union K∪R of the multi-sets K and R is again a multi-set. If v is a
rank in K or R with multiplicity m then, since K and R do have a rank in
common, v is a rank in K ∪ R of multiplicity m.
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of the multi-set Mk,r , which is the same multi-set
as M1,k,r .

Theorems 9, 11, and 12 can be generalized for balanced
multi-permutations assuming that the multiplicity m is fixed
and the number of information ranks � is sufficiently large.
In the next example we will demonstrate the extension of
Theorem 9 for multi-permutations with multiplicity 2.

Example 9: Let K = {12, 22, . . . , �2} be a multi-set which
consists of k = 2� information symbols, R = {�+1, �+1}, and
M = 2(k − 2)+ 1. Then Mk,R = M2,�,1 = {0k, �+ 1, �+ 1}.
Since 2(k − 2) + 1 > k − 2 and by Theorem 6, there exists
a partition of S(K) into at most 2(k − 2) + 1 single-error-
correcting codes in the Kendall τ -metric.

By Corollary 5, there exists a code in S(M2,�,1) with
minimum distance 2 and of size at least |S(M2,�,1)|

2 = (k + 2)

(k+1)/4. For all k ≥ 1, we have that (k+2)(k+1)
4 ≥ 2(k−2)+1

and hence, by Theorem 13, there exists a (K∪R,K) systematic
single-error-correcting code.

Next, we will show the generalization of Theorem 11 for
balanced multi-permutations. For this purpose, we will first
present an extension of Construction 7.

Construction 8: For every positive integers m, �, �, and t
define the code Cm,�,�,t ⊆ S(Mm,�,�) as follows.

Cm,�,�,t
def=

{
σ ∈ S(Mm,�,�) : σ( j) = 0, ∀ j ∈ [m(�+ �)]

such that j �≡ 1 (mod 2t)

}
.

The next theorem is proved similarly to the proof of
Theorem 10.

Theorem 14: The code Cm,�,�,t from Construction 8 has

minimum distance 2t and size
(⌈ m(�+�)

2t

⌉

m�

) (m�)!
(m!)� .

Theorem 15: For three positive integers t, m, and �
and for K = {1m, 2m , . . . , �m} and R = {(� + 1)m,
(�+ 2)m, . . . , (�+ �)m}, if � is large enough and m� ≥ t + 1
then there exists a (K ∪ R,K) systematic t-error-correcting
code.

Proof: Let k and r be the size of the multi-sets K
and R, respectively, i.e. k = m� and r = m�. There
exists a power of a prime q (e.g. a power of 2) such
that k − m − 1 ≤ q ≤ 2k. If M = (qt+1 − 1)/(q − 1)
then F(M, t) ≥ 2(k − m) = 2m(�− 1) and since m and � are
fixed, it follows that F(M, t) > m(�+ �− 1), for sufficiently
large �. Hence, by Theorem 7, there exists a partition of S(K)
into at most F(M, t) t-error-correcting codes in the Kendall
τ -metric. By Theorem 14, it follows that the code Cm,�,�,t from
Construction 8 is a code with minimum Kendall τ -distance 2t

and of size
(⌈

k+r
2t

⌉

r

) r !
(m!)� . Since

(⌈
k+r
2t

⌉

r

)
r ! = ∏r−1

i=0 (
⌈ k+r

2t

⌉− i),
it follows that

(⌈ k+r
2t

⌉

r

)
r ! ≥

(
k + r

2t
− (r − 1)

)r

. (4)

Note that M ≤ 2qt ≤ 2(2k)t and F(M, t) ≤ t (t + 2)
M ≤ 2t (t + 2)(2k)t . Since t , r , m, and � are fixed
and r ≥ t + 1, it follows that for sufficiently large � we have
that

((k + r)/2t − (r − 1))r

(m!)� ≥ 2t (t + 2)(2k)t ≥ F(M, t). (5)

Combining (4) and (5) we conclude that |Cm,�,�,t | ≥ F(M, t)
for sufficiently large �. Since, Cm,�,�,t is a code of size
at least F(M, t) and with minimum Kendall τ -distance 2t ,
it follows by Theorem 13 that there exists a (K ∪ R,K)
systematic t-error-correcting code. �

VIII. A LOWER BOUND ON THE NUMBER

OF REDUNDANCY SYMBOLS

In this section we will present an asymptotic lower bound on
the number of redundancy symbols in a (K∪R,K) systematic
t-error-correcting code, where t is fixed.

