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Abstract

In this work we present a collection of results in Combinatorial Geometry, aggregated in
three chapters. The first one deals with the VC-dimension of a family of subsets of points
in the plane, surrounded by simple closed curves. The second deals with sweeping of an
arrangement of curves. In the last chapter presented is a special case of a problem that
was first introduced by S. Fekete and G.J Woeginger and deals with polygonal paths with
no small angles.

Given a set X, a set-system on the ground set X is a collection of subsets of X. The
Vapnik-Chervonenkis dimension, or VC-dimension for short, is a parameter assigned to a
set-system on a ground set X, F = {4;|i € I, A; C X}. Animportant result related to the
VC-dimension is the Shatter Function Lemma. This Lemma enables one to obtain an up-
per bound on the cardinality of a set-system on a finite ground set via the VC-dimension.
In this thesis we deal with the following collection of geometric objects in the plane: Let P
be a set of n points in the plane and let C be a family of simple closed curves in the plane
each of which avoids the points of P. We show that if every two curves C, C’ € C intersect
at most s times and the intersection of the regions in the plane that are bounded by C, C’
is either empty or a connected set, then the set system F on the ground set P, consists
of all the subsets of P that are surrounded in curves in C, has VC-dimension at most s+ 1.

Chapter 3 deals with the notion of sweeping an arrangement of curves. J. Snoeyink
and J. Hershberger proved that any collection of pseudo circles surrounding a common
point can be swept by a ray. We have generalized this result for a collection of simple
close curves that are surrounding a common points and satisfy the connected intersection

property.

The last chapter of this thesis deals with a special case of a problem of S. Fekete and
G.J Woeginger. Given a finite set X of points in the plane, and o > 0. Is it possible to
find a polygonal path P on X such that all the angles that are formed by consecutive
edges of P are at least a? Fekete and Woeginger conjectured that it is possible for o < £.
Bédrany Pér and Valtr proved the existence of such path for a < §. We show that if the
points are in convex position, then for every a < %, there exists a path on X with no
angle smaller than «a, and that this upper bound on « is tight.



List of Symbols

N - The set of natural numbers

R¢ - The real Euclidean d-dimensional space

and in particular

R? - The real Euclidean plane

{A1, Ay, ..., A} - The set whose members are A, A,,...,A,

{a|®(a)} - The set of members which specify the condition ®

When the context is clear we sometimes write only the condition - For instance we write
{z >0} for {(z,y,2) e R3| 2 > 0}

UCYV - Uis asubset of V

V' \ U - The set of members which are in V' but not in U

¢ - The empty set

V' UU - The union set of V' and U

UA - The union of all members in A

V N U - The intersection set of V and U

NA - The intersection of all members in A

a €A - aisamember of A

a¢ A - aisnot amember of A

G = (V,E) - A graph G whose vertex set is V' and whose edge set is F

p = (a,b) - A point p whose cartesian coordinates are a and b

[a,b] - The closed real interval {t| a« <t < b}

(a,b) - The open real interval {t| a <t < b}

(a,b) can also mean the edge of a directed graph corresponding to the vertices a and b.
The distinction between the above two meanings is specified in each relevant place in the
text.

Let A and B be two different points in R for some d € N

A - The vector pointing from the origin to A

AB - The straight line segment from A to B .

04 - The angle created between the positive ray of the x-axis and the vector A

£AOB - The angle created between the segments AO and OB

|E| - The size of the set E
|t] - The maximum integer which is not bigger than the real number ¢
oo - infinite

e O(n?) function f - A function f on N that satisfies the following: there exists
N € N and there exist positive constants C; and Cy, such that for every n > N,
Cy-n?>< f(n) <Cy-n?



e Q(n?) function f - A function f on N that satisfies the following: there exists N € N
and there exists a positive constants Cy, such that for every n > N, C} - n? < f(n)

e f(x): A— B - A function f (which receives * as an argument) from the Domain
set A into the Range set B

e f] A - A function f restricted to A - a subset of the Domain of f

S? - The unit sphere in R?; that is the boundary of the unit ball (having radius 1) in R?
which is centered at the origin

St - The unit circle in R?; that is the boundary of the unit disc (having radius 1) in R?
which is centered at the origin

OA - The boundary of A (for a set A C R?)

