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Abstract

In this work we present a collection of results in Combinatorial Geometry, aggregated in
three chapters. The first one deals with the VC-dimension of a family of subsets of points
in the plane, surrounded by simple closed curves. The second deals with sweeping of an
arrangement of curves. In the last chapter presented is a special case of a problem that
was first introduced by S. Fekete and G.J Woeginger and deals with polygonal paths with
no small angles.

Given a set X, a set-system on the ground set X is a collection of subsets of X. The
Vapnik-Chervonenkis dimension, or VC-dimension for short, is a parameter assigned to a
set-system on a ground set X, F = {Ai|i ∈ I, Ai ⊆ X}. An important result related to the
VC-dimension is the Shatter Function Lemma. This Lemma enables one to obtain an up-
per bound on the cardinality of a set-system on a finite ground set via the VC-dimension.
In this thesis we deal with the following collection of geometric objects in the plane: Let P
be a set of n points in the plane and let C be a family of simple closed curves in the plane
each of which avoids the points of P . We show that if every two curves C, C ′ ∈ C intersect
at most s times and the intersection of the regions in the plane that are bounded by C,C ′

is either empty or a connected set, then the set system F on the ground set P , consists
of all the subsets of P that are surrounded in curves in C, has VC-dimension at most s+1.

Chapter 3 deals with the notion of sweeping an arrangement of curves. J. Snoeyink
and J. Hershberger proved that any collection of pseudo circles surrounding a common
point can be swept by a ray. We have generalized this result for a collection of simple
close curves that are surrounding a common points and satisfy the connected intersection
property.

The last chapter of this thesis deals with a special case of a problem of S. Fekete and
G.J Woeginger. Given a finite set X of points in the plane, and α > 0. Is it possible to
find a polygonal path P on X such that all the angles that are formed by consecutive
edges of P are at least α? Fekete and Woeginger conjectured that it is possible for α ≤ π

6
.

Bárány Pór and Valtr proved the existence of such path for α ≤ π
9
. We show that if the

points are in convex position, then for every α ≤ π
5
, there exists a path on X with no

angle smaller than α, and that this upper bound on α is tight.
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List of Symbols

N - The set of natural numbers
Rd - The real Euclidean d-dimensional space
and in particular
R2 - The real Euclidean plane
{A1, A2, ..., An} - The set whose members are A1,A2,...,An

{a|Φ(a)} - The set of members which specify the condition Φ
When the context is clear we sometimes write only the condition - For instance we write
{z ≥ 0} for {(x, y, z) ∈ R3| z ≥ 0}
U ⊆ V - U is a subset of V
V \ U - The set of members which are in V but not in U
φ - The empty set
V ∪ U - The union set of V and U
∪A - The union of all members in A
V ∩ U - The intersection set of V and U
∩A - The intersection of all members in A
a ∈ A - a is a member of A
a /∈ A - a is not a member of A
G = (V,E) - A graph G whose vertex set is V and whose edge set is E
p = (a, b) - A point p whose cartesian coordinates are a and b
[a, b] - The closed real interval {t| a ≤ t ≤ b}
(a, b) - The open real interval {t| a < t < b}
(a, b) can also mean the edge of a directed graph corresponding to the vertices a and b.
The distinction between the above two meanings is specified in each relevant place in the
text.
Let A and B be two different points in Rd for some d ∈ N−→
A - The vector pointing from the origin to A
AB - The straight line segment from A to B

θA - The angle created between the positive ray of the x-axis and the vector
−→
A

]AOB - The angle created between the segments AO and OB

|E| - The size of the set E
btc - The maximum integer which is not bigger than the real number t
∞ - infinite

• Θ(n2) function f - A function f on N that satisfies the following: there exists
N ∈ N and there exist positive constants C1 and C2, such that for every n > N ,
C1 · n2 ≤ f(n) ≤ C2 · n2
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• Ω(n2) function f - A function f on N that satisfies the following: there exists N ∈ N
and there exists a positive constants C1, such that for every n > N , C1 · n2 ≤ f(n)

• f(∗) : A → B - A function f (which receives ∗ as an argument) from the Domain
set A into the Range set B

• f ¹ A - A function f restricted to A - a subset of the Domain of f

S2 - The unit sphere in R3; that is the boundary of the unit ball (having radius 1) in R3

which is centered at the origin
S1 - The unit circle in R2; that is the boundary of the unit disc (having radius 1) in R2

which is centered at the origin
∂A - The boundary of A (for a set A ⊆ Rd)
Area(A) - The two-dimensional area of A (for a set A ⊆ R2)
conv(A) - The smallest convex set that contains A (for a set A ⊆ Rd)(

n
k

)
- The number of ways for choosing k objects out of n objects

(
it is equal to n!

k!(n−k)!

)

max(n,m) - The maximum of the two real numbers n and m
max A - The maximum of all members of A.
Any other symbol used in the text is explicitly defined next to the first appearance of the
symbol.
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Chapter 1

Introduction

In this work we introduce the following results:

i. Theorem 2.1.1- Given a finite set of points in the plane, and a collection of s-
intersecting simple closed curves that satisfy the connected intersection property,
the VC-dimension of the family of all subsets of the points which are surrounded by
the curves is at most s + 1, and this bound is tight.

ii. Theorem 3.1.1- An arrangement of simple closed curves in the plane that has the
connected intersection property, can be swept by a ray.

iii. Theorem 4.0.5- Given a finite set of points in the plane, in a convex position, there
exists a polygonal path that goes through the points such that the angle between
every pair of consecutive edges of the path is at least π

5
, and this bound is tight.

In chapter 2 we use the notion of set system on a ground set X. Given a set X, a set
system on the ground set X is a set F = {Ai|i ∈ I}. The elements of F , Ai, are subsets
of X. In our set system, the ground set is a finite set P of points in the plane and the
set system consists of the subsets of P surrounded by curves from a given collection C of
curves. An important example to this type of set system is the collection of all k-sets of a
given set of points P in the plane. A k-point subset S ⊆ P is a k-set of P if there exists an
open half-plane H such that S = P ∩H. This set-system has been investigated intensively
in the last four decades. The most interesting question in the context of k-sets, which is
still an open question, is finding upper and lower bounds on the number of k-sets of a set
of n points in the plane or in higher dimensional space. The best known upper bound on
the number of k-sets of a set of n points in the plane is due to Dey [6], and stands on

O(nk
1
3 ). A lower bound was obtained by Erdős, Lovátz, Simmons and Straus in [7], which

is around Ω(n log k). This bound was further improved by Tóth [16] to Ω(n exp(
√

log n)).
The set system that we introduce consists of all the subsets S ⊆ P that are surrounded
by closed curves in a given collection of curves. These set systems can be though of as
an extension of the set systems that consists of all the k-sets of P , since their elements
are subsets of P that are separated by a closed curve and k-sets are subsets of P that are
separated by a line.

The curves that we consider in this work are simple closed Jordan curves. By Jordan’s
theorem a simple closed Jordan curve C divides the plane into two regions, only one of
which is bounded. We call the bounded region the disc bounded by C and we denote
this region by disc(C), we denote C ∪ disc(C) by disc(C). Any point p in disc(C) is said

5



to be surrounded by C and C is said to be surrounding p. The curves in this work have
the following two intersection restrictions: The s-intersection property and the connected
intersection property.

Definition 1.0.1. We say that a collection of curves C has the s-intersection property if
s is the minimum integer such that any two closed curves in C intersect properly in at
most s points. We say that C has the connected intersection property if for each pair of
curves C,C ′ ∈ C the set disc(C) ∩ disc(C ′) is either empty or connected.

A collection of lines or pseudo-lines in the plane has the 1-intersection property, circles
and pseudo-circles have both the 2-intersection property and the connected intersection
property. The latter are special cases of the curves we deal with.

In Chapter 2, we investigate the VC-dimension of the above mentioned set system.
The VC-dimension of a set system is defined as follows:

Definition 1.0.2. Let F be a set system on X and let Y ⊆ X. We say that Y is shattered
by F if for every A ⊆ Y there exists S ∈ F such that A = Y ∩ S. The VC-dimension of
F , denoted by V Cdim(F) is the supremum of the sizes of all the subsets of X with finite
size that are shattered by F .

An important result related to the VC-dimension is the Shatter Function Lemma
which was proved independently by Sauer [12], Perles and Shelah [14] and by Vapnik and
Chervonenkis [17]. We need to define the shatter function notion in order to state this
lemma.

Definition 1.0.3. The shatter function of a set system F on a ground set X is:

πF(m) = max
Y⊆X,|Y |=m

|S ∩ Y : S ∈ F|

Lemma 1.0.4. Shatter Function Lemma: For any set system F on a ground set X that
has VC-dimension at most d, πF(m) ≤ (

m
0

)
+

(
m
1

)
+ ... +

(
m
d

)
. In particular, if |X| = n,

then |F| = πF(n) ≤ (
n
0

)
+

(
n
1

)
+ ... +

(
n
d

)
.

