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Abstract. The existence question for tiling of the n-dimensional Euclidian space by crosses is
well known. A few existence and nonexistence results are known in the literature. Of special interest
are tilings of the Euclidian space by crosses with arms of length one, also known as Lee spheres with
radius one. Such a tiling forms a perfect code. In this paper crosses with arms of length half are
considered. These crosses are scaled by two to form a discrete shape. A tiling with this shape is also
known as a perfect dominating set. We prove that an integer tiling for such a shape exists if and
only if n =2t — 1 or n = 3" — 1, where t > 0. A strong connection of these tilings to binary and
ternary perfect codes in the Hamming scheme is shown.
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1. Introduction. Packing and covering are two fundamental concepts in com-
binatorics. Tiling is a concept which combines both packing and covering and hence
it attracts a substantial interest. Tiling of the Euclidian space with specific shapes is
one of the main interests in this respect. Two of the shapes in this context are the
semicross and the cross. A (k,n)-semicross is an n-dimensional shape whose center
is an n-dimensional unit cube from which n arms consisting of k£ n-dimensional unit
cubes are spanned in the n positive directions. A (k,n)-cross is an n-dimensional
shape whose center is an n-dimensional unit cube from which 2n arms consisting of
k n-dimensional unit cubes are spanned in the n directions (one for the positive and
one for the negative). Examples of a (2, 3)-cross and a (2, 3)-semicross are given in
Figure 1.1. Packing and tiling with semicrosses and crosses is a well-studied topic
(see [20, 21] and references therein).

As mentioned in [21] the origins of the study of the cross and semicross are in
several independent sources [8, 11, 17, 25], some of which are pure mathematics and
some connected to coding theory. Semicross and cross are two types of “error spheres”
as explained in [7]. Golomb and Welch [8] proved that the (1,n)-cross tiles the n-
dimensional Euclidian space for all n > 1. Such a tiling is a perfect code in the
Manhattan metric, and if the tiling is periodic, then it is also a perfect code in the
Lee metric. Their work inspired work (see [5] and references therein) on perfect codes
in the Lee (and Manhattan) metric.

As said before, packing and tiling with semicrosses and crosses are well-studied
topics [3, 6, 8, 9, 10, 13, 17, 18, 19, 22, 23, 24]. The results in these research works
include bounds on the size of the arms, constructions for such packings and tilings,
parameters for which such tilings cannot exist, and lattice and nonlattice tilings.
Recently, the topic has gained new interest since the (k,n)-semicross is the error
sphere of the asymmetric error model associated with flash memories [2, 12], the
most advanced type of storage currently used. Schwartz [15] investigated lattice tilings
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Fic. 1.1. A (2,3)-cross and a (2, 3)-semicross.

with generalized crosses and semicrosses in the connection of an unbalanced limited
magnitude error model for multilevel flash memories.

Not much is known about tiling of crosses with arms which are not of integer
length. Moreover, most tilings considered in the literature are integer lattice tilings.
In this paper we study the existence of tiling of the n-dimensional Euclidian space with
a (0.5,n)-cross. The (0.5,n)-cross consists of one complete (nonfractional) unit cube
and 2n halves unit cubes. Usually, it is more convenient to handle tiling with complete
unit cubes. Hence, we scale the (0.5,n)-cross by two to obtain a new shape, which
will be denoted in the sequel by Y,,. The shape Y,, consists of 2" (n+ 1) complete unit
cubes. For the shape T,, we will discuss only integer tiling (also known as Z-tiling),
which is a tiling in which the centers of the unit cubes are placed on points of Z™. We
prove that such a tiling exists if and only if n = 2 —1 or n = 3" — 1, where t > 0. The
related tiling with a (0.5,n)-cross (obtained after scaling by 0.5) will be called a 3Z-
tiling. We present an analysis of the structure obtained from such a tiling. The tiling
which is considered for the (0.5,7n)-cross is usually not an integer tiling. Moreover,
we discuss general tilings, and not just lattice tilings, as done in most literature.

Dejter [4] has brought to our attention that a tiling with Y, is a perfect domi-
nating set in Z". This problem was considered by several authors, e.g., [1, 26] and
references therein. The problem that we consider in this paper is one of the main
open problems on this topic.

The rest of this paper is organized as follows. In section 2 we present the basic
concepts used throughout this paper. We define a tiling, a lattice tiling, an integer
tiling, and a periodic tiling. We discuss how to handle a tiling with a (0.5, n)-cross.
We discuss three distance measures which are used in our discussion: the well-known
Hamming distance, the Manhattan distance which is used for codes in Z™, and a new
distance measure needed for the (0.5, n)-crosses, the cross distance. We also discuss
how a tiling with a (0.5, n)-cross can be analyzed. In section 3 we make an analysis of
a tiling with a (0.5, n)-cross and prove that such a 1Z-tiling can exist only if n = 2! —1
orn = 3t —1, where t > 0. Some necessary conditions for the existence of such a tiling
are given. In section 4 we show how we can construct a tiling with a (0.5, n)-cross
from a binary perfect single-error-correcting code of length n = 2! — 1 and vice versa.
Finally, we show how to construct a tiling with a (0.5, n)-cross from a ternary perfect

single-error-correcting code of length 3 = %

2. Basic concepts. For two vectors X = (z1,22,...,25), Y = (Y1,¥Y2,---,Yn) €
R™ and a scalar « € R, the vector addition X +Y is defined by X + Yd:Cf(xl +y1, 22+
Y2, -+, Tn +Yn) and the scalar multiplication is defined by oszéf(oza:l, QLo ..., QLy).

For two sets S§ € R™ and S; C R™ the set addition S; + So is defined by S +

Sgdzef{X +Y : X eS8, Y €8} Foraset S e R” and a vector U € R” the

translation of S by U is U + Sdéf{U + X : X € 8}. The multiplication of S by a

scalar o € R is defined by anéf{aX : X €S}
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Fic. 2.1. Tiling of R? with a (2, 2)-semicross.