Area(A) - The two-dimensional area of A (for a set A C R?)

conv(A) - The smallest convex set that contains A (for a set A C R?)

(Z) - The number of ways for choosing k£ objects out of n objects (it is equal to Wik),)
max(n, m) - The maximum of the two real numbers n and m

max A - The maximum of all members of A.

Any other symbol used in the text is explicitly defined next to the first appearance of the

symbol.






Chapter 1

Introduction

In this work we introduce the following results:

i. Theorem 2.1.1- Given a finite set of points in the plane, and a collection of s-
intersecting simple closed curves that satisfy the connected intersection property,
the VC-dimension of the family of all subsets of the points which are surrounded by
the curves is at most s + 1, and this bound is tight.

77. Theorem 3.1.1- An arrangement of simple closed curves in the plane that has the
connected intersection property, can be swept by a ray.

11i. Theorem 4.0.5- Given a finite set of points in the plane, in a convex position, there
exists a polygonal path that goes through the points such that the angle between
every pair of consecutive edges of the path is at least %, and this bound is tight.

In chapter 2 we use the notion of set system on a ground set X. Given a set X, a set
system on the ground set X is a set F = {A;|i € I}. The elements of F, A;, are subsets
of X. In our set system, the ground set is a finite set P of points in the plane and the
set system consists of the subsets of P surrounded by curves from a given collection C of
curves. An important example to this type of set system is the collection of all k-sets of a
given set of points P in the plane. A k-point subset S C P is a k-set of P if there exists an
open half-plane H such that S = PN H. This set-system has been investigated intensively
in the last four decades. The most interesting question in the context of k-sets, which is
still an open question, is finding upper and lower bounds on the number of k-sets of a set
of n points in the plane or in higher dimensional space. The best known upper bound on
the number of k-sets of a set of n points in the plane is due to Dey [6], and stands on
O(nk3). A lower bound was obtained by Erdés, Lovétz, Simmons and Straus in [7], which
is around Q(nlog k). This bound was further improved by Téth [16] to Q(n exp(yv/Iogn)).
The set system that we introduce consists of all the subsets S C P that are surrounded
by closed curves in a given collection of curves. These set systems can be though of as
an extension of the set systems that consists of all the k-sets of P, since their elements
are subsets of P that are separated by a closed curve and k-sets are subsets of P that are
separated by a line.

The curves that we consider in this work are simple closed Jordan curves. By Jordan’s
theorem a simple closed Jordan curve C' divides the plane into two regions, only one of
which is bounded. We call the bounded region the disc bounded by C' and we denote

this region by disc(C'), we denote C' U disc(C) by disc(C). Any point p in disc(C) is said
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to be surrounded by C' and C' is said to be surrounding p. The curves in this work have
the following two intersection restrictions: The s-intersection property and the connected
intersection property.

Definition 1.0.1. We say that a collection of curves C has the s-intersection property if
s is the minimum integer such that any two closed curves in C intersect properly in at
most s points. We say that C has the connected intersection property if for each pair of
curves C, C" € C the set disc(C') N disc(C”) is either empty or connected.

A collection of lines or pseudo-lines in the plane has the 1-intersection property, circles
and pseudo-circles have both the 2-intersection property and the connected intersection
property. The latter are special cases of the curves we deal with.

In Chapter 2, we investigate the VC-dimension of the above mentioned set system.
The VC-dimension of a set system is defined as follows:

Definition 1.0.2. Let F be a set system on X and let Y C X. We say that Y is shattered
by F if for every A C Y there exists S € F such that A =Y N S. The VC-dimension of
F, denoted by VCdim(F) is the supremum of the sizes of all the subsets of X with finite
size that are shattered by F.

An important result related to the VC-dimension is the Shatter Function Lemma
which was proved independently by Sauer [12], Perles and Shelah [14] and by Vapnik and
Chervonenkis [17]. We need to define the shatter function notion in order to state this
lemma.

Definition 1.0.3. The shatter function of a set system F on a ground set X is:

7r(m) = max [SNY:S¢€F]|
YCX,|[Y|=m
Lemma 1.0.4. Shatter Function Lemma: For any set system F on a ground set X that
has VC-dimension at most d, mr(m) < (7) + (7) 4+ ... + (). In particular, if |X| = n,

then |F| = mr(n) < () + () + ot ().