VC-dimension and the Shatter Function Lemma play an important role in several
mathematical fields such as statistic, computational learning theory, combinatorics of
hypergraphs, and discrepancy theory. The importance of the VC-dimension is that it
enables one to obtain an upper bound on the size of a set-system via the Shatter Function
Lemma. Although the obtained bound is not necessarily the best upper bound, in our
case, the upper bound on the set-system which will be achieved via the VC-dimension is
also a tight upper bound.

In Theorem 2.1.1 we provide an upper bound on the VC-dimension of the set-system
F = {P ∩ disc(C)|C ∈ C} of a set P of points in the plane, where C is a collection
of simple closed curves in the plane that has both the s-intersection property and the
connected intersection property. We show that the VC-dimension of F is at most s + 1.
In particular, we use the Shatter Function Lemma in Corollary 2.1.2 to conclude that if
|P | = n and every curve in C surrounds a unique subset of P , then |C| = O(ns+1). In
Theorem 2.1.3 we introduce a specific set of points in the plane and a collection of O(ns+1)
bi-infinite and x-monotone curves (the graphs of continues real functions) such that every

6



curve lies above a unique subset of the points, and every pair of curves in that collec-
tion properly cross at most s times. This collection can be easily realized as a collection
of simple closed curves that satisfy the conditions of Theorem 2.1.1, thus Theorem 2.1.3
implies that the upper bounds on the VC-dimension in Theorem 2.1.1 is the best possible.

Chapter 3 deals with sweeping an arrangement of curves by a ray. The curves we
consider are simple closed curves in the plane that have both the s-intersection property
and the connected intersection property.

Definition 1.0.5. An arrangement of curves is a quadruple (C, V (C), E(C), F (C)). C is
a finite set of simple closed curves in the plane. We denote the arrangement by C as
well. We assume throughout this work that ∪C∈CC is connected and that every pair of
curves in C is either disjoint or properly cross finite number of times. A vertex of C is an
intersection point of at least two curves in C. An arrangement is simple if no three curves
share a common point. We assume in this work that the arrangements are simple. V (C)
is the set of vertices of C. An edge of C is a connected component of (∪C∈CC) \ V (C).
E(C) is the set of edges of C. A face of C is a connected component of R2 \ ∪C∈CC. F (C)
is the set of faces of C.

Sweeping is an important tool used in mathematical proofs. The underlying idea is to
determine properties of a collection of objects in a space of dimension d by looking at a
series of consecutive (d − 1)-dimensional slices. Sweeping converts a static problem into
a dynamic problem of lower dimension. Sweep algorithms can refer to an arrangement of
closed curves, bi-infinite x-monotone curves, lines segment and various other geometric
objects in the plane or in higher dimensional spaces. There are different types of sweeps,
depending on the curve used to sweep the arrangements. For example, this curve may
be a line, a pseudo-line, a closed curve or a ray. J. Snoeyink and J. Hershberger [15]
introduced sweeping process by a ray, a pseudo-line and a pseudo circle.

As an example of sweep algorithms in the literature, consider the problem of finding
the intersections of n lines or segments in the plane. Shamos and Hoey [13] showed how
to detect an intersection in O(n log(n)) time by sweeping the plane with a line. Chazelle
and Edelsbrunner [5] developed an algorithm to report all K segments intersection in
O(n log(n) + K) time by sweeping the plane with a pseudo-line.

In Chapter 3 we consider an arrangement of curves C that are surrounding a common
point in the plane. We are interested in sweeping the arrangement by a ray, that is a Jor-
dan arc connecting a point in the plane to infinity. We now define the notion of sweeping
an arrangement of curves by a ray.

Let C be an arrangement of simple closed curves in the plane. Assume that all the
curves in C surround a common point O and there exists a ray γ, starting from O and
intersecting every curve in C exactly once. A sweep of C by the ray γ is a continuous
rotation of γ around O, say, counter-clockwise, until it returns to its starting position,
such that γ always intersects each of the curves in C exactly once. Although sweeping is
a continuous process, we will see in Chapter 3 that we can carry it out in discrete steps.

J. Snoeyink and J. Hershberger [15] proved the following:

7



Theorem 1.0.6. Any family of pseudo circles surrounding a common point can be swept
by a ray.

In Theorem 3.1.1 we generalize this result. We show the existence of a sweep by a ray
of an arrangement C of s-intersecting simple closed curves that are surrounding a common
point and has the connected intersection property. Theorem 3.1.1 implies that C can be
realized, after one-to-one and continuous transformation of the plane, as a collection of
s-intersecting bi-infinite x-monotone curves, and thus we can implement results related
to bi-infinite x-monotone curves on C. One example is the following result from [?]:

Theorem 1.0.7. Let P be a set of n points in the plane and let C be a family of s-
intersecting bi-infinite x-monotone curves, where s ≥ 0 is an even integer. Let F be the
set-system on the ground set P , consists of all the subsets S ⊆ P of which there exists a
curve C ∈ C, such that all the points in S lie below C and all the points in P \S lie above
C. For every integer 0 ≤ k ≤ bn

2
c consider the subset of F , FC,P,k = {S ∈ F||S| = k}.

Then, |FC,P,k| = O((kn)
s
2 ) and this upper bound on |FC,P,k| is best possible.

By Theorem 3.1.1, this result is also valid if C is a collection of s-intersecting simple
closed curves that are surrounding a common point and have the connected intersection
property. In that case we define FC,P,k as the set-system on P , consists of all the k-points
subsets S ⊆ P such that there exists a curve C ∈ C for which S = P ∩ disc(C).

Chapter 4 deals with a special case of a problem of S. Fekete and G.J Woeginger [8]
and [9]. Given a set X of n points in the plane, an ordering of the point of X, x1x2...xn is
identified with a polygonal path P on X: its edges are the straight segments connecting
xi to xi+1. The angle of P at xi is ]xi−1xixi+1.

Definition 1.0.8. Let α > 0. We call the path x1x2...xn α-good if its angle in xi is at
least α for every 2 ≤ i ≤ n− 1.

Fekete and Woeginger conjectured the following:

Conjecture 1.0.9. For every finite set X of points in the plane, there exists a π
6
-good

path on X.

In [3] Bárány, Pór and Valtr proved the following Theorems:

Theorem 1.0.10. There exists a π
9
-good path on every finite set of points in the plane.

They also generalized this result for higher-dimensional spaces:

Theorem 1.0.11. For every d ≥ 2 there is a positive αd such that for every finite set of
points X ∈ Rd there exists a αd-good path on X.

In [2] Bárány and Pór generalized this problem to an infinite set of points in the plane,
and proved the existence of π

20
-good path.

In Chapter 4 we focus on a special case of this problem, where X is a set of points in
the plane in convex position. A set of points X in the plane is in convex position if the
points in X are the vertices of some convex polygon. In Theorem 4.0.5 we prove that for
a set X of points in the plane in convex position, there exists a π

5
-good path on X. We

prove further that there are arbitrarily large sets of points in the plane in convex position
with no α-good paths, where α > π

5
.
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Chapter 2

The VC-Dimension of S-Intersecting
Curves

2.1 Introduction and Basic Definitions

In this chapter we study the VC-dimension of a set-system F on a set of points in the
plane. Given a finite set P of points in the plane, a set-system of P is a family of subsets
of P . For a subset S ⊆ P , we say that F shatters S, if for every B ⊆ S, there exists
A ∈ F such that, B = S∩A. The VC-dimension of F is the largest cardinality of a subset
of P that F shatters. In this chapter we will prove Theorem 2.1.1. We are interested
in a particular set-system on the ground set P . Its elements are all the subsets of P
that are surrounded by curves in a given collection of curves C. By Jordan’s Theorem
a simple closed Jordan curve C divides the plane into two regions, only one of which is
bounded. We call the bounded region the disc bounded by C and we denote this region
by disc(C), we denote C ∪ disc(C) by disc(C). Any point p in disc(C) is said to be
surrounded by C and C is said to be surrounding p. The collection C of the curves we
will consider will have the s-intersection property, i.e. s is the minimum integer such that
any two curves in C intersect properly in at most s points. We assume that C has also
the connected intersection property which implies that for each pair of curves C, C ′ ∈ C
the set disc(C) ∩ disc(C ′) is either empty or connected region (see Definition 1.0.1).

For every C ∈ C we denote PC = P ∩ disc(C) and define a set system of P by
FC|P = {PC |C ∈ C}. We call FC|P the restriction of C to P .

With this notations and definitions we state the main Theorem of this Chapter:

Theorem 2.1.1. Let P be a set of n points in the plane and let C be a family of simple
closed Jordan curves that has the s-intersecting property, for some integer s ≥ 2, and the
connected intersection property as well. Then the VC-dimension of the set system FC|P is
at most s + 1.

