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Tilings With -Dimensional Chairs and Their
Applications to Asymmetric Codes
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Abstract—An -dimensional chair consists of an -dimensional
box fromwhich a smaller -dimensional box is removed. A tiling of
an -dimensional chair has two nice applications in somememories
using asymmetric codes. The first one is in the design of codes that
correct asymmetric errors with limited magnitude. The second one
is in the design of cells -ary write-once memory codes. We show
an equivalence between the design of a tiling with an integer lat-
tice and the design of a tiling from a generalization of splitting (or
of Sidon sequences). A tiling of an -dimensional chair can define
a perfect code for correcting asymmetric errors with limited mag-
nitude. We present constructions for such tilings and prove cases
where perfect codes for these type of errors do not exist.

Index Terms—Asymmetric limited-magnitude errors, lattice,
-dimensional chair, perfect codes, splitting, tiling, write-once
memory (WOM) codes.

I. INTRODUCTION

S TORAGE media that are constrained to change of values
in any location of information only in one direction were

constructed throughout the last fifty years. From the older punch
cards to later optical disks and modern storage such as flash
memories, there was a need to design coding that enables the
values of information to be increased but not to be decreased.
These kind of storagemedias are asymmetric memories.Wewill
call the codes used in these medias, asymmetric codes. Some of
these memories behave as write-once memories (or WOMs in
short) and coding for them was first considered in the seminal
work of Rivest and Shamir [19]. This work initiated a sequence
of papers on this topic, e.g., [6], [9], [10], [32], and [37].
The emerging new storage media of flash memory raised

many new interesting problems. Flash memory is a nonvolatile
reliable memory with high storage density. Its relatively
low cost makes it the ideal memory to replace the magnetic
recording technology in storage media. A multilevel flash cell
is electronically programmed into threshold levels that can
be viewed as elements of the set . Raising
the charge level of a cell is an easy operation, but reducing the
charge level of a single cell requires to erase the whole block
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to which the cell belongs. This makes the reducing of a charge
level to be a complicated, slow, and unwanted operation. Hence,
the cells of the flash memory act as an asymmetric memory as
long as blocks are not erased. This has motivated new research
work on WOMs, e.g., [5], [22], [31], [34], and [36].
Moreover, usually in programming of the cells, we let the

charge level in a single cell of a flash memory only to be raised,
and hence, the errors in a single cell will be asymmetric. Asym-
metric error-correcting codes were subject to extensive research
due to their applications in coding for computer memories [18].
The errors in a cell of a flash memory are a new type of asym-
metric errors that have limited magnitude. Errors in this model
are in one direction and are not likely to exceed a certain limit.
This means that a cell in level can be raised by an error to
level , such that and , where
is the error limited magnitude. Asymmetric error-correcting
codes with limited magnitude were proposed in [1] and were
first considered for nonvolatile memories in [3] and [4]. Re-
cently, several other papers have considered the problem, e.g.,
[7], [8], [13], and [35].
In this work, we will consider a solution for both the

construction problem of asymmetric codes with limited
magnitude and the coding problem in WOMs. Our proposed
solution will use an older concept in combinatorics named
tiling. Given an -dimensional shape , a tiling of

with consists of disjoint copies of such that each
point of is covered by exactly one copy of . Tiling is a
well-established concept in combinatorics and especially in
combinatorial geometry. There are many algebraic methods
related to tiling [28] and it is an important topic also in coding
theory. For example, perfect codes are associated with tilings,
where the related sphere is the -dimensional shape . Tiling is
done with a shape and we consider only shapes that form an
error sphere for asymmetric limited-magnitude codes or their
immediate generalization in . The definition of a tiling in
will be given in Section II.
Two of the most considered shapes for tiling are the cross