V(C-dimension and the Shatter Function Lemma play an important role in several
mathematical fields such as statistic, computational learning theory, combinatorics of
hypergraphs, and discrepancy theory. The importance of the VC-dimension is that it
enables one to obtain an upper bound on the size of a set-system via the Shatter Function
Lemma. Although the obtained bound is not necessarily the best upper bound, in our
case, the upper bound on the set-system which will be achieved via the VC-dimension is
also a tight upper bound.

In Theorem 2.1.1 we provide an upper bound on the VC-dimension of the set-system
F = {P Ndisc(C)|C € C} of a set P of points in the plane, where C is a collection
of simple closed curves in the plane that has both the s-intersection property and the
connected intersection property. We show that the VC-dimension of F is at most s + 1.
In particular, we use the Shatter Function Lemma in Corollary 2.1.2 to conclude that if
|P| = n and every curve in C surrounds a unique subset of P, then |C| = O(n**!). In
Theorem 2.1.3 we introduce a specific set of points in the plane and a collection of O(n**1)
bi-infinite and z-monotone curves (the graphs of continues real functions) such that every
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curve lies above a unique subset of the points, and every pair of curves in that collec-
tion properly cross at most s times. This collection can be easily realized as a collection
of simple closed curves that satisfy the conditions of Theorem 2.1.1, thus Theorem 2.1.3
implies that the upper bounds on the VC-dimension in Theorem 2.1.1 is the best possible.

Chapter 3 deals with sweeping an arrangement of curves by a ray. The curves we
consider are simple closed curves in the plane that have both the s-intersection property
and the connected intersection property.

Definition 1.0.5. An arrangement of curves is a quadruple (C,V(C), E(C), F(C)). C is
a finite set of simple closed curves in the plane. We denote the arrangement by C as
well. We assume throughout this work that UgeeC' is connected and that every pair of
curves in C is either disjoint or properly cross finite number of times. A verter of C is an
intersection point of at least two curves in C. An arrangement is simple if no three curves
share a common point. We assume in this work that the arrangements are simple. V' (C)
is the set of vertices of C. An edge of C is a connected component of (UcecC) \ V(C).
E(C) is the set of edges of C. A face of C is a connected component of R? \ UgecC. F(C)
is the set of faces of C.

Sweeping is an important tool used in mathematical proofs. The underlying idea is to
determine properties of a collection of objects in a space of dimension d by looking at a
series of consecutive (d — 1)-dimensional slices. Sweeping converts a static problem into
a dynamic problem of lower dimension. Sweep algorithms can refer to an arrangement of
closed curves, bi-infinite xz-monotone curves, lines segment and various other geometric
objects in the plane or in higher dimensional spaces. There are different types of sweeps,
depending on the curve used to sweep the arrangements. For example, this curve may
be a line, a pseudo-line, a closed curve or a ray. J. Snoeyink and J. Hershberger [15]
introduced sweeping process by a ray, a pseudo-line and a pseudo circle.

As an example of sweep algorithms in the literature, consider the problem of finding
the intersections of n lines or segments in the plane. Shamos and Hoey [13] showed how
to detect an intersection in O(nlog(n)) time by sweeping the plane with a line. Chazelle
and Edelsbrunner [5] developed an algorithm to report all K segments intersection in
O(nlog(n) + K) time by sweeping the plane with a pseudo-line.

In Chapter 3 we consider an arrangement of curves C that are surrounding a common
point in the plane. We are interested in sweeping the arrangement by a ray, that is a Jor-
dan arc connecting a point in the plane to infinity. We now define the notion of sweeping
an arrangement of curves by a ray.

Let C be an arrangement of simple closed curves in the plane. Assume that all the
curves in C surround a common point O and there exists a ray 7, starting from O and
intersecting every curve in C exactly once. A sweep of C by the ray 7 is a continuous
rotation of v around O, say, counter-clockwise, until it returns to its starting position,
such that v always intersects each of the curves in C exactly once. Although sweeping is
a continuous process, we will see in Chapter 3 that we can carry it out in discrete steps.

J. Snoeyink and J. Hershberger [15] proved the following:



Theorem 1.0.6. Any family of pseudo circles surrounding a common point can be swept
by a ray.