The next Corollary follows immediately from Theorem 2.1.1 and the Shatter Function
Lemma:

Corollary 2.1.2. Let P be a set of n points in the plane and let C be a collection of simple
closed curves, each of which surrounding a unique subset of P . If C has the s-intersecting
property and the connected intersection property then |F|= |C|= O(ns+1).

We will show further that this upper bound on |C| is tight up to a multiplicative
constant.
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Theorem 2.1.3. For all n ∈ N, there exists a set of n points P and a collection of
simple closed curves C, that has the s-intersecting property and the connected intersection
property, such that any curve in C surrounds a unique subset of P and |C|= Ω(ns+1).

Theorem 2.1.3 and the Shatter Function Lemma imply that the upper bound on the
VC-dimension of F in Theorem 2.1.1 is best possible.

2.2 Preliminaries

One of the most famous results in combinatorial geometry is Helly’s theorem ([10]):

Theorem 2.2.1. Let R1, R2, ..., Rn be convex sets in the plane. Suppose that the inter-
section of every three of these sets is nonempty. Then the intersection of all the sets is
nonempty.

The next lemma is a generalization of Helly’s theorem proved by Molnár ([11]):

Lemma 2.2.2. Any finite family of at least three regions in the plane has a nonempty
simply connected intersection, provided that any two of its members have a connected
intersection and any three have a nonempty intersection.

We will need also the following lemma that can be found in [1]:

Lemma 2.2.3. Let C be a family of closed curves that has the connected intersection
property. Assume that all the curves in C surround a common point O. Then for every
subset D ⊆ C, ∪C∈Ddisc(C) is simply connected.

Before getting to the proof of Theorem 2.1.1, we need one more crucial lemma:

Lemma 2.2.4. Let C be a finite family of closed curves. Assume that the union of the
closure of any number of discs bounded by curves in C is simply connected. Let y be an
arbitrary point in R2 \ ∪C∈CC. Consider the family Cy ⊆ C of all the curves in C that
surround y. Then there exists a Jordan arc, connecting y to a point at infinity, that
intersects every curve in Cy exactly once and avoids all the curves in C \ Cy.

Proof. We shall prove the lemma by induction on |Cy|. The case |Cy| = 0 is easy because
in this case y ∈ R2 \∪C∈Cdisc(C). Because we assume that the union of all discs is simply
connected and hence R2 \ ∪C∈Cdisc(C) is a unbounded connected set. In particular there
exists a Jordan arc, contained in R2 \ ∪C∈Cdisc(C), that connects y to a point at infinity.

Suppose |Cy| > 0. The induction hypothesis states that for any point p ∈ R2 \ ∪C∈CC
with |Cp| < |Cy|, there exists an arc, connecting p to a point at infinity, which intersects
every curve in Cp exactly once and avoids all the curves in C \ Cp. The arrangement of
curves in C can be viewed as a drawing of a planar graph with a vertex set V , consisting
of all the intersection points of curves in C, together with a set of edges E, consisting of all
the connected components in ∪C∈CC \V . There exists a face Fy in this arrangement that
contains y. The face Fy must be bounded since |Cy| > 0. An edge of Fy will be called an
inner edge if it is a portion of a curve in Cy. We claim that Fy must have an inner edge.
To see this, assume to the contrary that Fy does not have an inner edge. Consider the
set of all curves in C which contain an edge of Fy and let U be the union of all the discs
bounded by these curves. By our assumption, U is a simply connected region. Observe
that y /∈ U , and any arc from y to infinity must cross U . Thus R2 \ U is not connected,
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hence U is not simply connected, which yields a contradiction. We conclude that Fy must
have an inner edge. Let us choose an inner edge of Fy and draw an arc γ, starting at
y, which crosses the inner edge once and does not cross any other curve. Denote by x
the endpoint of γ. Observe that every curve in C that surrounds x must surround y as
well, i.e. Cx ⊆ Cy. Moreover, |Cx| = |Cy| − 1. By applying the induction hypothesis on
x we get an arc γx, connecting x to a point at infinity, that intersects every curve in Cx

exactly once and avoids any other curve. By adjoining γ to γx, we obtain the desired arc
connecting y to a point at infinity.

Lemma 2.2.3 and Lemma 2.2.4 can be combined to the following Lemma:

Lemma 2.2.5. Let C be a family of closed curves that has the connected intersection
property. Assume that all the curves in C surround a common point O. Let y be an
arbitrary point in R2 \ ∪C∈CC. Consider the family Cy ⊆ C of all the curves in C that
surround y. Then there exists a Jordan arc, connecting y to a point at infinity, that
intersects every curve in Cy exactly once and avoids all the curves in C \ Cy.

2.3 Sketch of the Proof of Theorem 2.1.1

Our goal is to show that F can not shatter any s + 2 points subset of P . Assume to
the contrary that F shatters a set S = {v1, ..., vs+2} ⊆ P of s + 2 points, i.e. for any
subset V ⊆ S, there exists a curve C ∈ C with PC ∩ S = V . For every pair vi, vj ∈ S,
consider the set of curves Cij ⊆ C consisting of all the curves in C that surround both vi

and vj. Consider also the set Rij of all the points in the plane which are surrounded by
every curve in Cij. Since C has the connected intersection property, Lemma 2.2.2 implies
that Rij is a connected region. Upon drawing an edge (vi, vj) between vi and vj inside
the region Rij, we obtain a drawing of the complete graph on s + 2 vertices, Ks+2 as a
topological graph in the plane that we denote by G = (S,E). We shall investigate the
special properties of G, that will eventually lead us to a contradiction.

2.3.1 The Convex Case

To understand the properties of G let us consider a special case of the problem in which
the points are in convex position and the discs bounded by curves in C are convex sets.
Since the points in P are in convex position, there is a cyclic order on the points S =
{v1, v2, ..., vs+2} starting at a point v1 and moving on the convex polygon formed by the
s+2 points, counter-clockwise. Note that the intersection of the disc bounded by any pair
of curves in C is either empty or convex. Therefore, the connected intersection requirement
is automatically valid and we only need to require that C has the s-intersecting property.
By Helly’s Theorem it follows that for every pair of points vi, vj ∈ S, Rij is a convex
region. We draw a straight segment between vi and vj inside the region Rij for all i and
j and obtain a drawing of Ks+2 as a geometric graph to which we also refer as Ks+2 (see
Figure 2. 1).

We will show the existence of two curves in C that intersect s+2 times and thus obtain
a contradiction.

Consider the following two subsets of S:

S1 = {vi|i is odd} S2 = {vi|i is even}

11



Since F shatters S, there are curves C1, C2 ∈ C such that PC1∩S = S1 and PC1∩S = S2.
As figure 2. 1 illustrates, C1 and C2 intersects s+2 times. We will prove it more formally
in the general case.

This observation in the convex case motivated us to search for a similar behavior in
the more general case. We will show that there exists a cyclic order on S such that every
pair of edges e1, e2 ∈ E cross each other an odd number of times if and only if their
corresponding edges in Ks+2 cross.

v1 v2

v3

v4

v5v6

v7

v8

K8
 

 .Case s=6: we obtain a drawing of One curve surrounds all the vertices with odd indices

indices. The curves must intersect 8 times. 
and the other curve surrounds all the veritces with even 

Figure 2. 1: The convex case for s = 6

2.4 Proof of Theorem 2.1.1

Using the same notation introduced above, we shall now prove few results that will help
us understand the topological graph G = (S, E).

Claim 2.4.1. Let x be a point in the plane that lies in R2 \ ∪C∈Cdisc(C). Then for every
vertex vi ∈ S one can draw an arc γi, connecting vi and x, that does not intersect any
curve C ∈ C with PC ∩S = S \ {vi}. Moreover, this drawing can be such that no two arcs
γi and γj cross.

Proof. Let D be the subset of C consisting of all the curves C ∈ C with |PC ∩S| = s + 1.
Since s ≥ 2 it follows that |D| ≥ 3 and that any three discs bounded by curves in D
have a non-empty intersection. Furthermore, because D ⊆ C, any two discs bounded by
curves in D have a connected intersection. By Lemma 2.2.2, there exists a point in the
plane that is surrounded by all the curves in D. By Lemma 2.2.3, the union of any set
of discs bounded by curves in D is simply connected. Thus, for every vertex vi ∈ S one
can apply Lemma 2.2.4 and draw an arc γi, connecting vi with x, such that γi avoids any
curve C ∈ D with PC ∩S = S \ {vi} and crosses any other curve in D exactly once. From
all the possible drawings of such arcs, we pick one with minimum number of intersection
points among the γi’s. We shall prove that this minimum is 0. Assume otherwise, then
there exists a pair of arcs γi and γj that cross at a point q. We denote by γi,q and γj,q the
portions of γi and γj, respectively, which connect q with x. Both γi,q and γj,q avoid the
curves in D which do not surround q and intersect once the curves in D which surround

12



q. By swapping the portions γi,q with γj,q and by a small modification of the drawing,
we can eliminate the crossing point q and obtain a new drawing of arcs that has one less
crossing point. See Figure 2. 2. This new drawing still satisfies the property that for
every t, each γt crosses the curves in D which surround vt exactly once and avoids all the
other curves in D. This constitutes a contradiction to the minimality of the number of
intersection points among the arcs γt in the selected drawing.