Let S be an n-dimensional shape in the n-dimensional Euclidian space (R™). We
say that two translations of S, §; and Ss, are disjoint if their intersection is contained
in at most an (n — 1)-dimensional space. A tiling T of the n-dimensional Euclidian
space with the shape S is a set of disjoint translations of S such that each point
(z1,22,...,2,) € R™ is contained in at least one translation of S. In what follows a
tiling 7 will be defined by a set of points T in R™ and a shape S. The point X € T
if and only if the translation X + S € 7. Henceforth, T will be called a tiling if the
shape § is known. For example, the set of points T = {(i,i+5j) : 4,j € Z} and the
(2,2)-semicross define a tiling of R%. (Part of the tiling is presented in Figure 2.1.) A
tiling T with a shape S is called an integer tiling (also a Z-tiling) if T C Z™. An n-
dimensional unit cube centered at a point (¢1,ca,...,¢,) € R™ consists of the points
{(z1,22,...,2,) : |x; —¢i] <05, 1 <i < n}. The n-dimensional shape S is a
discrete shape if S is a union of n-dimensional unit cubes, whose centers are in Z".
Hence, a discrete n-dimensional shape S can be defined by a set of points from Z".
Therefore, in an integer tiling with a discrete shape S, each point of Z" is contained
in exactly one translation of S.

LemMMA 2.1. If T is a tiling with a shape S and U € R™, then U + T is also a
tiling with S.

By Lemma 2.1 we can assume that the origin, denoted by 0, is always a point in
the tiling. Therefore, given a tiling T we assume without loss of generality that the
origin is an element in T. For a set S C R™ and a permutation o of {1,2,...,n}, let
o(8)r(X) : X €8}

LEMMA 2.2. IfT is a tiling with an n-dimensional shape S and o is a permutation
of {1,2,...,n}, then o(T) is a tiling with the n-dimensional shape o(S).

The vector (z1, 22, ...,2y) is called the rth unit vector and will be denoted by e,
ifx, =1and for all i # r, x; = 0. A set S is called periodic with period p if X € §
implies that X +a-p-e; e Sforall « € Z and 1 <i < n. A tiling T with the shape
S is a periodic tiling if it is a periodic set. The following simple lemma is left for the
reader.

LEMMA 2.3. A tiling T is a periodic with period p if and only if X € T implies
that X +p-e; €T foralli, 1 <i<n.

A lattice A is a discrete, additive subgroup of the real n-space R,

def
A= {ugv) + ugvy + - -+ UpUp UL, U, ..., Uy € LY,
where {v1,va,...,v,} is a set of linearly independent vectors in R", i.e., the lattice
has rank n. The set of vectors {vy,va,...,v,} is called the basis for A, and the n x n

matrix
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V11 V12 .o UVUin
V21 V22 . Van
def
G =
Unl Un2 ceo Unpn

having these vectors as its rows is said to be the generator matriz for A.

The volume of a lattice A, denoted by V(A), is inversely proportional to the
number of lattice points per a unit volume. More precisely, V(A) may be defined as
the volume of the fundamental parallelogram TI(A), which is given by

H(A)déf {Gvi +&ua+ -+ &y 1 056 <1, 1<i<n}.

There is a simple expression for the volume of A, namely, V(A) = | det G|.

A lattice A is a lattice tiling with S if TA forms a tiling with S. A lattice tiling
A is an integer lattice tiling with S if all entries of G are integers. The following
lemma is well known.

LEMMA 2.4. If A defines a lattice tiling with the shape S, then V(A) = |S|, where
|S| denote the volume of S.

A code C of length n over Z, (respectively, Z) is a subset of Z; (respectively, Z").
Let A, be the lattice generated by the basis {g-e; : 1 <i<n}. A codeC C ZZ can
be viewed also as a subset of Z". The code E(C) = C + A,, is the ezpanded code of C.
If E(C) is a tiling of Z" with the shape S, then we also call C a tiling of Zj; with the
shape S. A tiling T C Z" with a period p can be viewed as an expanded code E(C)
of a code C of length n over Z,, where C =TN{0,1,...,p—1}". In what follows we

denote the set of integers in Z, without the group structure by 2pd§f{0, 1,...,p—1};
we will also refer to T as a code and to its elements as codewords.

To handle a tiling with a (0.5, n)-cross we will need to use three distance measures,
the well-known Hamming distance, the Manhattan distance, and the new defined cross
distance.

For every two given words X,Y € Zy the Hamming distance dp(X,Y) is the
number of positions in which X and Y differ, i.e.,

A (X, V)i + 2 £y, 1<i<n}|
For every two given points X,Y € Z™ the Manhattan distance dp(X,Y) is defined
by

n

def
dar (XY S fei — il
i=1

For every two given points X,Y € Z™ we defined the cross distance do(X,Y) as
follows:

n
de(X,Y)ES " max{0, ly; — | — 1}.
i=1
Remark 1. The cross distance can be generalized for two points X, Y € R". We
will use this generalization only in this section.
Remark 2. The Hamming distance is an association scheme, while the Manhattan
distance is only a metric distance and not an association scheme. (See [14] for the
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Fic. 2.2. A (0.5, 3)-cross and an Y3.

LI |

definition of an association scheme.) The cross distance is not a metric, but it will be
most important in the discussion of tilings with a (0.5, n)-cross.

For each distance measure we defined the weight of a point (word) X to be the
distance between X and the point 0. The cross weight of a point X will be denoted
by wco (X)

A unit cube centered at (c1,ca,...,c,) € R™ is a union of two disjoint half unit
cubes in one of the n directions. For the rth direction one half unit cube is defined by
the set of points {(z1,z2,...,2n) : 0 < z.—c, < 0.5, |2;—¢;| <05, 1 <i<mn,i#£r}
and a second half unit cube is defined by the set of points {(x1,x2,...,2,) : —0.5 <
Tr—cp <0, Jx;—¢| <05, 1<i<mn, iz#r}. A(0.5,n)-crossisa unit cube to which
two half unit cubes are attached in the rth direction for each 1 < r < n, one in its
negative direction and one in its positive direction. It is more convenient to handle
shapes with complete unit cubes (discrete shapes) and therefore we will scale the
(0.5,n)-cross by two to obtain a new shape which will be called T,,. An example of a
(0.5, 3)-cross and an Y3 is given in Figure 2.2. The complete unit cube in the (0.5, n)-
cross is transferred into an n-dimensional cube with sides of length two in Y,,. This
cube in T,, will be called the core of Y,,; the core consists of 2™ unit cubes. In what
follows we will be interested only in integer tilings with Y,,. In such an integer tiling Y,
can be represented by 2" (n+1) points of Z™ which are the centers of its 2" (n+1) unit
cubes. Let T be a tiling with T,,. We assume that if X = (z1, 2, ...,x,) € T, then the

set {(c1,¢2,...,¢n) ¢ €{x;—1,2;}, 1 <i < n}isthe related core of the translation

X + T,. The core of T, is {—1,0}" and T, U : dp(X,U) =1, X € {~1,0}"}.