In Theorem 3.1.1 we generalize this result. We show the existence of a sweep by a ray
of an arrangement C of s-intersecting simple closed curves that are surrounding a common
point and has the connected intersection property. Theorem 3.1.1 implies that C can be
realized, after one-to-one and continuous transformation of the plane, as a collection of
s-intersecting bi-infinite z-monotone curves, and thus we can implement results related
to bi-infinite z-monotone curves on C. One example is the following result from [?]:

Theorem 1.0.7. Let P be a set of n points in the plane and let C be a family of s-
intersecting bi-infinite x-monotone curves, where s > 0 is an even integer. Let F be the
set-system on the ground set P, consists of all the subsets S C P of which there exists a
curve C' € C, such that all the points in S lie below C' and all the points in P\ S lie above
C. For every integer 0 < k < | %] consider the subset of F, Fepr = {S € F||S| = k}.
Then, |Fe.pr| = O((kn)2) and this upper bound on |Fe py| is best possible.

By Theorem 3.1.1, this result is also valid if C is a collection of s-intersecting simple
closed curves that are surrounding a common point and have the connected intersection
property. In that case we define F¢ pj as the set-system on P, consists of all the k-points
subsets S C P such that there exists a curve C' € C for which S = P Ndisc(C).

Chapter 4 deals with a special case of a problem of S. Fekete and G.J Woeginger [§]
and [9]. Given a set X of n points in the plane, an ordering of the point of X, z1xs...2, is
identified with a polygonal path P on X: its edges are the straight segments connecting
x; to x;11. The angle of P at x; is Lx;_1x;x,41.

Definition 1.0.8. Let a > 0. We call the path zxs...z, a-good if its angle in z; is at
least « for every 2 <i¢ <n—1.

Fekete and Woeginger conjectured the following:

T

Conjecture 1.0.9. For every finite set X of points in the plane, there exists a %-

path on X.

good

In [3] Barany, P6r and Valtr proved the following Theorems:
Theorem 1.0.10. There exists a g-good path on every finite set of points in the plane.
They also generalized this result for higher-dimensional spaces:

Theorem 1.0.11. For every d > 2 there is a positive ag such that for every finite set of
points X € R? there exists a ag-good path on X .

In [2] Bardny and Pér generalized this problem to an infinite set of points in the plane,
and proved the existence of J5-good path.

In Chapter 4 we focus on a special case of this problem, where X is a set of points in
the plane in convex position. A set of points X in the plane is in convex position if the
points in X are the vertices of some convex polygon. In Theorem 4.0.5 we prove that for
a set X of points in the plane in convex position, there exists a £-good path on X. We
prove further that there are arbitrarily large sets of points in the plane in convex position
with no a-good paths, where o > %.



Chapter 2

The VC-Dimension of S-Intersecting
Curves

2.1 Introduction and Basic Definitions

In this chapter we study the VC-dimension of a set-system F on a set of points in the
plane. Given a finite set P of points in the plane, a set-system of P is a family of subsets
of P. For a subset S C P, we say that F shatters S, if for every B C S, there exists
A € F such that, B = SN A. The VC-dimension of F is the largest cardinality of a subset
of P that F shatters. In this chapter we will prove Theorem 2.1.1. We are interested
in a particular set-system on the ground set P. Its elements are all the subsets of P
that are surrounded by curves in a given collection of curves C. By Jordan’s Theorem
a simple closed Jordan curve C' divides the plane into two regions, only one of which is
bounded. We call the bounded region the disc bounded by C and we denote this region
by disc(C), we denote C' U disc(C') by disc(C'). Any point p in disc(C) is said to be
surrounded by C' and C'is said to be surrounding p. The collection C of the curves we
will consider will have the s-intersection property, i.e. s is the minimum integer such that
any two curves in C intersect properly in at most s points. We assume that C has also
the connected intersection property which implies that for each pair of curves C,C" € C
the set disc(C') N disc(C’) is either empty or connected region (see Definition 1.0.1).

For every C' € C we denote Po = P Ndisc(C) and define a set system of P by
Feip = {FPc|C € C}. We call Fep the restriction of C to P.

With this notations and definitions we state the main Theorem of this Chapter:

Theorem 2.1.1. Let P be a set of n points in the plane and let C be a family of simple
closed Jordan curves that has the s-intersecting property, for some integer s > 2, and the
connected intersection property as well. Then the VC-dimension of the set system Fe|p is
at most s + 1.