For a multi-set M and for a multi-permutation σ ∈ S(M),
the ball of radius t centered at σ is the set

B(σ, t) = {π ∈ S(M) : dK (σ, π) ≤ t}.
Note, that the size of the ball B(σ, t) depends on the choice
of its center σ . A sphere packing upper bound on the size
of a t-error-correcting code in S(M) is presented in the next
lemma.

Lemma 7: If C ⊆ S(M) is a t-error-correcting code in the
Kendall τ -metric then

|C| ≤ |S(M)|
minσ∈S(M){|B(σ, t)|} .

In order to apply the upper bound from Lemma 7 we need
a lower bound on the size of a ball of radius t in S(M).

Lemma 8: For two integers � and t, � > t ≥ 1, for a multi-
set M with � ranks, and for a multi-permutation σ ∈ M we
have

B(σ, t) ≥
(
�

t

)
.

Proof: Assume w.l.o.g. that for every i ∈ [�], there does
not exist j > i such that (vi )1 appears to the right of (v j )1 in
σ (otherwise, the ranks of M can be relabelled such that this
assumption will hold for the multi-permutation corresponding
to the relabeling of σ ). From this assumption it follows that
σ(1) = v1 and for every i ∈ [2, �], if σ(κ) = (vi )1 then
σ(κ − 1) = v j for some 1 ≤ j < i .

Denote by B the set of all binary vectors

(b1, b2, . . . , b�−1) ∈ {0, 1}�−1, such that
∑�−1

i=1 bi ≤ t .

The size of B is given by the expression
∑t
w=0

(�−1
w

)
. In

particular,

|B| ≥
(
�− 1

t

)
+

(
�− 1

t − 1

)
=

(
�

t

)
.

For every b = (b1, b2, . . . , b�−1) ∈ B, let Supp(b) =
{i ∈ [� − 1] : bi = 1}. By the definition of B it
follows that |Supp(b)| ≤ t for every b ∈ B. Define the
mapping φ : B → B(σ, t) as follows. Given a vector b ∈ B,
if 1 ≤ i1 < i2 < · · · < iw ≤ � − 1 are the elements
of Supp(b) then for every s ∈ [w], let κs = σ−1((vis +1)1).
By the assumption on σ we have that κs ≥ 2 and
σ(κs − 1) = v j for some 1 ≤ j < is + 1. Let τs be the
adjacent transposition that exchanges the elements in posi-
tions κs − 1 and κs . Define φ(b) to be the multi-permutation
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obtain from σ by applying the sequence of adjacent transpo-
sitions τ1, τ2, . . . , τw.3 Since dK (σ, φ(b)) ≤ w ≤ t it follows
that φ(b) ∈ B(σ, t), i.e. φ is correctly defined.

By the assumption on σ it follows that if x = ψ(σ),
x = (x2, x3, . . . , x�), where xi = (xi,1, xi,2, . . . , xi,mi ) for
all i ∈ [�], and y = ψ(φ(b)), y = (y2, y3, . . . , y�), where
yi = (yi,1, yi,2, . . . , yi,mi ) for all i ∈ [�], then

yi,r =
{

xi,1 + bi−1, r = 1

xi,r , otherwise,

for all i ∈ [�], r ∈ [mi ]. This is because φ(b) is obtained
from σ by w adjacent transpositions that exchange each of
the w ranks of the form (vi )1, where i ∈ [2, �] and bi−1 = 1,
with a rank v j that appears to the left of (vi )1, where j < i .
Therefore, the number of elements smaller than (vi )r that
appear to the right of (vi )r is increased by one if r = 1
and bi−1 = 1, and remains unchanged otherwise.

Hence, b is uniquely determined from σ and φ(b), using the
mapping ψ , and therefore φ is an injection. Thus, |B(σ, t)| ≥
|B| ≥ (�

t

)
. �

We can now apply Lemmas 7 and 8 to derive a lower bound
on the number of redundancy symbols.