and the semicross [26], [28]. These were also considered in con-
nections to flash memories [21]. In this paper, we will consider
another shape which will be called in the sequel an -dimen-
sional chair. An -dimensional chair is an -dimensional box
from which a smaller -dimensional box is removed from one
of its corners. This is a generalization of the original concept
which is an -cube from which one vertex was removed [16].
In other places, this shape is called a notched cube [15], [20],
[27]. Lattice tiling with this shape will be discussed, regardless
of the length of each side of the larger box and the length of
each side of the smaller box. We will show an equivalent way
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to present a lattice tiling. This method will be called a general-
ized splitting and it generalizes the concepts of splitting defined
in [23]; and the concept of sequences defined and used for
the construction of codes correcting asymmetric errors with lim-
ited magnitude in [13]. We will show two applications of tilings
with such a shape. One application is for the construction of
codes that correct up to asymmetric limited-magnitude
errors with any given magnitude for each cell; and a second ap-
plication is for constructing WOM codes with multiple writing.
In the first part of this work, we will consider only tilings with
-dimensional chairs. In the second part of this work, we will
consider the applications of tilings with -dimensional chairs.
The rest of this paper is organized as follows. In Section II, we
define the basic concepts for our presentation of tilings with
-dimensional chairs. We define the concepts of an -dimen-
sional chair and a tiling of the space with a given shape. We
present the -dimensional chair as a shape in . When the
-dimensional chair consists of unit cubes connected only by
unit cubes of smaller dimensions, the -dimensional chair can
be represented as a shape in . For such a shape, we will seek
for an integer tiling. We will be interested in this paper only in
lattice tiling and when the shape is in only in integer lat-
tice tiling. Two representations for tiling with a shape will be
given. The first representation is with a generator matrix for the
lattice tiling and the second is by the concept which is called a
generalized splitting. We will show that these two representa-
tions are equivalent. In Section III, we will present a construc-
tion for tilings with -dimensional chairs based on generalized
splitting. The construction will be based on properties of some
Abelian groups. In Section IV, we will present a construction
of tiling with -dimensional chairs based on lattices. This con-
struction works on any -dimensional chair, while the construc-
tion of Section III works only on certain discrete ones. We note
that after the paper was written, it was brought to our attention
that lattice tilings for notched cubes were given in [15], [20],
and [27]. For completeness and since our proof is slightly dif-
ferent, we kept this part in this paper. Tiling with a discrete -di-
mensional chair can be viewed as a perfect code for correction
of asymmetric errors with limited magnitude. In Section V, we
present the definition for such codes, not necessarily perfect. We
also present the necessary definition for such perfect codes. We
explain what kind of perfect codes are derived from our con-
structions and also how non-perfect codes can be derived from
our constructions. In Section VI, we prove that certain perfect
codes for correction of asymmetric errors with limited magni-
tude do not exist. In Section VII, we will discuss the application
of our construction for multiple writing in cells -ary WOM.
We conclude this paper in Section VIII.

II. BASIC CONCEPTS

An -dimensional chair , ,
, for each , ,

is an -dimensional box from which an
-dimensional box was removed from one
of its corners. Formally, it is defined by

Fig. 1. Semicross with and a 3-D chair with and
.

For a given -dimensional shape , let denote the volume
of . The following lemma on the volume of is an imme-
diate consequence of the definition.

Lemma 1: If and
are two vectors in , where for each , ,
then

If ,
then the -dimensional chair is a discrete shape and it
can be viewed as a collection of connected -dimensional unit
cubes in which any two adjacent cubes share a complete
-dimensional unit cube. In this case, the formal definition of

the -dimensional chair, which considers only points of , is

Remark 1: It is important to note that if
and

are two integer vectors, then the two definitions coincide only
if is viewed as a collection of -dimensional unit cubes.
Special consideration, in the definition, should be given to the
boundaries of the cubes, but this is not an issue for this work.
For , if and , then the chair

coincides with the shape known as a corner (or a semicross)
[25]. Examples of a 2-D semicross and a 3-D chair are given in
Fig. 1.
A set is a packing of with a shape if copies of
placed on the points of (in the same relative position of )

are disjoint. A set is a tiling of with a shape if it is
a packing and the disjoint copies of in the packing cover .
A set is a packing of with a shape if copies of
placed on the points of (in the same relative position of )

have nonintersecting interiors. The closure of a shape
is the union of with its exterior surface. A set is a
tiling of with a shape if it is a packing and the closure, of
the distinct copies of in the packing, covers .
In the rest of this section, we will describe two methods to

represent a packing (tiling) with a shape . The first representa-
tion is with a lattice. In case that is a discrete shape, we have
a second representation with a splitting sequence.
A lattice is an additive subgroup of . We will assume

that
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where is a set of linearly independent vectors
in . The set of vectors is called the basis for
, and the matrix

...
...

. . .
...

having these vectors as its rows is said to be the generator matrix
for . If , then the lattice is called an integer lattice.
The volume of a lattice , denoted by , is inversely pro-

portional to the number of lattice points per a unit volume. There
is a simple expression for the volume of , namely,

.
A lattice is a lattice packing (tiling) with a shape if the

set of points of forms a packing (tiling) with . The following
lemma is well known.