The next Corollary follows immediately from Theorem 2.1.1 and the Shatter Function
Lemma:

Corollary 2.1.2. Let P be a set of n points in the plane and let C be a collection of simple
closed curves, each of which surrounding a unique subset of P. If C has the s-intersecting
property and the connected intersection property then |F|=|C|= O(n**t1).

We will show further that this upper bound on |C| is tight up to a multiplicative
constant.



Theorem 2.1.3. For all n € N, there exists a set of n points P and a collection of
simple closed curves C, that has the s-intersecting property and the connected intersection
property, such that any curve in C surrounds a unique subset of P and |C|= Q(n**1).

Theorem 2.1.3 and the Shatter Function Lemma imply that the upper bound on the
VC-dimension of F in Theorem 2.1.1 is best possible.

2.2 Preliminaries

One of the most famous results in combinatorial geometry is Helly’s theorem ([10]):

Theorem 2.2.1. Let Ry, Ro, ..., R, be convex sets in the plane. Suppose that the inter-
section of every three of these sets is nonempty. Then the intersection of all the sets is
nonempty.

The next lemma is a generalization of Helly’s theorem proved by Molnér ([11]):

Lemma 2.2.2. Any finite family of at least three regions in the plane has a nonempty
simply connected intersection, provided that any two of its members have a connected
intersection and any three have a nonempty intersection.

We will need also the following lemma that can be found in [1]:

Lemma 2.2.3. Let C be a family of closed curves that has the connected intersection
property. Assume that all the curves in C surround a common point O. Then for every
subset D C C, Ugepdisc(C) is simply connected.

Before getting to the proof of Theorem 2.1.1, we need one more crucial lemma:

Lemma 2.2.4. Let C be a finite family of closed curves. Assume that the union of the
closure of any number of discs bounded by curves in C is simply connected. Let y be an
arbitrary point in R? \ UcecC. Consider the family C, C C of all the curves in C that
surround y. Then there exists a Jordan arc, connecting y to a point at infinity, that
intersects every curve in C, exactly once and avoids all the curves in C\ C,.

Proof. We shall prove the lemma by induction on |C,|. The case |C,| = 0 is easy because
in this case y € R?\ Ugecdisc(C'). Because we assume that the union of all discs is simply
connected and hence R? \ Ugeedisc(C) is a unbounded connected set. In particular there
exists a Jordan arc, contained in R? \ Ugeedisc(C), that connects y to a point at infinity.

Suppose |C,| > 0. The induction hypothesis states that for any point p € R? \ UgeeC
with |C,| < |C,], there exists an arc, connecting p to a point at infinity, which intersects
every curve in C, exactly once and avoids all the curves in C \ C,. The arrangement of
curves in C can be viewed as a drawing of a planar graph with a vertex set V', consisting
of all the intersection points of curves in C, together with a set of edges F, consisting of all
the connected components in UcecC'\ V. There exists a face F), in this arrangement that
contains y. The face F,, must be bounded since |C,| > 0. An edge of F, will be called an
inner edge if it is a portion of a curve in C,. We claim that F,, must have an inner edge.
To see this, assume to the contrary that F, does not have an inner edge. Consider the
set of all curves in C which contain an edge of F}, and let U be the union of all the discs
bounded by these curves. By our assumption, U is a simply connected region. Observe
that y ¢ U, and any arc from y to infinity must cross U. Thus R? \ U is not connected,
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hence U is not simply connected, which yields a contradiction. We conclude that F, must
have an inner edge. Let us choose an inner edge of F}, and draw an arc v, starting at
y, which crosses the inner edge once and does not cross any other curve. Denote by =
the endpoint of 7. Observe that every curve in C that surrounds z must surround y as
well, i.e. C, C C,. Moreover, |C,| = |C,| — 1. By applying the induction hypothesis on
x we get an arc 7,, connecting x to a point at infinity, that intersects every curve in C,
exactly once and avoids any other curve. By adjoining 7 to 7y,, we obtain the desired arc
connecting y to a point at infinity. B
Lemma 2.2.3 and Lemma 2.2.4 can be combined to the following Lemma:

Lemma 2.2.5. Let C be a family of closed curves that has the connected intersection
property. Assume that all the curves in C surround a common point O. Let y be an
arbitrary point in R?* \ UcecC. Consider the family C, C C of all the curves in C that
surround y. Then there exists a Jordan arc, connecting y to a point at infinity, that
intersects every curve in C, exactly once and avoids all the curves in C\ C,.