Theorem 16: For two fixed positive integers t and m, if
K = {vm1

1 , v
m2
2 , . . . , v

m�
� } is a multi-set with � ranks, where

� is sufficiently large and mi ≤ m for all i ∈ [�] then every
(K ∪ R,K) systematic t-error-correcting code uses at least t
redundancy symbols.

Proof: Let C be a (K∪R,K) systematic t-error-correcting
code and let k and r be the number of information and
redundancy symbols, respectively. We have

|C| ≤(a) |S(K ∪ R)|
(�

t

) ≤(b) (k + r)!
∏�

i=1 mi ! (�−t)t
t !

≤(c) k!(k + r)r
∏�

i=1 mi ! (�−t)t
t !

= t !(k + r)r

(�− t)t
|S(K)|

≤ t !(m�+ r)r

(�− t)t
|S(K)|

where inequality (a) follows from Lemmas 7 and 8, inequality

(b) follows from
(�

t

) ≥ (�−t)t

t ! and |S(K ∪ R)| ≤ (k+r)!∏�
i=1 mi ! , and

inequality (c) follows from
∏r

i=1(k+i) ≤ (k+r)r . If r ≤ t −1
then since m and t are fixed, it follows that t !(m� + r)r is
a polynomial in � of degree at most t − 1, while (� − t)t

is a polynomial in � of degree t . Hence, t !(m�+r)r

(�−t)t < 1 for

sufficiently large �, and therefore |C| < |S(K)|, a contradiction
to the assumption that C is a (K ∪ R,K) systematic. �

Theorem 16 implies that for every balanced multi-set
K = {1m, 2m, . . . , �m}, where � is large enough, at least t
redundancy symbols are needed in order to construct
a (K∪R,K) systematic t-error-correcting code. On the other
hand, Theorem 15 states that if � is large enough then our
method can be used to construct a (K ∪ R,K) systematic
t-error-correcting code with only t + 1 redundancy symbols
(where K∪R is also a balanced multi-set and m divides t +1).

3For every s ∈ [w − 1], we apply the adjacent transposition τs before the
adjacent transposition τs+1.

The analysis conducted in the proof of Theorem 15 is also
valid when the multiplicities of the ranks in K are bounded
by a fixed integer m, whereas the number of information
ranks is sufficiently large. In this case the minimum number
of redundancy symbols of a (K ∪ R,K) systematic t-error-
correcting code is t or t + 1.

The bound from Theorem 16 holds also for permutations.
That is, the number of redundancy symbols in an (n, k)
systematic t-error-correcting code is at least t . As in the multi-
permutations case, Theorem 11 provides a code with t + 1
redundancy symbols, when the number of information sym-
bols is sufficiently large. For systematic single-error-correcting
codes, the code from Theorem 9 uses two redundancy sym-
bols. If the number of information symbols k equals p − 1,
for some prime p, then the code construction from Theo-
rem 9 is optimal. This observation is concluded from the
result from [6], which implies that the size of a single-error-
correcting code in Sk+1 with the Kendall τ -metric is less
than k!. Hence, there does not exist a (k + 1, k) systematic
single-error-correcting code. This observation verified that
if k + 1 is a prime, Constructions A and B from [27] are
also optimal.

IX. CONCLUSION

We have considered constructions of systematic error-
correcting codes over permutations and multi-permutations
with the Kendall τ -distance. The constructions are based on
error-correcting codes for multi-permutations. The main result
is that for a large enough integer k, a positive integer t =
�(kε), and r = �μt�, such that r − 1 is a power of a prime,
there exists a (k + r, k) systematic t-error-correcting code if

μ >

{
1 + ε for 0 ≤ ε ≤ 1
1 + 1

ε for 1 < ε.

In case that t is fixed, then our construction uses r = t + 1
redundancy symbols for k sufficiently large, while a lower
bound on the number of redundancy symbols is shown to be t .

APPENDIX A

The goal of this appendix is to prove Theorem 12, i.e. to
show that for a large enough integer k, a positive integer
t = �(kε), and r = �μt�, such that r − 1 is a power of
a prime, there exists a (k + r, k)-systematic t-error-correcting
code if

μ >

{
1 + ε for 0 ≤ ε ≤ 1
1 + 1

ε for 1 < ε.

Proof of Theorem 12: The case where t is fixed, i.e. ε = 0,
is an immediate consequence of Theorem 11. Henceforth, we
will assume that ε > 0.