γ1

γ2

γ1 γ2 After a small modification of the drawing and 
swapping the arcs portions, the arcs do not cross

q

v1 v

x

The arcs ,  cross in q

q

v1 v

x

2

γ2

γ1

2

Figure 2. 2: Eliminating intersection point between two arcs

Let us draw an arc γi for every vi ∈ S according to Claim 2.4.1. Pick an arc, say
γ1, and define a cyclic order on the arcs γi, according to the counterclockwise order in
which they reach x, starting with γ1. Assume without loss of generality that this order is
(γ1, . . . , γs+2). Then (v1, ..., vs+2) is a cyclic order on S.

Claim 2.4.2. For every four distinct vertices vi, vj, vl, vm ∈ S the edges (vi, vj) and
(vl, vm) of the graph G cross an odd number of times if and only if i and j separate l and
m in the natural cyclic order of (1, . . . , s + 2).

Proof. We denote by Mij the closed curve that is composed by the arcs γi, γj and the
edge (vi, vj) in G. We define Mlm similarly. The curves Mij and Mlm meet at x. Observe
that any other intersection point between Mij and Mlm must be an intersection point of
the edges (vi, vj) and (vl, vm). To see this, recall that in our drawing no two of the arcs
γ1, . . . , γs+2 cross. Moreover, an arc γt connecting vt to x may cross only those edges of
G that are incident to vt. This is because F shatters S and therefore there exists a curve
C ∈ C with PC ∩ S = S \ {vt}. By the construction of γt it avoids disc(C). Since any
edge in G, not incident to vt, is contained in disc(C), γt cannot cross any edge that is not
incident to vt. We conclude that any intersection point between Mij and Mlm, other than
x, must be an intersection point of the edges (vi, vj) and (vl, vm). If i and j separate l and
m in the natural cyclic order (1, . . . , s+2), then the curves Mij and Mlm properly cross at
x. The number of intersection points between two closed curves is even and therefore the
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edges (vi, vj) and (vl, vm) must cross an odd number of times. If i and j do not separate l
and m in the natural cyclic order, then Mij and Mlm touch at x. As all other intersection
points between Mij and Mlm are intersection points of (vi, vj) and (vl, vm), it follows that
(vi, vj) and (vl, vm) cross an even number of times. See figure 2. 3

x

v

vl

i
vj

vm

γγ jl
γi γm

j )(V ,ViThe edges and ),Vm(Vl intersect an odd number

of times, since i and j separa te l and m in the cyclic order
j )(V ,Vi

x

vi

vm

γγ
γi γm

vj

vl

j l

The edges and ),Vm(Vl intersect an even number

of times, since i and j do not separate l and m in the cyclic
order

Figure 2. 3: The oddness of the number of intersections between the edges (vi, vj) and
(vl, vm)

We consider the following two subsets S1 and S2 of S:

S1 = {vi ∈ S | i is odd} S2 = {vi ∈ S | i is even}.

Since F shatters S, there exist curves C1, C2 ∈ C such that PC1 ∩ S = S1 and
PC2 ∩ S = S2. We will show that the curves C1 and C2 intersect in at least s + 2 points
and obtain a contradiction to the assumption that C has the s-intersection property.

We call each connected component of disc(C1) \ disc(C2) an ear. Similarly, each
connected component of disc(C2) \ disc(C1) is called an ear. We say that C1 enters
C2 at a crossing point u of C1 and C2 if a small enough portion of C1 that starts at u and
continues in the counterclockwise orientation along the curve C1 is contained in disc(C2).
Otherwise we say that C1 leaves C2 at u. We use a similar terminology with respect to
C2.

Claim 2.4.3. Let C1 and C2 be two curves with the connected intersection property.
Assume that u1, u2, ..., um is the set of intersection points of C1 and C2 arranged in a
counterclockwise order along C1 and w1, w2, ..., wm is the same set of the intersection
points of C1 and C2 arranged in a counterclockwise order along C2, and assume without
loss of generality that u1 = w1. Then ui = wi for every i = 1, . . . ,m.
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Proof. Assume to the contrary that uk 6= wk for some 1 ≤ k ≤ n, then without loss of
generality we can assume that k = 2 (otherwise, let i be the maximum index such that
ui = wi and replace u1 with ui). Without loss of generality assume that C2 enters C1

at u1. Then C1 leaves C2 at u1. We will get a contradiction by showing that w2 = u2.
Assume to the contrary that w2 = uj for some 2 < j ≤ m. Then u2 = wl for some
2 < l ≤ m. The curve C1 must enter C2 at the point u2 = wl because it leaves C2 at
u1. Therefore, C2 leaves C1 at wl and consequently must enter C1 at the point wl−1. It
follows that the portion δ of C2 between w1 and w2 in the counterclockwise direction along
C2 is contained in disc(C1). Similarly, the portion δ′ of C2 between wl−1 and wl in the
counterclockwise direction along C2 is contained in disc(C1). δ and δ′ split disc(C1) into
three regions A1, A2, and A3, where A1 is the region bounded by δ and a portion of C1,
A2 is the region bounded by both δ and δ′ and two portions of C1, and A3 is the region
bounded by δ′ and a portion of C1. The portion γ of C1 between u1 = w1 and u2 = wl

in the counterclockwise direction along C1 is connecting a point on δ, namely, w1, with
a point on δ′, namely, wl. Since u1 and u2 are the only intersection points of C1 and C2

on γ, it follows that γ is contained in the boundary of A2. Because C1 leaves C2 at u1

and enters C2 at u2, it must be that γ lies entirely outside of disc(C2). It follows that the
interior of A1 must contain points of disc(C1)∩ disc(C2), and similarly, the interior of A3

must contain points of disc(C1)∩disc(C2). This is a contradiction to the assumption that
the interior of disc(C1) ∩ disc(C2) is a connected set. We conclude that ui = wi for every
i = 1, . . . ,m

Claim 2.4.4. If C1 and C2 properly cross in exactly m points, then they create precisely
m ears.

Proof. Let u1, u2, ..., um be the set of intersection points of C1 and C2 arranged in a coun-
terclockwise order along C1. By Claim 2.4.3 this set is the set of intersection points of C1

and C2 arranged in a counterclockwise order along C2. For every 1 ≤ i ≤ m the portion
of C1 and C2 between ui and u(i+1)mod(m) forms an ear. Hence, there are at least m ears.
We consider C1∪C2 as a planar graph with m vertices and 2m edges. By Euler’s formula
we have m− 2m + F = 2, where F is the number of faces created by C1 and C2. Hence,
F = m + 2. This count includes the unbounded face, namely R2 \ (disc(C1) ∪ disc(C2)),
as well as the intersection disc(C1) ∩ disc(C2). We deduce that there are exactly m ears.

We now show that the curves C1 and C2 cross in at least s + 2 points and thus obtain
a contradiction to our assumption that C has the s-intersection property.

Note that each vertex in S1 is surrounded by C1 but not by C2. Therefore, each vertex
in S1 belongs to an ear. Similarly, every vertex in S2 belongs to an ear. Obviously, a
vertex in S1 and a vertex in S2 cannot belong to the same ear.

We claim further that even if vi and vj are two vertices which belong to S1, then
they cannot belong to the same ear (we argue similarly if the two vertices belong to S2).
Assume to the contrary that vi, vj ∈ S1 belong to the same ear R. R is contained in
disc(C1). Draw an arc γ inside R connecting vi to vj (see Figure 2. 4). The edge of
G connecting vi and vj together with γ form a closed curve C̃ that lies inside disc(C1).
The vertices vi+1, vj+1 ∈ S2 are surrounded by C2 but not by C1 and therefore, any arc
connecting vi+1 and vj+1 must cross C̃ an even number of times. By Claim 2.4.2, the
edge of G between vi+1 and vj+1 crosses the edge of G between vi and vj an odd number
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of times but does not cross γ, as γ lies entirely outside disc(C2). Hence, the edge of G
connecting vi+1 and vj+1 crosses C̃ an odd number of times, a contradiction.

vi

vj

vi+1

vj+1

γ

C1

(vi, vj)

R

(vi+1, vj+1)

C2

C̃

Figure 2. 4: The curves C1 and C2

We conclude that each vertex in S belong to a unique ear.

This implies that there are at least s+2 ears. It follows from Claim 2.4.4 that C1 and
C2 intersects in at least s + 2 points, which is the desired contradiction.

This also concludes the proof of Theorem 2.1.1, as we have shown that F does not
shatter any set of s + 2 points.

2.5 Proof of Theorem 2.1.3

It is an immediate corollary of Theorem 2.1.1 and the Shatter Function Lemma that if
P is a set of n points in the plane and C is a family of simple closed curves with the
s-intersection property and the connected intersection property, then F = {PC | C ∈ C}
consists of O(ns+1) members.