Even so we represent T, as a set of points in Z™ the integer tiling which we discussed
is also for the shape in the Euclidian space. If T is a tiling with Y, then 0.5T is
a tiling with a (0.5,n)-cross. Clearly, if for each (z1,z2,...,z,) € T, x; is even for
all 1 < ¢ < n, then also 0.5T is an integer tiling. However, if there exists a point
(x1,22,...,2,) € T such that for at least one j we have that z; is odd, then 0.5T is
not an integer tiling. To this end we define a %Z—tiling. A tiling T is a %Z—tiling if
T C 0.5Z™.
LEMMA 2.5. The tiling T is an integer tiling with Y,, if and only if 0.5T is a
1 Z-tiling with a (0.5,n)-cross.
Given a set T C Z", we would like to know whether T is a tiling with T,,. To
show that T is a tiling we have to prove the following:
(P.1) For each point Y € Z" there exists a translation S; of Y, in the tiling such
that S; contains Y.
(P.2) A point Y € Z" is not contained in more than one translation of T,, in the
tiling, i.e., for each two translations §; and S; of T, in the tiling we have
SiNS, =a.
A set T C Z" is a covering with T, if it satisfies property (P.1) and it is a packing
with T, if it satisfies property (P.2). A tiling is clearly both a covering and a packing.
The following two lemmas are immediate results from the definition of T,.
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LEMMA 2.6. If S is a translation of T,, and X € § is not a core point of S, then
there exists a core point Y € S such that dp(X,Y) = 1.

LEMMA 2.7. If S1 and Sy are two translations of Y, for which S NSy # &, then
there exists a point X € 81 NSy which is not in the core of S.

COROLLARY 2.8. IfS1 and Sz are two translations of Yy, for which S§ NSs # &,
then there exist two core points X1 € 81 and Xo € Sy such that dp (X1, Xa) < 2.

LEMMA 2.9. If §1 and Sy are two translations of Y, for which there exist two
core points X1 € §1 and Xo € So such that dpr(X1, X2) <2, then S1 NS # O.

Proof. If dp(X1,X2) < 2, then there exists a point ¥ € Z"™ such that
dM(Xl,Y) <1 and dM(XQ,Y) <1. By definition Y € §; N Ss. 0

COROLLARY 2.10. Let 8§ and Sz be two translations of Y,,. Then St NSe = & if
and only if for every two core points X1 € 1 and Xo € So we have dp (X1, X2) > 3.

THEOREM 2.11. Let S = X + 7T, and S =Y + Y,,, where X,Y € Z™, be two
translations of Y,,. Then &1 NS = & if and only if do(X,Y) > 3.

Proof. Let X = (Z1,%2,...,%n) and Yy = (91,92, - - -, Un) be the centers of mass
of 8y and S, respectively. Clearly, X and Y are in (0.5,0.5,...,0.5) + Z". The
core points of Sy are {(c1,¢a,...,¢): ¢ € {& — 0.5,%; + 0.5}} and the core points
of Sy are {(c1,¢2,...,¢cn): ¢ € {§; —0.5,7; + 0.5}}. Let X' = (a,a5,...,2]) and
Y' = (y},y5,--.,4.,) be the two core points of §; and S,, respectively, defined as

follows. If #; = §i;, then /%%, + 0.5 and v/ <G, +0.5. If #; < i, then /<%, + 0.5

and /%' g; — 0.5. If & > §is, then 2/ #; — 0.5 and y/<'j; + 0.5. Clearly, do(X,Y) =
de(X,Y) = dp(X',Y") and for any two core points X € S; and Y € Sy we have that
dy(X,Y) > dy(X',Y'). Now, by Corollary 2.10 we have that $; NSy = @ if and
only if do(X,Y) > 3. O

COROLLARY 2.12. The set T induces a packing of the n-dimensional Fuclidian
space with Ty, if and only if for every two elements X, Y € T, we have do(X,Y) > 3.

To prove that a set is a tiling with Y,, we will have to show that it satisfies
properties (P.1) and (P.2). For this purpose we will have to show that each point of
Z"™ is contained (covered) in exactly one translation S of T,, in the tiling. A point
A € 7Z" is covered by a codeword X in a tiling T if A is contained in the translation
X + T,,. In this case we say that X covers A.

Given a tiling T with Y, it has to satisfy properties (P.1) and (P.2). By consid-
ering how each point A € Z" is covered by a codeword X € T (property (P.1)) we
will discover the structure of T. To this end we will also use property (P.2), i.e., for
each two codewords X,Y € T we have that dc(X,Y) > 3 (by Corollary 2.12).

3. The nonexistence of other integer tilings. In this section we will prove
that an integer tiling T with T,, exists only if n = 2t — 1 or n = 3* — 1 for some t > 0.
In subsection 3.1 we prove this claim for odd n if T is an integer tiling and for all n
if T is a lattice tiling. In subsection 3.2 we complete the proof for even n. We will
obtain this goal by proving that given a tiling T with T, certain elements of Z™ must
be contained in T. It will be proved by considering how elements with a small cross
weight are covered. For the rest of this section let T be a tiling with Y,,. We recall
that without loss of generality we assumed that 0 € T and hence by Corollary 2.12,
it X,Y € T\ {0}, where X #Y, then we(X) > 3, we(Y) > 3, and da(X,Y) > 3.

3.1. Tiling for odd n and lattice tiling. In this subsection we first prove that
for every r, 1 < r < n, the point 2e, is covered by either 4e, or 3e, + 2e, for some
s # r. Then we prove that if 3e, + 2e, is a codeword, then n is even, which will imply
that if n is odd, then n = 2 — 1 for some ¢ > 0. Finally, we prove that two codewords
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of the form 3e, + 2e, are disjoint, i.e., have a disjoint set of nonzero coordinates. This
will lead to the main result only for a lattice tiling. The first lemma is an immediate
result from the definition of 1,,.