Lemma 2: A necessary condition that a lattice defines a
lattice packing (tiling) with a shape is that
( ). A sufficient condition that a lattice packing
defines a lattice tiling with a shape is that .
In the sequel, let denote the unit vector with an one in the
th coordinate, let denote the all-zero vector, and let de-
note the all-one vector. For two vectors ,

, and a scalar , we define the

vector addition ,

and the scalar multiplication . For
a set and a vector , the shift of by is

.
Let be an Abelian group and let

be a sequence with elements of . For every
, we define

where addition and multiplication are performed in .
A set splits an Abelian group with a splitting se-

quence , , for each , ,
if the set contains distinct elements from
. We will call this operation a generalized splitting. The split-

ting defined in [11] and discussed in [12], [23], [24], and [26]
is a special case of the generalized splitting. It was used for the
shapes known as cross and semicross [24], [25], and quasi-cross
[21]. The sequences defined in [13] and discussed in [13]
and [14] for the construction of codes that correct asymmetric
errors with limited magnitude are also a special case of the gen-
eralized splitting. These sequences are modification of the
well-known Sidon sequences and their generalizations [2]. The
generalized splitting also makes generalization for a method
discussed by Varshamov [29], [30]. The generalization can be
easily obtained, but to our knowledge a general and complete
proven theory was not given earlier.

Lemma 3: If is a lattice packing of with a shape ,
then there exists an Abelian group of order , such that
splits .

Proof: Let and let be the group
homomorphism that maps each element to the coset

. Clearly, .
Let be a sequence defined by

for each , . Clearly, for each , we have
.

Now, assume that there exist two distinct elements
, such that

It implies that

Since if and only if , it follows that there
exists , , such that

Therefore, , which contradicts the fact that
is a lattice packing of with the shape .
Thus, splits with the splitting sequence .

Lemma 4: Let be an Abelian group and let be a shape in
. If splits with a splitting sequence , then there exists a

lattice packing of with the shape , for which .
Proof: Consider the group homomorphism

defined by

Clearly, is a lattice and the volume of ,
.

To complete the proof, we have to show that is a packing
of with the shape . Assume to the contrary that there ex-
ists such that . Hence, there exist
two distinct elements such that and
therefore

Therefore, , which contradicts the fact that splits
with the splitting sequence .
Thus, is a lattice packing with the shape .

Corollary 1: A lattice tiling of with the shape
exists if and only if there exists an Abelian group of order
such that splits .
If our shape is not discrete, i.e., cannot be represented

by a set of -dimensional units cubes, two of which are adja-
cent only if they share an -dimensional unit cube, then
clearly tiling can be represented with a lattice, but cannot be
represented with a splitting sequence. But, if our shape is
in , then we can use both methods as they were proved to
be equivalent. In fact, both methods are complementary. If we
consider the matrix , then the vector

is contained in the related lattice
if and only if . Therefore, has some similarity to
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a parity-check matrix in coding theory. The representation of a
lattice with its generator matrix seems to be more practical. But,
sometimes it is not easy to construct one. Moreover, the split-
ting sequence has in many cases a nice structure and from its
structure, the general structure of the lattice can be found. This
is the case in the next two sections. In Section III, we present
two constructions of tilings based on generalized splitting. Even
though the second one generalizes the first one, the mathemat-
ical structure of the first one has its own beauty, and hence, both
constructions are given. The construction of the lattice, in ,
given in Section IV, was derived based on the structure of the
lattices, in , obtained from the construction of the splitting
sequences in Section III.

III. CONSTRUCTIONS BASED ON GENERALIZED SPLITTING

In this section, we will present a construction of a tiling with
-dimensional chairs based on generalized splitting. The -di-
mensional chairs that are considered in this section are discrete,
i.e., . We start with a construction in which all the
’s are equal to , and all the ’s are equal to . We gen-
eralize this construction to a case in which all the ’s, with a
possible exception of one, have multiplicative inverses in the
related Abelian group.
For the ring , the ring of integers modulo , let be

the multiplicative group of formed from all the elements of
that have multiplicative inverses in .

Lemma 5: Let , , be two integers and let be the
ring of integers modulo , i.e., . Then

(P1) and are elements of .
(P2) is an element of order in .
(P3) equals to zero in .
Proof:
(P1) By definition, is zero in .
We also have that

. It follows that
in , and hence,

. Since is zero in , it follows
that , and hence, if and only if

.
(P2) Clearly, and since ,
it follows that . This also im-
plies that has a multiplicative inverse, and hence,

.
Now, note that for each , , we
have . Therefore,

in , and hence, .
Thus, the order of in is .
(P3) Clearly,

. By definition, , and hence,
, , , , and

. Therefore,
, which implies that .