2.3 Sketch of the Proof of Theorem 2.1.1

Our goal is to show that F can not shatter any s 4+ 2 points subset of P. Assume to
the contrary that F shatters a set S = {v1,...,v5:2} C P of s+ 2 points, i.e. for any
subset V' C S, there exists a curve C' € C with Po NS = V. For every pair v;,v; € 5,
consider the set of curves C;; C C consisting of all the curves in C that surround both v;
and v;. Consider also the set I2;; of all the points in the plane which are surrounded by
every curve in C;;. Since C has the connected intersection property, Lemma 2.2.2 implies
that R;; is a connected region. Upon drawing an edge (v;,v;) between v; and v; inside
the region R;;, we obtain a drawing of the complete graph on s + 2 vertices, K2 as a
topological graph in the plane that we denote by G = (S, E). We shall investigate the
special properties of GG, that will eventually lead us to a contradiction.

2.3.1 The Convex Case

To understand the properties of GG let us consider a special case of the problem in which
the points are in convex position and the discs bounded by curves in C are convex sets.
Since the points in P are in convex position, there is a cyclic order on the points S =
{v1,v9, ..., 0542} starting at a point v; and moving on the convex polygon formed by the
s-+2 points, counter-clockwise. Note that the intersection of the disc bounded by any pair
of curves in C is either empty or convex. Therefore, the connected intersection requirement
is automatically valid and we only need to require that C has the s-intersecting property.
By Helly’s Theorem it follows that for every pair of points v;,v; € S, R;; is a convex
region. We draw a straight segment between v; and v; inside the region R;; for all ¢ and
j and obtain a drawing of K, as a geometric graph to which we also refer as K o (see
Figure 2. 1).

We will show the existence of two curves in C that intersect s+ 2 times and thus obtain
a contradiction.

Consider the following two subsets of S

S1 =A{vli is odd} Sy = {v;]i is even}

11



Since F shatters S, there are curves C, Cy € C such that Po,NS = 57 and P, NS = Ss.
As figure 2. 1 illustrates, C'; and C5 intersects s+ 2 times. We will prove it more formally
in the general case.

This observation in the convex case motivated us to search for a similar behavior in
the more general case. We will show that there exists a cyclic order on S such that every
pair of edges ej,es € E cross each other an odd number of times if and only if their
corresponding edges in K, o cross.

Vi V,
Vg Vs
V; Vs
Ve Vs
Case s=6: we obtain adrawing of. Kg One curve surrounds all the vertices with odd indices

and the other curve surrounds all the veritces with even
indices. The curves must intersect 8 times.

Figure 2. 1: The convex case for s = 6

2.4 Proof of Theorem 2.1.1

Using the same notation introduced above, we shall now prove few results that will help
us understand the topological graph G = (S, F).

Claim 2.4.1. Let x be a point in the plane that lies in R?\ Ugecdisc(C). Then for every
verter v; € S one can draw an arc y;, connecting v; and x, that does not intersect any
curve C' € C with P NS = S\ {v;}. Moreover, this drawing can be such that no two arcs
vi and 7y; cross.

Proof. Let D be the subset of C consisting of all the curves C' € C with [P N S| = s+ 1.
Since s > 2 it follows that |D| > 3 and that any three discs bounded by curves in D
have a non-empty intersection. Furthermore, because D C C, any two discs bounded by
curves in D have a connected intersection. By Lemma 2.2.2, there exists a point in the
plane that is surrounded by all the curves in D. By Lemma 2.2.3, the union of any set
of discs bounded by curves in D is simply connected. Thus, for every vertex v; € S one
can apply Lemma 2.2.4 and draw an arc -;, connecting v; with x, such that ~+; avoids any
curve C' € D with Po NS = S\ {v;} and crosses any other curve in D exactly once. From
all the possible drawings of such arcs, we pick one with minimum number of intersection
points among the v;’s. We shall prove that this minimum is 0. Assume otherwise, then
there exists a pair of arcs ; and 7; that cross at a point ¢g. We denote by v; , and v;, the
portions of v; and -y, respectively, which connect ¢ with z. Both v;, and ;, avoid the
curves in D which do not surround ¢ and intersect once the curves in D which surround
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q. By swapping the portions 7;, with 7,, and by a small modification of the drawing,
we can eliminate the crossing point ¢ and obtain a new drawing of arcs that has one less
crossing point. See Figure 2. 2. This new drawing still satisfies the property that for
every t, each =, crosses the curves in D which surround v; exactly once and avoids all the
other curves in D. This constitutes a contradiction to the minimality of the number of
intersection points among the arcs ~; in the selected drawing. I