LEMMA 3.1. Let X € T and A = (a1,a2,...,a,) € Z™. The point A is covered
by X if and only if x; € {a; — 1,a;,a; +1,a; + 2}, for 1 <i <n, and for at most one
1 we have x; € {a; — 1,a; + 2}.

Let D; be the set of points from {0,1,2,3}" in which 2 and 3 appear exactly
once.

LeEMMA 3.2. If X € D1 NT, then X = 3e, + 2e, for some r # s.

Proof. Assume without loss of generality that X = (3,2,1,24,...,2,), where
x; € {0,1}, for 4 < i < n. The point A = (1,1,-1,0,...,0) is covered by a codeword
Y € T. By Lemma 3.1 we have that Y ¢ {X, 0} and we can distinguish between three
cases:

Case 1. If y; € {a;,a; + 1} for all 4, 1 < i < n, then we(Y) < 2, a contradiction.

Case 2. There exists a j such that y; = a; — 1 and y; € {a;,a; + 1} for all i # j.
Since wa(Y) > 3 it follows that j = 3 and hence Y = (2,2, -2,y4,...,yn), where
yi € {0,1}, for 4 < i < n. This implies that do(X,Y) = 2, a contradiction.

Case 3. There exists a j such that y; = a; + 2 and y; € {a;, a;, + 1} for all 7 # 5.

Since we(Y) > 3 it follows that j # 3. Without loss of generality it implies that
Y can take one of the following forms:

oY =(3,2,y3,Y4y.--sYn) 0 Y = (2,3,y3,Y4, ..., Yn), where y3 € {—1,0} and
yi € {0,1}, for 4 <i < n.
o Y =(2,2,43,2,95,..-,Yn), where y3 € {—1,0} and y; € {0,1}, for 5 <i < n.
Both forms imply that do(X,Y) < 2, a contradiction.

Therefore, there is no codeword Y € T which covers A, a contradiction. Thus, if
X € D1 NT, then X = 3e, + 2e, for some r # s. a

Let Do be the set of points from {0, 1,4}™ in which 4 appears exactly once.

LeEmMMA 3.3. If X € Do NT, then X = 4e, for some 1 <r <mn.

Proof. Assume without loss of generality that X = (4,1, zs,...,2,), where x; €
{0,1}, for 3 <i < n. The point A = (1,1,0,...,0) is covered by a codeword Y € T.
By Lemma 3.1 we have that ¥ ¢ {X,0} and we can distinguish between two cases:

Case 1. If y; € {a;,a; + 1} for all i, 1 <4 < n, with a possible exception for at
most one j, for which y; = a; — 1, then we(Y') < 2, a contradiction.

Case 2. There exists a j such that y; = a; + 2 and y; € {a;,a; + 1} for all ¢ # j.
Without loss of generality it implies that Y can take one of the following forms:

e Y =(3,2,y3,...,yn)0r Y = (2,3, y3,...,yn), where y; € {0,1} for 3 < i <mn.
e Y =1(2,2,2,y4,...,Yn), where y; € {0,1} for 4 < i < n.
Hence, do(X,Y) < 2, a contradiction.

Therefore, there is no codeword Y € T which covers A, a contradiction. Thus, if
X €D, NT, then X = 4e, for some 1 <r < n. a

COROLLARY 3.4. For each r, 1 <r < n, the point 2e, is covered by a codeword
X €T, where either X = 4e, or X = 3e, + 2e5 for some s # r.

Proof. By Lemma 3.1, X is not the all-zero codeword. Moreover, since we(X) > 3
it can be easily verified that either X € Dy or X € Dy. It follows from Lemmas 3.2
and 3.3 that either X = 4e, or X = 3e, + 2e, for some s # 7. 0

Let D3 be the set of points from {0, 1,2}" in which 2 appears exactly three times.

LEMMA 3.5. If X = 3e, +2e5 € T, then for every k & {r, s} there exists a unique
Jj & {r,s,k} and a codeword Y € D3 NT such that y, = 1,ys =y = y; = 2.
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Proof. Let k ¢ {r,s} and consider the point A = e, + e5 + €. Without loss
of generality we assume that r = 1, s = 2, and k = 3, i.e., X = (3,2,0,...,0) and
A=(1,1,1,0...,0). The point A is covered by a codeword Y € T. By Lemma 3.1
we have that Y ¢ {X,0} and we can distinguish between three cases:

Case 1. If y; € {a;,a; + 1} for 1 < ¢ < n, then since we(Y) > 3 it follows that
Y = (2,2,2,94,...,Yn), where y; € {0,1}, for 4 < i < n. Hence, d¢(X,Y) =1, a
contradiction.

Case 2. There exists a j such that y; = a; —1 and y; € {a;,a; +1} for all i # j. If
J <3, then we(Y) < 2, a contradiction. If j > 3, then since we(Y') > 3 it follows that
Y =1(2,2,2,y4,...,Yn), where y; € {—1,0,1} for 4 < i < n, and hence do(X,Y) =1,
a contradiction.

Case 3. There exists a j such that y; = a;+2 and y; € {a;,a;+1} for all i # j. If
j < 3, then since we(Y) > 3and do(X,Y) > 3 it follows that Y = (1,2,3,y4, ..., Yn),
where y; € {0,1}, for 4 <i < n, a contradiction to Lemma 3.2.

Therefore, there exists a j > 3 such that y; = a; + 2 and y; € {a;,a; + 1}
for all i # j. Without loss of generality we assume that j = 4. Since wa(Y) > 3
and do(X,Y) > 3 it follows that Y = (1,2,2,2,ys,...,yn), where y; € {0,1}, for
5 < i < n. The uniqueness of j follows from the fact that if there exists another j
and a related codeword Y”, then d¢(Y,Y’) < 2. O

COROLLARY 3.6. If 3e, 4+ 2e5 € T, then n is even.

Proof. By Lemma 3.5 all coordinates except for r and s should be paired in disjoint
pairs. (Such a pair {k, j} induces a codeword of the form Y = (y1,ya2,...,yn) € D3NT,
where y, = 1,ys = yr = y; = 2.) Thus, n is even. O

From Corollaries 3.4 and 3.6 we infer the following.