Theorem 6: Let , , be two integers,
, and . Then, ,

, , splits
with the splitting sequence defined by

Proof: We will show by induction that every element in
can be expressed in the form , for some .
The basis of induction is .
For the induction step, we have to show that if

can be presented as for some (i.e.,
, , ,

and for some , ), then also can be presented
in the same way. In other words, , where

.
If and there exists such that , then

where , , , and the induction
step is proved.
If and there is no such that , then by

Lemma 5(P3), we have that and hence

i.e., is the required element of and the
induction step is proved.
Now, assume that . Let , be the smallest

index such that

Note that for each ,

Therefore

If , then and the induction step
is proved. If , i.e., , then

By iteratively continuing in the same manner, we obtain

and since , we have that

and the induction step is proved.
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Since , it follows that the set
has elements.

Corollary 2: For each and , there ex-
ists a lattice tiling of with , ,

.
The next theorem and its proof are generalizations of The-

orem 6 and its proof.

Theorem 7: Let and
be two vectors in such that for

each , . Let , , ,
and assume that for each , , . Then,
splits with the splitting sequence defined
by

Proof: First, we will show that . Since
equals zero in , it follows that in , and hence,

. Therefore

As an immediate consequence from definition, we have that for
each ,

Next, we will show that

(1)

Since , it follows that to prove Theorem 7, it is
sufficient to show that each element in can be expressed as

, for some . The proof will be done by induction.
The basis of induction is .
In the induction step, we will show that if can be pre-

sented as for some , then the same is true for .
In other words, , where

.
Assume

where , for each , and there
exists a such that .
If or if and there exists

such that , then since , it follows that

where . Clearly, ;
if and otherwise . Hence, the
induction step is proved.
If and there is no such that ,

then by (1), we have that and hence

i.e., is the required element of and
the induction step is proved.
Now, assume that . Let be the smallest

index such that

If , then and the induction
step is proved. If , then

By iteratively continuing in the same manner, we obtain

and since , we have that

is the element of , and the induction step is proved.

Corollary 3: Let and
be two vectors in such that

for each , . Let and assume that
for at least of the ’s. Then, there exists

a lattice tiling of with .

IV. TILING BASED ON A LATTICE

Next, we consider lattice tiling of with ,
where and .
We want to remind again that Mihalis Kolountzakis and James
Schmerl pointed on [15], [20], and [27], where such tiling can
be found. For completeness and since our proof is slightly dif-
ferent, we kept this part in this paper. For the proof of the next
theorem, we need the following lemma.

Lemma 8: Let . Then,
if and only if , for ,

and there exist integers and , , such that
and .

Proof: Assume first that , i.e., there
exists . By the definition
of , it follows that

(2)
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and there exists a such that

(3)

Similarly, for , we have

(4)

and there exists an such that

(5)

It follow from (2) and (4) that and
for each , . Hence,

for each , . It follow from (3) and (4) that
. It follows from (5) and (2) that

.
Now, let such that for

each , , and there exist such that and
. Consider the point

, where .
By definition, for each ,

and . Hence, .
Clearly, if , then and if , then .

In both cases, since , it follows that we have

We also have , and therefore,
. Hence, .

Thus, , i.e., .

The next theorem is a generalization of Corollary 3.

Theorem 9: Let and
, , for all .

Let be the lattice generated by the matrix

...
...

. . .
. . .

. . .
...

Then, is a lattice tiling of with .
Proof: It is easy to verify that

. We will use Lemma 2 to show
that is a tiling of with . For this, it is sufficient to
show that is a packing of with .
Let , , and assume to the contrary that

. Since , it follows that there
exist integers , not all zeros, such that

, for every , . By Lemma 8, we
have that for each ,

i.e.,

Since is an integer, it follows that or

. For each , , if , then since
, we have that

Hence

(6)

Similarly, if , we have that

If , then by (6), we have

and hence for each , . Similarly, we have
for each , if . If , then since

is an integer, we have that , for
each , . Hence, there is no such that ,
which contradicts Lemma 8. Similarly, if , then for each
, , , and hence, there
is no such that , which contradicts Lemma
8. Therefore, , i.e., for each , , , a
contradiction. Hence, is a lattice packing of with
Thus, by Lemma 2, is a lattice tiling of with .