We will show, by a construction, that this bound can indeed be attained. For every
fixed even number s ≥ 2, we will construct a set of n points P and a family C of bi-
infinite x-monotone curves with the s-intersection property such that F = {PC |C ∈ C}
consists of Ω(ns+1) members, where PC is defined as the set of all points in P that lie
bellow C. A bi-infinite x-monotone curve is a curve that intersects every vertical line
exactly once. Note that the intersection of the regions below each pair of curves in C is
a connected region, and therefore any collection of bi-infinite x-monotone curves satisfies
the connected intersection property. It is then an easy exercise to modify C to a family of
s-intersecting simple closed curves that has the connected intersection property, closing
each curve at infinity.

Let P be the set of integer lattice points P = {(a, b) | 1 ≤ a ≤ s+1 and 1 ≤ b ≤ n
s+1
}.

Then for every (s + 1)-tuple (b1, . . . , bs+1) ∈ {1, . . . , n
s+1
}s+1, let Cb1,...,bs+1 be the graph
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of the polynomial of degree at most s passing through each of the points (i, bi + 1
2
) for

i = 1, . . . , s + 1. Let C be the collection of all these curves.
Since each of the curves in C is a graph of a polynomial of degree at most s, it follows

immediately that C has the s-intersection property. Finally, note that the number of
curves in C is ( n

s+1
)s+1 = Ω(ns+1). Each curve in C determines a unique subset of P , PC ,

consisting of all the points in P that lie bellow C. Therefore |F| = Ω(ns+1) and by the
Shatter Function Lemma, the VC-dimension of F is at least s + 1.

17



Chapter 3

Sweeping an Arrangement of
s-Intersecting Curves By a Ray

3.1 Introduction and Basic Definitions

In this chapter we prove Theorem 3.1.1, which is a generalization of a result of J. Snoeyink
and J. Hershberger [15], stated in Theorem 1.0.6. But first we need to define the notion
of sweeping an arrangement of curves by a ray. An arrangement of curves is a quadruple
(C, V (C), E(C), F (C)). C is a finite set of simple closed curves in the plane. We denote
the arrangement by C as well. We assume that every curve is intersected by any other
curve of C only finitely many times. We assume throughout this work that at any point
in which two curves meet they intersect properly and never just touch. A vertex of C is
an intersection point of at least two curves in C. An arrangement is simple if no three
curves share a common point. We assume in this work that the arrangements are simple.
V (C) is the set of vertices of C. An edge of C is a connected component of (∪C∈CC)\V (C).
E(C) is the set of edges of C. A face of C is a connected component of R2 \ ∪C∈CC. F (C)
is the set of faces of C. In this thesis a ray is an oriented Jordan arc that starts at a
point and goes to infinity. Suppose the curves in the arrangement C surround a common
point O, and that there is a ray γ0 that starts at O and intersects each curve exactly
once. By sweeping the arrangement of the curves by the ray γ0 we mean that we can
move the ray continuously around the point O, say counter-clockwise, such that the ray
never intersects any curve of the arrangement more than once. More formally, we denote
by Γ the collection of all the rays starting at O and intersect each curve in C exactly
once. Every ray γ ∈ Γ can be thought of as a continuous function γ : [0,∞) → R2, where
γ(0) = O. A sweep of C by the ray γ is a continuous bijective map ψ : [0, 1] → Γ such
that:

• ψ(0) = ψ(1) = γ.

• For any s, t ∈ [0, 1), ψ(s), ψ(t) never cross each other.

We sometime refer ψ(s) by its image γs.
It follows immediately by its definition that a sweep by a ray is a process that moves

the ray around its starting point in either clockwise or counterclockwise direction. From
this point on, whenever a sweep by a ray is mentioned, we mean to a sweep that moves
the ray in the counterclockwise direction.

We are now able to state the main result of this Chapter:
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Theorem 3.1.1. Let C be a finite family of simple closed Jordan curves surrounding a
common point O. If C has the connected intersecting property, then C can be swept by a
ray.

3.2 Proof of Theorem 3.1.1

In order to prove Theorem 3.1.1 we must show the existence of a ray γ, by which we wish
to obtain a sweep. Because C has the connected intersection property, and all the curves
in C surround a common point, it follows immediately from Lemma 2.2.3 that for every
subset D ⊆ C, ∪C∈Ddisc(C) is a simply connected region. We can now apply Lemma 2.2.4
to obtain a ray γ, starting at O and intersecting each of the curves exactly once. Although
a sweep by a ray is a continuous process, we can carry it out in discrete steps. Suppose
we have already defined the map ψ in the interval [0, s] for some s ∈ (0, 1). We can carry
out the sweep as long as we do not meet a vertex of the arrangement. Every point in
the plane that lies on a ray ψ(t) for some t ∈ [0, s] is said to be covered by the sweep
and we say that the sweep covers this point. Let Vs ⊆ V (C) be the set of all intersection
points of curves in C that the sweep has not covered. Let {w1, w2, .., wn}, {u1, ..., un} be
the intersection point of γ0, γs respectively with the curves in C according to the order in
which γ0, γs intersect the curves. Assume that none of the points {wi}, {ui} belongs to
V (C). For a face f ∈ F (C ∪ {γ, γs}) we say that γs sees the face f if the sweep hasn’t
covered the face and if one of the edges of f is a portion of γs. We say that γs sees an
edge e ∈ E(C) if e belongs to a face that γs sees. We say that γs sees a vertex v ∈ V (C) if
v belongs to a face that γs sees. Clearly, the sweep can progress through a vertex of the
arrangement if it belongs to a triangle (a face with three edges) that γs sees, see Figure
3. 1. So in order to show the existence of a sweep by the ray γ, we need to show that γs

sees a triangle, for every s ∈ [0, 1] for which the sweep is well defined in the interval [0, s],
except from the stage at which the sweep has covered all the intersection points of C. In
that stage γs sees {w1, ..., wn} and the sweep can be completed.

γ

Triangle
Passing a triangle

γSO

Figure 3. 1: A sweep γ

For every curve C ∈ C we define ηC : Vs ∩ C → {1, 2, ..., |Vs ∩ C|} s.t. ηC(v) is the
position of v on the portion of C that the sweep has not covered yet, starting with the
intersection point of C with γs and moving on C in the counterclockwise direction, see
Figure 3. 2. Since every vertex of the arrangement lies on exactly two curves, we assign
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to an intersection point v of two curves C,C ′ two positive integers, namely, ηC(v), ηC′(v).
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C2 C3
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γ
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Figure 3. 2: ηC

Recall that our aim is to show that γs sees a triangle, and observe that γs sees a
triangle if and only if there are pair of curves C, C ′ ∈ C and a vertex v ∈ Vs ∩ C ∩ C ′ s.t.
ηC(v) = ηC′(v) = 1. To this end we would like to define a partial order on Vs:

Definition 3.2.1. Let v, ṽ ∈ Vs such that v, ṽ lie on the same curve C ∈ C. We say that
v <∗ ṽ ηC(v) < ηC(ṽ).

<∗ is a relation on Vs. We define the relation < on Vs as the transitive closure of <∗:

Definition 3.2.2. Let v, ṽ ∈ Vs. We say that v < ṽ if there exists a sequence v1 =
v, v2, ..., vr = ṽ ∈ Vs such that v1 <∗ v2 <∗ ... <∗ vr.

Claim 3.2.3. (Vs, <) is a poset.

Proof. The relation < is anti-reflexive: assume that v < v, then there are vertices
v = v1, ..., vr = v such that v1 <∗ v2 <∗ ... <∗ vr. We assume without loss of generality
that r is minimal. For each i ∈ {1, 2, ..., r − 1} the points vi, vi+1 lie on some curve Ci.
Denote the portion of Ci connecting vi with vi+1 by ei, we obtain a drawing of a cycle.
Since the edges of this cycle are all oriented at a counterclockwise direction, there are
only two possible cases:

Case 1: The direction of the cycle is clockwise. Let y be a point inside the cycle. Since
C has the connected intersection property, and all the curves in C surround a common
point, we can apply Lemma 2.2.3 and Lemma 2.2.4 to conclude that there is an arc from
y to infinity that intersects every curve in C at most once. This is clearly a contradiction,
since every ray starting at y must enter one of the curves Ci, i ∈ {1, 2, ..., r − 1}, thus it
must intersect Ci at least twice.