COROLLARY 3.7. If n is odd, then for all X € T and 1 < r < n we have
X +4e, €T, ie, T is a periodic tiling with period 4.

THEOREM 3.8. If T is an integer tiling with ,,, where n is an odd integer, then
n=2"—1 for somet > 0.

Proof. By Corollary 3.7 we have that T is a periodic tiling with period 4. There-
fore, the size of T,, divides 4". The size of T,, is 2"(n + 1) and hence n = 2* — 1 for
some t > 0. d

LEMMA 3.9. If there exist two distinct codewords X = 3e;+2e; and X' = 3e,+2e,
in'T, then {i,j} N{r,s} = 2.

Proof. Without loss of generality we assume that ¢ = 1 and j = 2. Since
de(X, X') > 3 it follows that r # 1 and X’ # 3es +2e1. If = 2 or s = 2, then with-
out loss of generality we assume that X’ = (0,3,2,0,...,0) or X’ =(0,2,3,0,...,0).
By Lemma 3.5 we have a codeword Y = (1,2,2,y4,...,yn) € D3N T. It implies that
do(X',Y) =1, a contradiction. The case where s = 1 and r > 2 is symmetric to the
case where r =2 and s > 2. d

From Corollary 3.4 and Lemma 3.9 we have the next corollary.

COROLLARY 3.10. If 3e, +2e5 € T, then 4e; € T.

THEOREM 3.11. If T is an integer lattice tiling with Y,,, then either n = 2t — 1
orn=3"—1 for somet > 0.

Proof. Assume that there are exactly k codewords of the form 3e; + 2e; in T.
From Corollaries 3.4 and 3.10 and by Lemma 3.9 the lattice T contains a sublattice
defined by these k codewords and n — k codewords of the form 4es;. The generator
matrix of this sublattice is a block-diagonal matrix with & 2 x 2 blocks of the form
[ 8 : ] and n — 2k 1 x 1 blocks of the form [ 4 ]. The volume of this sublattice is

divided by the volume of the lattice T. The volume of the sublattice is 3¥4"~* and
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therefore the volume of the lattice T is of the form 3¢2™ for some ¢ > 0 and m > 0.
On the other hand the volume of the lattice T is the volume of the shape T,,, i.e.,
2"(n+1). By Theorem 3.8 we have that if n is odd, then n = 2 —1 for some ¢ > 0. If
n is even, then n+ 1 is odd and since 3°2™ = 2"(n + 1) we must have that n = 3¢ — 1
for some ¢ > 0. ad

3.2. Tiling for even n. In this subsection we will use the concept of a packing
triple system to prove that if n is even, then T contains exactly 5 codewords of
the form 3e, + 2e5, where the union of their nonzero coordinates is the set of all n
coordinates. The structure of the codewords in T which was proved in subsection 3.1
and will be proved in this subsection, combined with arguments based on reflections
and translations of the tiling, will imply a period 12 for the tiling when n is even. As
a consequence we infer that if n is even, then n = 3" — 1 for some t > 0.

A packing triple system of order n is a pair (@, B), where @ is an n-set and B is
a collection of 3-subsets of @, called blocks, such that each 2-subset of () is contained
in at most one block of B. Spencer [16] proved that if n # 5 (mod 6), then

(3.1) CHEEE

LEMMA 3.12. For each 1 <i < j < n, the point e; + e; is covered by a codeword
X €T, where X = 3e; +2e;, or X = 3e; + 2e;, or X € D3, where x; = x; = 2.

Proof. The proof follows from Lemmas 3.1 and 3.2 and the fact that for each
nonzero codeword X € T we have we(X) > 3. O

Let

F i)+ Be;+2e; €T}

and

]—"Qd:ef {i,4,k} : 2e;+ 2e; + 2ep, + Z amem €T, am € {0,1}

mg{i,j,k}

Since T is a tiling it follows that each point e; 4 e, © # 7, is covered by exactly one
codeword of T. As a consequence of Lemma 3.12, we have that each pair {r,s} is a
subset of exactly one element from F; U Fy. Therefore, F5 is a packing triple system
of order n.

THEOREM 3.13. If T is an integer tiling with Y,,, then n £ 4 (mod 6).

Proof. Assume T is an integer tiling with 1,,, n =4 (mod 6). By (3.1) we have
that

2_2n—2
R g B2

Since each pair {7,j} C {1,2,...,n} is contained in either F; or F3 it follows that

n
|Ful + 3|72 = (2) .

Hence, |F1| > % + 1. Lemma 3.9 implies that |F1| < %, a contradiction. O
By using the same arguments as in the proof of Theorem 3.13 we have that if
n =0 or 2 (mod 6), then [F;| > %. Hence, by Lemma 3.9 we infer the next lemma.
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LEmMMA 3.14. If n is even and T is an integer tiling with Y,, then there are
exactly 5 codewords of the form 3e, + 2es.

Combing Lemmas 3.9 and 3.14 we infer the following.

COROLLARY 3.15. If n is even and T is an integer tiling with Y,,, then there
are exactly & codewords of the form 3e, + 2es and the set {i : 3e; +2e; € T or
3e; + 2e; € T} contains all the integers between 1 and n.

Let T be the tiling of Z" with T,, defined by T'¥{X : — X € T}. Since T' is a
tiling of Z™ with T, it follows that the lemmas and the corollaries of section 3 hold
also for T’. They imply new lemmas and corollaries for T. For example, we have the
next corollary.

COROLLARY 3.16. For eachr, 1 <r <mn, the point —2e, is covered by a codeword
X €T, where either X = —4e, or X = —3e, — 2e; for some s # r.

In a similar way we can define 2" tilings of Z™ with Y,,. For A = (a1, aq,...,a,),
where a; € {-1,1}, let T4 be the tiling of Z" with T, defined by T4
{(z1,22,...,2n) : (@171, 00%2,...,ap2,) € T} As for T = T(_y _q,. 1), each

lemma and each corollary of section 3 holds for T4 and thus implies new claims on
T. Without loss of generality we assume (based on Lemma 2.2 and Corollaries 3.10
and 3.15) that 3eg; 1 + 2e2; € T and dey; € T for all 1 <@ < 3.