Remark 2: Note that the construction (Theorem 9) based on
lattices covers all the parameters of integers that are not covered
in Section III.

V. ASYMMETRIC ERRORS WITH LIMITED MAGNITUDE

The first application for a tiling of with an -dimensional
chair is in the construction of codes of length that correct
asymmetric errors with limited magnitude.
Let be an alphabet with letters. For a

word , the Hamming weight of ,
, is the number of nonzero entries in , i.e.,

.
A code of length over the alphabet is a subset of .

A vector is a -asymmetric-error with lim-
ited magnitude if and for each

. The sphere is the set of all -asymmetric errors
with limited magnitude . A code can correct -asym-
metric-errors with limited magnitude if for any two codewords

, and any two -asymmetric-errors with limited magni-
tude , , such that , , we
have that .
The size of the sphere is easily computed.

Lemma 10: .

Corollary 4: .
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For simplicity, it is more convenient to consider the code as
a subset of , where all the additions are performed modulo .
Such a code can be viewed also as a subset of formed by
the set . This code is an extension,
from to , of the code . Note, in this code, there is a wrap
around (of the alphabet) which does not exist if the alphabet is
, as in the previous code.
A linear code , over , which corrects -asymmetric-errors

with limited magnitude , viewed as a subset of , is equivalent
to an integer lattice packing of with the shape .
Therefore, we will call this lattice a lattice code.
Let denote the set of lattice codes in that cor-

rect -asymmetric-errors with limited magnitude . A code
is called perfect if it forms a lattice tiling with the

shape . By Corollary 1, we have the following.

Corollary 5: A perfect lattice code exists if
and only if there exists an Abelian group of order
such that splits .
A code is formed as an extension of a code

over . Assume we want to form a code , where

, which corrects asymmetric errors
with limited magnitude . Assume that a construction with a
large linear code does not exist. One can take a lattice
code over an alphabet with letters . Then,

a code over the alphabet is formed by . Note that
the code is usually not linear. This is a simple construction
that always works. Of course, we expect that there will be many
alphabets in which better constructions can be found.
There exists a perfect lattice code for various

parameters with [13], [14]. Such codes also exist for
and all and for the parameters of the Golay codes and the
binary repetition codes of odd length [17].
The existence of perfect codes that correct ( )-asym-

metric-errors with limited magnitude was proved in [14]. The
related sphere is an -dimensional chair ,
where and .
Sections III and IV provide constructions for such codes with
simpler description and simpler proofs that these codes are such
perfect codes.
In fact, the constructions in these sections provide tilings of

many other related shapes. More than that, there might be sce-
narios in which different flash cells can have different limited
magnitude, e.g., if for some cells wewant to increase the number
of charge levels. In this case, we might need a code that cor-
rect asymmetric errors with different limited magnitudes for dif-
ferent cells. Assume that for the th cell the limited magnitude
is . Our lattice tiling with ,

, , produces the required perfect
code for this scenario.

VI. NONEXISTENCE OF SOME PERFECT CODES

Next, we ask whether perfect codes, which correct asym-
metric errors with limited magnitude, exist for . Un-
fortunately, such codes cannot exist. The proof for this claim is
the goal of this section. Most of the proof is devoted to the case
in which the limited magnitude is equal to one. We conclude
the section with a proof for .

For a word , we define

We say that a codeword , , covers a word
if there exists an element such that
.

Lemma 11: Let , and assume that there exists
, , such that , for

every , . Then, or .
Proof: Let , , such that
, for every , . Assume to the contrary that

and . Let
where and where

. Clearly, and
.

Therefore, , which contradicts
the fact that . Thus, or

.

Lemma 12: Let be a lattice code. Theword
, the all-one vector, can be covered only by a codeword

of the form , for some , , where is an
integer, .

Proof: Assume that is the codeword that covers .
Then, there exists such
that , i.e., , and therefore,
for each , . Since , it follows that there
are at least two entries that are equal to one in . By Lemma 11,
it follows that . Hence, there are at least
entries of which are equal to one. Therefore,
for some , , where is an integer, .

Lemma 13: Let be a lattice code. For
every , , the word can be covered
only by a codeword of the form , where is an integer,

.
Proof: Assume that is a codeword that covers .

Then, there exists such
that . Clearly, , and for each

, and therefore for each ,
. Since , it follows that there are at

most negative coordinates in . Therefore, by Lemma 11,
it follows that . Hence, there are at least
coordinates of that are equal to one. Thus, ,
where .