Case 2: The direction of the cycle is counterclockwise. In that case O must be inside
the cycle. Assume to the contrary that O is outside the cycle and fix a point y inside the
cycle. Any arc from O to y must enter one of the curves Ci, i ∈ {1, 2, ..., r − 1}. Since O
is surrounded by all the curves C1, C2, ..., Cr−1, an arc from O to y that enters Ci must
leave Ci first. Then, any arc from O to y intersects one of the curves at least twice. This
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is a contradiction because by Lemma 2.2.3 and Lemma 2.2.4 there exists an arc from O
to y that intersects any curve at most once. We conclude that O is inside the cycle and
therefore, γs must intersect the curve Ci for some i ∈ {1, 2, ..., r − 1}. Since ηCi

numbers
the intersection points on Ci according to their position in the counterclockwise direction,
starting from the intersection of Ci with γs, we conclude that ηCi

(vi+1 < ηCi
(vi), which

implies that vi+1 <∗ vi and so we have reached a contradiction.
< is transitive: If v < u and u < w then there are vertices v = v1, v2..., vr = u and

u = ṽ1, ṽ2..., ṽs = w such that v1 <∗ v2 <∗ ... <∗ vr and ṽ1 <∗ ṽ2 <∗ ... <∗ ṽs. The
sequence v = v1, ..., vr, ṽ2, ..., ṽs = w implies that v < w.

< is anti-symmetric. If v < u and u < v then by transitivity v < v, but we have
already proved that < is anti-reflexive.

< is anti-reflexive, anti-symmetric and transitive, and thus (Vs, <) is a poset.

Since (Vs, <) is a finite poset, Vs has a minimum point v. Clearly, v ∈ Vs ∩ C ∩ C ′ is
a minimum if and only if ηC(v) = ηC′(v) = 1. Then γs sees a triangle and the sweep can
pass v. This shows that the arrangement C can be swept by a ray and concludes the proof.

It follows from Theorem 3.1.1 that a collection of s-intersecting simple closed curves,
that are surrounding a common point and satisfy the connected intersection property, can
be realized, after one-to-one and continuous transformation of the plane, as a collection of
s-intersecting bi-infinite x-monotone curves. Let P be a set of n points in the plane and
let C be a family of s-intersecting bi-infinite x-monotone curves, where s ≥ 0 is an even
integer. Let F be the set system on the ground set P , consist of all the subset S ⊆ P
for which there exists a curve C ∈ C such that S is the set of all the points in P that lie
below C. For any integer 0 ≤ k ≤ bn

2
c we define FC,P,k = {S ∈ F||S| = k} . In [4] the

authors prove Theorem 1.0.7 that states that |FCP ,k| = O((kn)
s
2 ) and this upper bound

on |FC,P,k| is best possible. Combining Theorem 1.0.7 together with Theorem 3.1.1 we
obtain the following Corollary:

Corollary 3.2.4. Let P be a set of n points in the plane and let C be a family of simple
closed Jordan curves surrounding a common point O. If C has both the s-intersecting
property, for some integer s ≥ 0, and the connected intersecting property as well, then the
number of sets in F = {P ∩ disc(C)|C ∈ C} of cardinality k ≤ bn

2
c is O((kn)

s
2 ). This

upper bound is best possible.
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Chapter 4

Paths With No Small Angles on
Points in Convex Position

In this Chapter we deal with a special case of a problem of S. Fekete and G.J Woeginger
([8] and [9]). Given a set X of n points in the plane, an ordering of the points of X,
x1x2...xn is identified with a polygonal path P on X: Its edges are the straight segments
connecting xi to xi+1. An edge connecting x, y ∈ X is denoted by (x, y). The angle of
P at xi is ]xi−1xixi+1. A path is called α-good if all of its angles are at least α, where
α > 0.

Fekete and Woeginger have conjectured that for every finite set X of points in the
plane, there exists a π

6
-good path on X. In [3] Bárány, Pór and Valtr proved the existence

of π
9
-good path on every finite set of points in the plane. They also generalized this

result to higher-dimensional spaces and proved that for every d ≥ 2 there is a positive
αd, depending only on d, such that for every finite set of points X ∈ Rd there exists an
αd-good path on X. In [2] Bárány and Pór have generalized this problem to an infinite
set of points in the plane, and proved the existence of α-good path, with α = π

20
. In this

chapter we focus on a special case of the problem, where X is a set of points in the plane
in convex position. A set of points X in the plane is in convex position if the points in X
are the vertices of some convex polygon.

The main result of this chapter is the following:

Theorem 4.0.5. Let X be a set of points in a convex position in the plane. Then there
exists a π

5
-good path on X.

This result cannot be improved:

Claim 4.0.6. For every integer n ≥ 5, there exists a set X of n points in the plane in
convex position with no α-good paths, for any α > π

5
.

4.1 Proof of Theorem 4.0.5

The points in X are the vertices of some convex polygon which we denote by conv(X).
A convex polygon has at most two angles less than π

3
. This is true since the sum of every

three angles in a convex polygon is at least π, as every three vertices form a triangle that
is contained in the convex polygon, and therefore, has angles that are not greater than
the angles of its vertices on the polygon. In particular, a convex polygon has at most two
angles less than π

5
. We prove Theorem 4.0.5 by case analysis.
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In case conv(X) has no angle less than π
5
, we can obtain a good path by omitting one

of the edges of ∂conv(X) (the boundary of conv(X)). See the left side of Figure 4. 1.
In case conv(X) has exactly one angle less than π

5
, we can obtain a good path by

omitting one of the two edges of ∂conv(X) incident to that angle. See the right side of
Figure 4. 1.

−π
5

−π
5

Case there is no angle less than Case there is one angle less than 

Figure 4. 1: Case there is at most one angle less than π
5

The only non-trivial case is the case in which conv(X) has exactly two angles that
are less than π

5
. In this case any other angle of conv(X) must be at grater than 3π

5
. Let

x, y be the vertices of the two small angles of conv(X). Note that x, y must be the end
vertices of every good path. We define the distance of x and y on ∂conv(X), which we
denote by d(x, y), as the number of edges in the smallest path on ∂conv(X) connecting
x and y. For every pair of points x1, x2 ∈ X, we denote the straight segments connecting
x1 and x2 by (x1, x2). For every three points x1, x2, x3 of X we denote the angle between
(x1, x2) and (x2, x3) by ]x1x2x3.

We continue the proof by case analysis according to the distance of x and y.
Case d(x, y) = 1: In that case the straight segment (x, y) is an edge of ∂conv(X).

By omitting the edge (x, y) from ∂conv(X) we obtain a π
5
-good path on X. Figure 4. 2

illustrates the π
5
-good path on X.

x

y

Figure 4. 2: The path P in case d(x, y) = 1
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The rest of the proof is by induction on |X| = n, where n ≥ 7. Note that the remain-
ing cases are possible only if n ≥ 4. We will later show the basis of the induction for
n ∈ {4, 5, 6}.

Case d(x, y) = 2: there exists a point z ∈ X such that (x, z) and (z, y) are edges
of ∂conv(X). We denote all the other vertices of conv(X) by u1, u2, ..., un−3 such that
yu1u2...un−3xz is cyclic order in which the points lie on ∂conv(X). The following claim
will help us to narrow down the possibilities of the configuration of the points in P .

Claim 4.1.1. 1. We may assume that the angle ]zu1u2 is at least π
5
, and similarly,

]zun−3un−4 ≥ π
5
.

2. We may assume that the angle ]xzun−3 is less than π
5
, and similarly, ]yzu1 < π

5
.

Proof. Assume that ]zu1u2 < π
5
. Since ]yu1u2 ≥ 3π

5
it follows that ]yu1z ≥ π

5
. By the

induction hypothesis we can find good path on the points X \ y that connects u1 and x.
By adding to this path the edge (y, u1) we obtain a good path on X and conclude the
proof of 1.

In order to proof the second part of the claim, let us assume that ]xzun−3 ≥ π
5
. It

follows by 1 that xzun−3un−2...u2u1y is a good path.
The left side of Figure 4. 3 illustrates the configuration of the points under the

assumptions we made above according to Claim 4.1.1. The double arc symbol indicates
that the angle is at least π

5
and the single arc indicates that the angle is less than π

5
.

x

y

z

u

u

u

u

n−3

n−4

2

1 u1

x

y

z

u

u

u2

3

n−3

un−4

Figure 4. 3: The path P in case d(x, y) = 2

Since every other angle in ∂conv(X) is at least 3π
5

we deduce that ]u1zun−3 = ]xzy−
]xzun−3 − ]yzu1 ≥ π

5
. Clearly, every angle of a convex polygon which is formed by a

subset of X that contains x and y, must be at least 3π
5

. Then ]yu3u4,]u1u2x ≥ 3π
5

and
the path yu3u4...un−3zu1u2x is π

5
-good. See Figure 4. 3.

Case d(x, y) = 3: There are two points z, w ∈ X such that (x, z), (z, w), (w, y) are
all edges of ∂conv(X). We denote all the other points in X by u1, ..., un−4 such that
yu1u2...un−4xzw is cyclic-order in which the points lie on ∂conv(X).
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Claim 4.1.2. We may assume that the angle ]u1wz is at least π
5
, and by symmetry,

]wzun−4,]zun−4un−5,]wu1u2 are at least π
5
.