LEmMMA 3.17. If X = 3e, + 2e5; € T, then —4es € T.

Proof. Without loss of generality we will prove the claim for » = 1 and s = 2;
let A= (1,-1,1,...,1). Since 3eg;—1 + 2e9; € T for all 2 < i < 4, it follows that
3e2i—1 + 2ez; € Ta, for all 2 < i < F, and by Corollary 3.15 we have that either
3e1 +2e9 € Ty or 2e1 + 3e3 € Ty4. If 27 + 3es € T4, then Corollary 3.10 implies
that Y = 4e; € T4. Therefore, Y = 4e; € T, and since do(X,Y) = 1 we have a
contradiction. Hence, 3e; + 2e2 € T4, and therefore by Corollary 3.10 we have that
deg € Ty, ie., —4es € T. O

COROLLARY 3.18. 4e; € T if and only if —4es € T.

LeMMA 3.19. If X = 3e,. +2e, € T, then —3e, — 2e5 € T.

Proof. Without loss of generality we will prove the claim for r = 1 and s = 2;
let A= (-1,-1,1,...,1). Since 3eg;1 + 2ez; € T for all 2 <14 < 7, it follows that
3e9;_1 +2e9; € T4 for all 2 < 4 < %, and by Corollary 3.15 we have that either
3e; + 269 € Ty or 2e; +3e3 € T 4. If 21 + 3es € T4, then Lemma 3.17 implies that
—4eq € T4. Therefore, Y = 4e; € T, and since da(X,Y) = 1 we have a contradiction.
Hence, 3e1 + 2e5 € T 4, and therefore we have that —3e; — 2e5 € T. 0

COROLLARY 3.20. 3e, + 2¢e, € T if and only if —3e, — 2e5 € T.

LeMMA 3.21. If 3e, + 2e; € T, then 12e,,12¢e, € T.

Proof. By Corollary 3.10 we have that 4e; € T. The translation Ty = —4es + T
is a tiling with Y, for which 0, —4es € T;. It follows by Corollary 3.18 that 4es; € Ty
and hence 8eg € T. Similarly, 12e4 € T.

Similarly, by Corollary 3.20 we have that 0,3e, + 2e, € T implies that 6e, +
4es,9¢e, + beg, 12¢e,. + 8e; € T. The translation T; = —12¢, — 8es + T is a tiling
with T, for which 0, —3e, — 2e; € T;. By Corollary 3.20 and Lemma 3.17 we have
that —4es € Ty, and hence 12e, + 4es; € T. Similarly, by Corollary 3.18 we have
12e, + 4eg, 12¢, + 8¢5 € T, which implies that 12e, € T. 0

COROLLARY 3.22. Ifn is even and T is an integer tiling with Y,,, then T is a
periodic tiling with period 12.

THEOREM 3.23. If T is an integer tiling with Y,,, where n is an even integer,
then n = 3 — 1 for some t > 0.
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Proof. By Corollary 3.22 we have that T is a periodic tiling with period 12.
Therefore, the size of Y, divides 12". The size of T,, is 2"(n 4+ 1) and hence n + 1
divides 2"3™. Since n is even it follows that n + 1 is odd and thus n = 3 — 1 for some
t>0. O

Theorems 3.8 and 3.23 are combined to obtain the next corollary.

COROLLARY 3.24. If T is an integer tiling with Y,,, then either n = 28 — 1 or
n =3t —1 for somet > 0.

COROLLARY 3.25. If T is a $Z-tiling with a (0.5,n)-cross, then either n = 2" —1
orn =3t —1 for somet > 0.

4. Tilings based on perfect codes. In section 3 we proved that a %Z-tiling
with (0.5, n)-cross exists only if n = 2! — 1 or n = 3" — 1 for some ¢t > 0. In this
section we will prove that this necessary condition is also sufficient. Surprisingly,
two constructions which produce the related tilings are based on perfect codes in the
Hamming scheme. If n = 2¢ — 1, then the perfect code is binary of length n and the
construction of the tiling is very simple. If n = 3 — 1, then the perfect code is ternary
of length 3.

We will refer only to perfect codes with minimum Hamming distance 3. A code
C has minimum Hamming distance d if for every two distinct codewords X,Y € C
we have dg(X,Y) > d. The minimum Hamming distance of C will be denoted by
dg(C). Similarly, we define the minimum cross distance of a code. A code C of
length n over Z,, with minimum Hamming distance 3, is called perfect if for each
word A € Zy there exists a codeword X € C such that dy(A, X) < 1. Such a code
is also called a single-error-correcting perfect code since it is capable of correcting a
single transmission error [14]. The sphere of radius p centered at A = (a1, az,...,a,)
is the set {B € Zy : du(A, B) < p}. The code C is a single-error-correcting perfect
code if and only if C is a tiling of Zj; with a sphere of radius one. Binary (¢ = 2)
perfect codes exists if and only if n = 2t — 1, where ¢t > 0. Ternary (¢ = 3) perfect
codes exists if and only if n = %, where ¢t > 0. These are the only perfect codes
which are of interest in this section. Finally, we note that a perfect code is identified
by its size, its minimum distance, and the fact that each element of Zj is covered by
at least one codeword. One can easily verify that given any two of these parameters
one can determine whether the code is perfect or not perfect. This fact will be used
throughout this section.

Remark 3. A perfect code C of length n over Z, is known to exist if ¢ is a power

of a prime and n = %, where ¢ > 0. The related sphere of radius one can be viewed
as a (¢ — 1,n)-semicross or as a (%, )-cross. Thus, these perfect codes form tilings
with the related semicrosses and crosses. Only if ¢ is a prime then some of the known
tilings are lattice tilings (they are related to linear perfect codes). If ¢ is not a prime,
then the tiling of Z™ is done first by using any one-to-one mapping between GF(q)
(on which the codes are defined) and Z,. Tilings of this type have applications in
flash memories [15]. If ¢ = 2, then C is a tiling of Z} with (0.5,n)-cross and E(C)

forms a tiling of Z"™ with (0.5, n)-cross.

4.1. Binary perfect codes. Since the size of a sphere with radius one in Z is
n 4+ 1, it follows that a binary perfect code of length n = 2° — 1 has 2"~? codewords.