Lemma 14: If there exists a perfect lattice code
in , then divides

for some integer ,
.

Proof: Let be a perfect lattice code. By
Lemma 12 and w.l.o.g., we can assume that is covered by the
codeword , where . Combining this with
Lemma 13, we deduce that for all , , the word

is covered by the codeword
( cannot be equal , since it would cover
which is already covered by ). We have distinct codewords
in , and since is a lattice, the lattice generated by the



1580 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

set is a sublattice of , and therefore,
divides . Let be the matrix

whose rows are

. . .
...

...
. . .

. . .
...

...

Subtracting the first row from every other row, we obtain the
determinant

. . .
...

...
. . .

. . .
...

...

Subtracting the first column from all the other columns, except
from the last one, we obtain the determinant

. . .
...

...
. . .

. . .
...

...

Finally, replacing the second row by the sum of all the rows,
except for the first one, we obtain the determinant

. . .
...

...
. . .

. . .
...

...

Now, it is easy to verify that

.

Theorem 15: There are no perfect lattice codes in
for all .

Proof: By Lemma 14, it is sufficient to show
that does not divide

, for .
If , then we have to show that does not

divide . It can be readily verified that
for all , which proves the claim.
If , then we have to show that does not

divide . If , then
. Hence, we have to show that

does not divide . We will show that for all ,
. It is easy to verify that

Therefore, it is sufficient to show that

or equivalently

This is simply proved by induction on for all .
To complete the proof, we should only verify that for ,

5, and 6, we have that does not divide .

Theorem 16: There are no perfect lattice codes in
if and .

Proof: Let and and assume to the contrary that
there exists a perfect lattice code . Without
loss of generality (w.l.o.g.), we can assume by Lemma 12 that
the word is covered by a codeword ,
where is an integer, . From the proof of Lemma 14,
we have that for all , , the word
is covered by the codeword . Therefore,

is a codeword. Clearly, and since
, it follows that for all , , . Moreover,

and , which contradicts
Lemma 11. Thus, if and , then there are no perfect
lattice codes in .

Combining Theorems 15 and 16, we obtain the main result of
this section.

Corollary 6: There are no perfect lattice codes in
if for any limited magnitude .

The existence of perfect lattice codes in and
their nonexistence in might give an evidence that
such perfect codes would not exist in for
and some . It would be interesting to prove such a claim
for and .

VII. APPLICATION TO WOMS

A second possible application for a tiling of with an -di-
mensional chair is in constructions of multiple writing in cells
WOMs. Each cell has charge levels . A letter
from an alphabet of size , , is written into
the cells as many times as possible. In each round, the charge
level in each cell is greater than or equal to the charge level in
the previous round. It is desired that the number of rounds for
which we can guarantee to write a new symbol from will be
maximized.
An optimal solution for the problem can be described as fol-

lows. Let be an -dimensional array. Let
be a coloring of the array with the alphabet

letters. The rounds of writing and raising the charge levels of
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the cells can be described in terms of the coloring of the
array . If in the first round, the symbol is written and the
charge level in cell is raised to , , then the color
in position is . Therefore, we have to find a
coloring function such that the number of rounds in which a
new symbol can be written will be maximal.
Cassuto and Yaakobi [5] have found that using a coloring

based on a lattice tiling with a 2-D chair provides the best
known writing strategy when there are two cells. A coloring
of based on a lattice tiling with a shape has

colors. The lattice have cosets, and hence coset repre-
sentatives, . The points in of the coset

are colored with the th letter of . Now, the coloring of
entry of given by is equal to the color of
the point given by the coloring . The
method given in [5] suggests that a generalization using col-
oring based on tiling of with an -dimensional chair will be
a good strategy for WOM codes with cells [33]. The analysis
with two cells, i.e., 2-D tiling, was discussed with more details
in [5]. The analysis for the -dimensional case will be discussed
in a future research work by the same authors and another group
as well [33].

VIII. CONCLUSION

We have presented a few constructions for tilings with -di-
mensional chairs. The tilings are based either on lattices or on
generalized splitting. Both methods are equivalent if our space
is . The generalized splitting is a simple generalization for
known concepts such as splitting and sequences. We have
shown that our tilings can be applied in the design of codes
that correct asymmetric errors with limited magnitude. We fur-
ther mentioned a possible application in the design of WOM
codes for multiple writing. Finally, we proved that some perfect
codes for correction of asymmetric errors with limited magni-
tude cannot exist.
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