Proof. The proof is similar to the proof of Claim 4.1.1. Assume that ]zwu1 < π
5
, then

]ywu1 ≥ 2π
5

. By the induction hypothesis there is a π
5
-good path on the points X \ {y}

which connects w and x. Adding to this path the edge (y, w) we obtain a π
5
-good path

on X.
We denote two of the angles of the triangle formed by y, un−4, z by α = ]yzun−4, β =

]yun−4z. At least one of the angles α, β is grater or equal π
5
, see Figure 4. 4.

−π
5

Either or βα are at least  

x

y

z

w

u

u

u

u

u
α

β

n−4

n−5

3

2

1

Figure 4. 4: Case d(x, y) = 3

If β ≥ π
5
, then the path yun−4zwu1u2...un−5x is π

5
-good. This path is illustrated in

Figure 4. 5.

x

y

z

w

u

u

u

u

3

u

β

1

2

n−5

n−4

Figure 4. 5: Case d(x, y) = 3 and β ≥ π
5

We may therefore assume that β < π
5

and by symmetry, we may also assume that the
angle γ = ]wu1x < π

5
. We deduce that α ≥ π

5
(see Figure 4. 6). Since two of the angles
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of the triangle formed by w, u1, x are less than π
5

it follows that the angle ]xwu1 is at
least 3π

5
. Then the path yzun−4un−3...u1wx is π

5
-good.

x

y

z

w

u

u

u

u

u

β

α

γ 1

2

3

n−5

n−4

Figure 4. 6: Case d(x, y) = 3 and β < π
5

Case d(x, y) ≥ 4: Let xu1, u2, ...uk, y, v1, v2, ..., vn−k−2 denote the points in X ac-
cording to the counter-clockwise order in which the points lie in ∂conv(X). We assume
that k, n − 2 − k ≥ 3. Consider the triangle formed by y, vn−k−2 and u1. At least one
of its angles other than ]vn−k−2yu1 is at least π

5
, say α = ]yvn−k−2u1 ≥ π

5
. Then

yvn−k−2u1u2...ukv1v2..vn−k−3 is a π
5
-good path on S, as illustrated in Figure 4. 7 below.

v1

x

y

u

u

u

u

1

2

k−1

k

v2

v

vn−k−3

n−k−2

α

Figure 4. 7: The path P in case d(x, y) ≥ 4

4.1.1 The Basis of the Induction

In order to prove the basis of the induction we need to show the existence of a π
5
-good

path on every set X of n ∈ {4, 5, 6} points in the plane in a convex position for which
conv(X) has two angles that are less then π

5
and the vertices of the small angles are at

distance at least 2 on ∂conv(X).
Case n = 4: Let X = {x, y, z, w} and assume that x, y are the vertices of the small

angles in conv(X). Then x, z, y, w is a cyclic order in which the points in X lie on
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∂conv(X). We can argue the same as in the first part of Claim 4.1.1 to reduce this case
to a case in which the angles ]zwy, ]zwx, ]wzy, ]wzx are at least π

5
. Then xzwy is a

π
5
-good path.

Case n = 5: Denote the points in X by x, u1, u2, y, z according to the cyclic counter-
clockwise order in which the points lie on ∂conv(X). By applying the same arguments as
in the proof of Claim 4.1.1, we can assume that the angles ]zu1u2, ]zu2u1 are at least π

5

and that the angles ]xzu1,]yzu2 are less than π
5
. Then the path xu1zu2y is π

5
-good (see

Figure 4. 8).

x

y

z

u

u

1

2

Figure 4. 8: Case n = 5

Case n = 6: In that case d(x, y) ∈ {2, 3}. If d(x, y) = 2, we denote the points in X
by x, u1, u2, u3, y, z according to cyclic order in which they lie in ∂conv(X). Arguments
similar to those argued at the proof of Claim 4.1.1 can be applied to reduce to a case in
which ]xzu1,]yzu3 < π

5
and ]zu1u2,]zu3u2 ≥ π

5
. It follows that the angle ]u1zu3 ≥ π

5
.

If both angles ]u1zu2,]u2zu3 are at less than π
5
, then ]yu1z ≥ π

5
because the sum of the

angles ]yu1z, ]u1zu2,]u2zu3,]u3zy and ]zyu1 is π. In that case, the path xu2u3zu1y is
π
5
-good. We may therefore assume without loss of generality that ]u1zu2 ≥ π

5
. One of the

angles ]u1u2z, ]u3u2z is at least π
5
. If ]u1u2z ≥ π

5
, then the path xu1u2zu3y is π

5
-good.

Then we may assume that ]u1u2z < π
5

and ]u3u2z ≥ π
5
. It follows that ]u1zu2 ≥ π

5
,

because the angles of the triangle formed by x, u2 and z must sum to π. Figure 4. 9
illustrates the assumptions we made so fur.

The path xu1zu2u3y is π
5
-good (see Figure 4. 10). This covers all possible configura-

tions of six points in the case d(x, y) = 2.
If d(x, y) = 3, we denote the points by x, u1, u2, y, v1, v2 according to cyclic order in

which the points lie in ∂conv(X). We can argue as in Claim 4.1.2 to conclude that we
may assume that ]u1v2v1, ]v2v1u2,]v2u1v1,]v1u2u1 are at least π

5
. If ]xv1v2 ≥ π

5
, then

xv1v2u1u2y is a π
5
- good path. Then we may assume that ]xv1v2 < π

5
and similarly,

the angles ]xu2u1,]yu1u2,]yv2v1 are less than π
5
. Consider the triangle formed by

x, u2, and v1. One of the angles ]xv1u2, ]xu2v1 must be at least π
5
. Similarly, one

of the angles ]yv2u1, ]yu1v2, of the triangle formed by y, u1, v2 is at least π
5
. If both

]xv1u2, ]yv2u1 ≥ π
5

then the path xv1u2u1v2y is π
5
-good. If ]xv1u2, ]yv2u1 < π

5
, then

xu2v1v2u1y is a π
5
-good path. Therefore, we may assume that ]yv2u1 < π

5
and ]xv1u2 ≥ π

5

and similarly, we may assume that ]yu1v2 ≥ π
5

and ]xu2u1 < π
5
. We conclude that the

angles ]xv2u1,]yu2v1 are at least π
5
. If ]xu1v2 ≥ π

5
, then xu1v2v1u2y is a π

5
-good path.
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y

x

z

u 1

u 2

u 3

Figure 4. 9: Case n = 6 and d(x, y) = 2

y

x

z

u 1

u 2

u 3

Figure 4. 10: A π
5
-good path in the case n = 6 and d(x, y) = 2

Then we may assume that ]xu1v2 < π
5

and similarly, ]yv1v2 < π
5
. Figure 4. 11 illustrates

the assumptions we made above.

Consider the triangle yu1v1. If ]yu1v1 < π
5
, then ]v1u1v2 ≥ π

5
, because the sum of the

angles ]yu1v1, ]yv2u1, ]v2yu1 and ]v1u1v2 is π. Moreover, the angle ]u1v1u2 is at least
π
5

because the sum of the angles ]u1v1u2,]v1u1y, ]yu1u2,]xu2u1 and ]xu2v1 is exactly
the sum of the angles of the triangle formed by u1, u2 and v1 and therefore, equals to π.
Then the path xv2u1v1u2y is π

5
-good. A symmetric case is when ]xv1u1 < π

5
. Then we

may assume that ]yu1v1 and ]xv1u1 are at least π
5

and the path xv2v1u1u2y is π
5
-good

(see Figure 4. 12).

This concludes the proof of the basis of the induction.
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v1

v2

u 1

u 2

y

x

Figure 4. 11: Case n = 6 and d(x, y) = 3

v1

v2

u 1

u 2

y

x

Figure 4. 12: The path p in case n = 6 and d(x, y) = 3

4.2 Proof of Claim 4.0.6

Let α > π
5

be a fixed number, and let X be a set of n ≥ 5 points in the plane, arranged
on a triangle as illustrates in Figure 4. 13.