THEOREM 4.1. There exists a one-to-one correspondence between the set of binary
perfect codes of length n = 2¢ — 1 and the set of integer tilings with YT,, in which each
codeword has only even entries.
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Proof. Note first that by Corollary 3.7 a tiling T of Z™ with T,, is periodic with
period 4 and hence it can be reduced to a tiling of Z} with T,,.

The size of a (1,n)-semicross is equal to the size of a (0.5,n)-cross. It implies
that the number of codewords in a binary single-error-correcting perfect code C of
length n = 2 — 1 is equal to the number of codewords in a tiling T of Z} with T,,.
If X,V € {0,2}", then 0.5X and 0.5Y are binary words and it is easy to verify that
do(X,Y) =dg(0.5X,0.5Y).

Therefore, if C is a binary perfect code of length n = 2 — 1, then 2E(C) is a tiling
of Z™ with T,, in which each codeword has only even entries. Similarly, if T is a tiling
of Z™ with Y,,, in which each codeword has only even entries, then 0.5T N {0, 1}™ is
a binary perfect code. O

COROLLARY 4.2. There exists a one-to-one correspondence between the set of
binary perfect codes of length n = 2t — 1 and the set of integer tilings with (0.5,n)-
CToSss.

Do there exist any integer tilings with T,,, where n = 2! — 1, except for those
implied by Theorem 4.17 The answer is that there exist many such tilings. Let C
be a binary code of length n. Its punctured code C’ of length n — 1 is defined by
C’d:ef{c : (e,z) €C, z € {0,1}}.

CONSTRUCTION 1. Let C be a binary perfect code of length n and C' its punctured

code. Let C., and C. be the set of codewords from C' with even weight and odd weight,

respectively. We define a code C*dZEfo UC5 over Zy, where

C;(2¢,20) : ceCl, (c,x)€C} and C;E{(2¢,20+1) : ceCl, (c,x) €C}.

THEOREM 4.3. E(C*) defines a tiling of Z' with Y., in which not all entries are
even.

Proof. Since dy(C) = 3 it follows that dy(C') = dy(C.) = du(C)) = 2 and
dc(Cy) = da(C3) = 3. If & € C, and é € C), then dy(é1,¢2) is an odd integer.
Hence, since dg(C’) = 2, it follows that dg(é1,¢2) > 3. Therefore, if & € C; and
& € Ca, then de(é7,¢5) > 3 and thus de(C*) > 3. The minimum distance of the code
C* and its number of codewords implies that C* is a tiling of Z} with Y,,. It is easy
to verify that C has at least one codeword (in fact it can be proved that it contains
exactly half the codewords) and hence the last entry in at least one of the codewords
of C*is 1 or 3. O

Ezample 1. The following code forms a tiling of Z] with T7:

0000000 0000222 2222000 2222222
2200201 2200023 0022201 0022023
2020021 2020203 0202021 0202203
2002002 2002220 0220002 0220220

Remark 4. Let £ be a mapping from Z4 to Zz defined by £(0) = &(1) =0, £(2) =
£(3) = 1. I T forms a tiling of Z} with Y, then the code C = {{(X) : X € T}, where
E(x1, e, ... xn) = (E(1),&(x2), ..., &(xy,)) is a binary perfect code of length n.

Remark 5. By Corollary 3.7 an integer tiling with T,,, where n is odd, has period
4. Hence, the related %Z—tiling T with (0.5, n)-cross has period 2. It implies that this
tiling is also a tiling with the (1,n)-semicross (even if T is not a Z-tiling).

4.2. Ternary perfect codes. Let n = 3" — 1, where t > 0, and v = 5. Since
the size of a sphere with radius one in Z§ is 2v + 1, it follows that a ternary perfect
code of length v has 3¥~% codewords. Let A, be the lattice generated by the basis

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/30/16 to 137.110.33.170. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

TILINGS BY (0.5,n)-CROSSES AND PERFECT CODES 1079

{3621'_1 + 2621' 01 < ) < V} U {4621' 01 < ) < l/}. Let Gn be the quotient group
Z™/A,,. Recall that we denote the set of integers in Z, without the group structure

by Zpdéf{o, 1,...,p — 1}. The following lemma can be readily verified.

LEMMA 4.4. The group Go has size 12, and the 12 representatives of elements
from Gy (the cosets of Ay in Z2) can be taken as Zz x L.

Let (Zg x Z4)™ % (Zg x Zy) x (Zg x Zy) x -+ x (Zg x Zy).

m times

COROLLARY 4.5. The group Gn has size 12" and the 12" representatives of
elements from Gy, (the cosets of Ay, in Z™) can be taken as the elements of (Zs X Z4)" .
Consider the mapping ® : Z§ — G, defined by

@(ZEl,ZEQ, o axl/) = (Qb(xl)v ¢($2), ERE ¢($y>) )
where ¢ : Z3 — G2 is a mapping defined by

(0,0) ifz=0,
p(x) =4 (L,2) ifz=1,
(2,0) ifz=2.

It is easy to verify that both ¢ and ® are injective group homomorphisms.

Let C be a ternary perfect code of length v with 3V~ codewords, and let <I>(C)d§f

{®(¢) : ¢ € C}. Since the elements of ®(C) are representatives of elements of G,, (see

Corollary 4.5) it follows that the elements of ®(C) can be considered as elements in

7", Let T,2d(C) + A,.

THEOREM 4.6. The set Ty, is a tiling of Z™ with T ,,.

Proof. Clearly, A, is a lattice with period 12 and hence T, is a periodic code of
Z" with period 12. Therefore, without loss of generality we can restrict our discussion
to Z¥,, i.e., codewords of T, NZ%,. Since |T,| = 22”3 it follows that the size of the
tiling T, in Z%,, |T, N Z7,|, should be 22V32*~*. To prove that T, is a tiling of Z"
with T,, we will show that the size of T,, N Z%, is 22*3%*~* and we will prove that each
point of Z™ is covered by an element of T,,.

Claim. For any two codewords ¢1, ¢ € C and two lattice points Y1,Ys € A,,, we
have ®(¢1) + Y1 # ®(¢2) + Yo, unless ¢; = é2 and Y7 = Ya.