There exists a power of a prime q such that k − 2 ≤ q ≤ 2k.
If M = (qt+1 − 1)/(q − 1) then F(M, t) ≥ 2M ≥ 2(q + 1) ≥
2(k − 1) > k − 1. Hence, by Theorem 7, there exists a
partition of Sk into at most F(M, t) t-error-correcting codes
in the Kendall τ -metric. We will show that for sufficiently
large k there exists a code in S(Mk,r ) with minimum Kendall
τ -distance at least 2t and of size at least F(M, t).
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Hence, by Theorem 1 we will conclude the existence of
a (k + r, k) systematic t-error-correcting code.

If Mmult = ((r − 1)t+1 − 1)/(r − 2) then F(Mmult , t) ≥
r t ≥ μt t t ≥ ct

1kc2kε , for some constants c1, c2 and for
sufficiently large k. Since ε > 0 and μ is fixed, it follows
that F(Mmult , t) > k + r − 1, for a sufficiently large k.
Since r −1 is a power of a prime and by Corollary 4, it follows
that there exists a t-error-correcting code Cmult ⊆ S(Mk,r ) in

the Kendall τ -metric, whose size satisfies |Cmult | ≥ |S(Mk,r )|
F(Mmult ,t)

.
We will show that for large enough k,

|S(Mk,r )|
F(Mmult , t)

≥ F(M, t) (A.1)

and conclude that |Cmult | ≥ F(M, t).
For every x ≥ 2 we have that (xt+1 −1)/(x −1) ≤ 2xt , and

therefore M ≤ 2(2k)t and Mmult ≤ 2r t . For every x ≥ 2 we
have that x(x+2) ≤ 2x2, and since ε > 0, it follows that t ≥ 2,
for sufficiently large k, and t (t +2) ≤ 2t2. Therefore, we have

|S(Mk,r )|
F(Mmult , t)

≥ (k + r)!
k!2t22r t

.

Similarly, we obtain the following upper bound on F(M, t).

F(M, t) ≤ t (t + 2)M ≤ 2t2 M ≤ 2t22(2k)t = 4t2(2k)t .

To verify inequality (A.1), it is enough to prove that for
sufficiently large k,

(k + r)!
k!2t22r t ≥ 4t2(2k)t , (A.2)

or equivalently

(k + r)!
k! ≥ 16t4r t (2k)t . (A.3)

We distinguish now between two cases:

1) For 0 < ε ≤ 1, since r = �(t) and t = �(kε), it follows
that r t ≤ ct

1kεt for some constant c1 and sufficiently
large k and therefore

16t4r t (2k)t ≤ ct k4ε+εt+t = kt logk c+4ε+εt+t , (A.4)

for some constant c and sufficiently large k. If μ > 1+ε
and k is sufficiently large then

μ ≥ logk c + 4ε

t
+ ε + 1,

and therefore

kμt ≥ kt logk c+4ε+εt+t . (A.5)

Since (k+r)!
k! ≥ kr ≥ kμt and by (A.4) and (A.5), it

follows that inequality (A.3) is satisfied.
2) For ε > 1, it follows that k = O(r). For every n > 1

we have the following bounds on n! [25, p. 54]

nn+1/2e−n ≤ n! ≤ nn+1/2e−(n−1).

Therefore,

(k + r)!
k! ≥ (k + r)k+r+1/2e−k−r

kk+1/2e−(k−1)

≥ (c1r)r ≥ (c1r)μt ,

(A.6)

for some constant c1 and sufficiently large k. Since t =
�(r) and k = �(t

1
ε ), it follows that kt ≤ ct

2r
1
ε t for

some constant c2 and sufficiently large k and therefore

c−μt
1 16t4r t (2k)t ≤ ctr4+t+ 1

ε t = r t logr c+4+t+ 1
ε t , (A.7)

for some constant c and sufficiently large k. If μ > 1+ 1
ε

and k is sufficiently large then

μ ≥ logr c + 4

t
+ 1

ε
+ 1,

and therefore

(c1r)μt ≥ cμt
1 r t logr c+4+t+ 1

ε t . (A.8)

Combining (A.6), (A.7), and (A.8), it follows that
inequality (A.3) is satisfied. �
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