Clearly, there are no α-good paths on X. Although the points in X are not in convex
position, they can be perturbed to a set of points in convex position with no α-good path.
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.......
π/5     π/5     

π/5     π/5     

3π/53π/5 2π/5     2π/5     

π/5     

Figure 4. 13: An example of n points with no α-good path, α > π
5
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,n ≥ 5 ולכל α > π
5
לכל כלומר, זו, תוצאה לשפר ניתן שלא מראים אנו בנוסף

זווית יש עליהן מסלול שלכל כך קמור, במצב במישור נקודות n של קבוצה קיימת

.αמ־ הקטנה עוקבות צלעות שתי בין

iv



משותפת. נקודה מקיפים באוסף העקומים

Hershbergerו־ Snoeyink של התוצאה של הכללה הוא 3 בפרק המרכזי המשפט

ופשוטים סגורים עקומים של סופי אוסף כל קרן באמצעות לסרוק שניתן ואומר

הבאות: הדרישות את המקיים

ידם על החסומים התחומים של שהחיתוך מתקיים באוסף עקומים שני לכל .1

קשיר. תחום הוא

סופית. היא באוסף עקומים בין החיתוך נקודות כל קבוצת .2

משותפת. נקודה מקיפים באוסף העקומים כל .3

ממש, חיתוך נקודת היא באוסף עקומים לזוג המשותפת נקודה שכל מניחים אנו

השקה. נקודות ושאין

ניתן לעיל, התכונות את המקיים עקומים של אוסף שכל גורסת למעשה זו תוצאה

פונקציות. של גרפים של כאוסף לממש

באוסף. העקומים על גם חלות פונציות, של גרפים על המתקיימות שתוצאות מכאן

ו־ Fekete ידי על לראשונה שהועלתה בעיה של פרטי מקרה מציגים אנו 4 בפרק

.Woeginger

קובע x1x2...xn הנקודות של סידור במישור, נקודות n של X סופית קבוצה בהנתן

הנקודות. כל דרך העובר p פוליגוני מסלול

הצלעות שתי ידי על הנוצרת ,πמ־ הקטנה הזווית היא xi בנקודה המסלול זווית

.(xi, xi+1) ו־ (xi−1, xi) העוקבות

2 ≤ i ≤ לכל אם α− good הוא x1x2...xn הסידור ידי על הנקבע p שהמסלול נאמר

.α שווה או גדולה היא xiב־ המסלול זווית ,n− 1

מסלול קיים במישור נקודות של סופית קבוצה שלכל שיערו Woeginger ו־ Fekete

.π
6
− good שהוא הנקודות על

סופית נקודות קבוצת על π
9
−good מסלול קיים שתמיד הוכיחו Valtrו־ Pór ,Bárány

במישור.

קיים d ≥ 2 שלכל והראו גבוה ממימד למרחבים הבעיה את הכלילו הם בנוסף

מסלול קיים Rd ב־ נקודות של סופית קבוצה שלכל כך ,d ב־ רק התלוי αd קבוע

.αd − good שהוא הנקודות על

מניה, בת לקבוצה היא Pór ו־ Bárány ידי על שהוצגה הבעיה, של נוספת הכללה

במישור. נקודות של סופית בהכרח לא

. π
20
− good שהוא מסלול למצוא ניתן תמיד כזו, קבוצה שעל הראו Pór ו־ Bárány

על מסלול קיים קמור במצב הנמצאת במישור נקודות קבוצת שלכל מראים אנו

.π
5
− good שהוא הנקודות
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לאוסף השייכים עקומים ידי על שלהן מהשמים המופרדות ,P של הקבוצות תתי הם

.C סגורים עקומים של נתון
הבאות: הדרישות את מקיים C העקומים שאוסף מחינים אנו

פעמים. s היותר לכל נחתך C ב־ עקומים זוג כל .1

על המוקפות במישור הנקודות שאוסף מתקיים C ב־ C, C ′ עקומים זוג לכל .2

ריקה. קבוצה או קשיר תחום הוא העקומים שני ידי

כאשר ,F = {P ∩ disc(C)|C ∈ C} הבא: באופן פורמלי באופן מוגדרת F המערכת
.C הסגור העקום ידי על החסום במישור התחום את מסמן disc(C)

.s + 1 היותר לכל הוא זו מערכת של V C שמימד מראים אנו

O(ns+1) היותר לכל מכילה שהמערכת נובע Shelah ו־ Sauer ,Perles של מהלמה

.P ב־ הנקודות מספר הוא n כאשר איברים,

קבוצת קיימים זוגי, מספר s כאשר ,sו־ n שלכל דוגמה ידי על מראים אנו בנוסף,

,P על הקבוצות שלעמרכת כך ,s ממעלה פולינומים של ואוסף במישור נקודות n

ידי על מלמעלה שלהן מהשמלים המופרדות P של הקבוצות תתי כל הם שאיבריה

.s + ל־1 השווה V C מימד יש באוסף, כלשהו פולינום

עקומים של אוסף ולקבל באינסוף באוסף הפולינומים את לסגור ניתן זוגי, sו־ מאחר

והחיתוך פעמים s היותר לכל נחתכים באוסף עקומים שני שכל המקיים סגורים

על המוגדרת שהמערכת כך קשיר, או ריק הוא ידם על החסומים התוחימים של

איברים. Ω(ns+1) לפחות מכילה באוסף העקומים באמצעות הקבוצה

מכפלה כדי עד הדוק הינו המערכת גודל על מציגים שאנו העליון שהחסם מכאן

בקבוע.

קרן. באמצעות במישור סגורים עקומים של אוסף של בסריקה עוסק 3 פרק

לאינסוף. במישור נקודה המחבר פשוט עקום היא קרן

וקרן ,O משותפת נקודה המקיפים במישור סגורים עקומים של C אוסף בהינתן
C של סריקה אחת, פעם בדיוק Cב־ עקום כל וחותכת O מהנקודה היוצאת γ

כוון נגד למשל ,O הנקודה סביב γ של בזמן רציפה הזזה היא γ הקרן באמצעות

עקום כל זמן ובכל אחת פעם בדיוק γ את פוגשת במישור נקודה שכל כך השעון,

אחת. פעם בדיוק γ ידי על נחתך Cב־

מתמטיות. בהוכחות שימושי כלי היא עצמים של סקירה

בסדרה התבוננות ידי על d ממיד עצמים של אוסף של תכונות לקבוע מאפשרת היא

סטטית בעיה הופכת היא ובכך ,d − 1 ממימד העצמים של עוקבות ״פרוסות״ של

פחות. אחד ממימד דינמית לבעיה d ממימד

עקומים של סופי אוסף כל קרן ידי על לסרוק שניתן הראו Hershbergerו־ Snoeyink

ושכל פעמיים היותר לכל נחתכים באוסף עקומים שני שכל המקיים ופשוטים סגורים

ii



תקציר

פרקים. לשלושה המחולקות קומבינטורית בגיאומטריה תוצאות נציג זו בעבודה

עוסק השני פעמים, s הנחתכים במישור עקומים של V C במימד עוסק האחד

פרטי במקרה עוסק והאחרון קרן באמצעות במישור עקומים של (sweep) בסריקה

פוליגונים במסלולים ועוסקת Woeginger ו־ Fekete ידי על לראשונה שהוצעה בעיה של

במישור. נקודות קבוצת על קטנות זוויות ללא

.X קבוצה על קבוצות במערכת דן 2 פרק

.X של קבוצות תתי של אוסף היא X על קבוצות מערכת ,X קבוצה בהנתן

במישור, נקודות של P סופית קבוצה על מוגדרת נתעסק בה הקבוצות מערכת

של אוסף ידי על המופרדות P של הקבוצות תתי הם במערכת האיברים כאשר

גיאומטרים. אובייקטים

נקודות קבוצת של (k-sets) קבוצות kה־ מערכת היא קבוצות למערכת חשובה דוגמה

.P במישור

P ב־ הנקודות מיתר להפרידה ניתן אשר k בגודל P של קבוצה תת היא קבוצה k

ישר. ידי על

חסמים למצוא בניסיון האחרונים העשורים בארבעת רבות נחקרה זו קבוצות מערכת

המערכת. גודל על הדוקים

שגודל שהראה Dey ידי על הוצג קבוצות kה־ מערכת על ביותר הטוב העליון החסם

.P ב־ הנקודות מספר הוא n כאשר O(nk
1
3 ) היותר לכל הוא המערכת

.Ω(n exp(
√

log n)) והוא Tóth ידי על הוצג כיום הידוע ביותר הטוב התחתון החסם

.V C ה־ מימד הוא קבוצות מערכת על עליון חסם למציאת הכלים אחד

אם X של A קבוצה תת (shatter) מנפצת X קבוצה על F קבוצות שמערכת נאמר
.B = A ∩ F ש כך F ∈ F איבר קיים A של B קבוצה תת לכל

מנפצת. F ש־ X של ביותר הגדולה הקבוצה תת גודל הוא F של V C מימד

,Perles של הלמה ידי על המערכת על עליון חסם משרה מערכת של V C ה־ מימד

על שלמערכת הגורסת ( Shatter Function Lemma גם (נקראת Shelah ו־ Sauer

המערכת. של V C מימד הוא d כאשר איברים, O(nd) היותר לכל יש n בגודל קבוצה

מימד על הדוק עליון חסם במציאת עוסק 2 בפרק מציגים שאנו המרכזי המשפט

Fב־ האיברים במישור. נקודות של P סופית קבוצה על F קבוצות מערכת של V C

i





יהלי. האהוב, לבני מוקדשת זו מחקר עבודת

למתמטיקה. בפקולטה פנחסי רום פרופ׳ בהנחיית נעשה המחקר

התמיכה. ועל ההנחיה על הרבה, סבלנותו על פנחסי רום לפרופ׳ להודות ברצוני

הנדיבה הכספית התמיכה על לישראל טכנולוגי מכון לטכניון− מודה אני
בהשתלמותי.
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