Proof. Assume that ®(¢1)+Y7 = ®(E2)+Ys, ie., ®(¢1)—P(¢2) = Ya—Y1, &1,¢2 €C,
and Y1,Ys € A,,. Hence, Y5 — Y7 = (a1,...,qa,) is a lattice point and unless Y7 = Y3
we have that for at least one i, |a;| > 2. Denote ®(¢1) — ®(¢2) = (B1,.-.,0n). By
the definition of @, for each i, 1 < i < n, we have |§;| < 2. Therefore, Y7 = Y3 and
®(¢1) = P(¢2) and since P is an injective mapping it implies that & = é and the
claim is proved.

The claim implies that [T, N Z}%,| = |®(C)| - |An N Z%,|. Since ® is an injective
mapping we also have that |®(C)| = [C|. Since A, has period 12 and V(A,) = 12" it
follows that |A,, N ZY,| = 127. Therefore,

T, NZ%| = |®(C)] - |Aw NZY,| = [C| - |An NZY,| = 3~t12Y = 227321

as required.
To show that every point of Z" is covered by an element of T, we first partition
the elements of Zs x Z, into three classes:

[(07 0)] = {(07 0)7 (07 3)7 (27 2)7 (27 1)}7
[(17 2)] = {(17 2)7 (17 1)7 (07 1)7 (07 2)}a
[(2,0)] ={(2,0),(1,3),(2,3),(1,0)}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/30/16 to 137.110.33.170. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1080 SARIT BUZAGLO AND TUVI ETZION

TABLE 4.1.

Class [(0,0)] (0,0) | (0,3) | (2,2) (2,1) +— (z1,22)
(P.1) | [(y1,92)] =[(0,0)] | (0,0) | (0,4) | (3,2) | (3,2) | +— (u1,u2)+ (y1,y2)
(P2) | [(y,y2)=[1,2)] | (1,2) | (1,2) [ (1,2) | (1,2) | +— (u1,u2)+ (y1,¥2)
(P-2) | [(y1,y2) =[(2,0)] | (2,0) | (2,4) | (2,4) | (2,0) | +— (u1,u2)+ (y1,¥2)

Class [(1,2)] 1,2) | (,1) | (0,1) (0,2) +—— (z1,22)
(P'Q) (ylva) = (07 0) (372) (372) (070) (074) h— (u17 u2) + (y17 y2)
(P'l) (ylva) = (17 2) (172) (172) (172) (172) h— (u17 u2) + (y17 y2)
(P'Q) (ylva) = (27 0) (274) (270) ('172) ('172) h— (u17 u2) + (y17 y2)

Class [(2,0)] (2,0) | (1,3) | (2,3) (1,0) +— (z1,72)
P.2) | [(w1,92)]=[00,0)] | (32) | (04) | (3,2) | (0,0) | +— (u1,u2)+ (y1,92)
(P'Q) (ylva) = (17 2) (470) (172) (474) (172) — (u17 u2) + (y17 y2)
(P'l) (ylva) = (27 0) (270) (274) (274) (270) — (u17 u2) + (y17 y2)

The following two properties are readily verified (as can be verified from Table 4.1.):
(P.1) For each element (z1,x2) in a class [(y1, y2)] there exists an element (uy, us) €
As such that w; +y; € {z;,z;, + 1} for ¢ € {1,2}.
(P.2) For each element (z1,zy) € Z3 X Z4 and each class [(y1,y2)] there exists
an element (u1,us) € Ag such that u; +y; € {z; — 1,25, 2; + 1,2; + 2} for
i € {1,2}, and for at most one i we have u; +y; € {x; — 1,2; + 2}.
Consider the mapping W : (Zs x Zy)" — Z¥ defined by

U(x1,T2,...,0n) = (V(x1,22), ¥ (23, 24), . ., V(Tp—1,%0)) ,

where ¢ : Zs x Zy — Z5 is a mapping defined by

0 if (z1,22) €[(0,0)],
2/1($1,$2) = 1 if (ZIJl,[IJQ) S [(1,2)],
2 if (ZIJl,[IJQ) S [(2,0)]

For a given point A = (a1, ag, ..., a,) € Z™ we will exhibit a point X € T,, which cov-
ers A. By Corollary 4.5 we have that there exists an element Y € A,, such that A+Y €
(Zg X Z4)V. Let B=A +Y = (bl,bz, .. .,bn) and let \I/(B) = (O[l,OZQ, . ,Oé,,) S Zg
Since C is a perfect code of length v over Zs it follows that there exists a code-
word (c1,¢2,...,¢,) € C such that dy((a1,qe,...,a,),(c1,¢2,...,¢,)) < 1. Let
(1,725 -y n) = ®(c1,c2,...,¢,). Note that by the definitions of & and ¥ it fol-
lows that (bg;—1,b2;) and ¢(e;) are in the same class for all 1 < i < v. Now, we
distinguish between two cases:

Case 1. If (a1, g, ..., ) = (c1, ¢, ..., ¢), then by property (P.1) there exists an
element (u1,us,...u,) € A, such that u; +; € {b;,b; + 1} for 1 <i < n. Therefore,
by Lemma 3.1 we have that (u1,ug,...,u,)+ (71,72, ..,7n) covers B and hence the
required X is (u1,u2, .. un) + (71,72, s Yn) — Y.

Case 2. If (aq,q9,...,a0) # (c1,¢2,...,¢,), then dy((a1,ae,...,q,),
(c1,¢2,...,¢,)) = 1, and hence there exists exactly one coordinate s such that as # cs.
By properties (P.1) and (P.2) there exists an element (u1,ug, ..., un) € A, such that
u;+v;i € {b;i—1,b;,b;+1,b;+2} for 1 <i < n, and for at most one ¢ we have u; +~; €
{b;—1,b;42}. Therefore, by Lemma 3.1 we have that (uy, ua,...,us)+ (1,72, -+, Vn)
covers B and hence the required X is (u1,uz,...,un) + (71,72, -+ Vn) = Y.

Since we proved that the size of T, N Z7}, is 22/3%*~¢ and each point of Z" is
covered by an element of T,,, the theorem is proved. O

THEOREM 4.7. If C is a linear code, then T,, is a lattice tiling.
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Proof. The proof follows immediately from Theorem 4.6 and the facts that C is a
linear code and @ is a group homomorphism. d
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