) @

Thearcs Y1, Y2crossing After asmall modification of the drawing and
swapping the arcs portions, the arcs do not cross

Figure 2. 2: Eliminating intersection point between two arcs

Let us draw an arc ~; for every v; € S according to Claim 2.4.1. Pick an arc, say
~1, and define a cyclic order on the arcs +;, according to the counterclockwise order in
which they reach z, starting with 7;. Assume without loss of generality that this order is
(V15 -+ Ys42). Then (vy,...,v542) is a cyclic order on S.

Claim 2.4.2. For every four distinct vertices v;,v;, v, v, € S the edges (v;,v;) and
(v1, vm) of the graph G cross an odd number of times if and only if i and j separate | and
m in the natural cyclic order of (1,...,s+ 2).

Proof. We denote by A;; the closed curve that is composed by the arcs 7;,7; and the
edge (v;,v;) in G. We define A, similarly. The curves A;; and Ay, meet at x. Observe
that any other intersection point between A;; and A, must be an intersection point of
the edges (v;,v;) and (v;,vy,). To see this, recall that in our drawing no two of the arcs
Y1, ... ,Vsi2 cross. Moreover, an arc 7, connecting v; to x may cross only those edges of
(G that are incident to v;. This is because F shatters S and therefore there exists a curve
C € C with Pe NS = S\ {v}. By the construction of 7; it avoids disc(C'). Since any
edge in G, not incident to vy, is contained in disc(C'), 44 cannot cross any edge that is not
incident to v;. We conclude that any intersection point between A;; and Ay, other than
x, must be an intersection point of the edges (v;,v;) and (v, vy,). If ¢ and j separate [ and
m in the natural cyclic order (1,...,s+2), then the curves A;; and Ay, properly cross at
2. The number of intersection points between two closed curves is even and therefore the
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edges (v;,v;) and (v, vy,) must cross an odd number of times. If ¢ and j do not separate [
and m in the natural cyclic order, then A;; and A, touch at z. As all other intersection
points between A;; and Ay, are intersection points of (v;,v;) and (v, vy,), it follows that
(vi,vj) and (v, v,,) cross an even number of times. See figure 2. 3 1

X X

Yn
v
Vin A
The edges (V; ,Vj )and (V,,V,,) intersect an odd number The edges (V; ,VJ- ) and (V,,V,,) intersect an even number
of times, sincei and j separate| and min the cyclic order of times, sincei and j do not separate | and m in the cyclic
order

Figure 2. 3: The oddness of the number of intersections between the edges (v;,v;) and
(vla Um)

We consider the following two subsets S; and Sy of S:
Sy ={v; € S|iisodd} S = {v; € S| iis even}.

Since F shatters S, there exist curves Cy, Cy € C such that P-, NS = S5; and
Po, NS = 5;. We will show that the curves €} and (5 intersect in at least s 4+ 2 points
and obtain a contradiction to the assumption that C has the s-intersection property.

We call each connected component of disc(Ch) \ disc(Cy) an ear. Similarly, each
connected component of disc(Cy) \ disc(Cy) is called an ear. We say that C) enters
(5 at a crossing point u of C] and C} if a small enough portion of C; that starts at u and
continues in the counterclockwise orientation along the curve C} is contained in disc(Cy).
Otherwise we say that C) leaves Cy at u. We use a similar terminology with respect to

Cy.

Claim 2.4.3. Let C7 and Cy be two curves with the connected intersection property.
Assume that uy, us, ..., uy, is the set of intersection points of Cy and Cy arranged in a
counterclockwise order along Ci and wy,ws, ..., w, s the same set of the intersection
points of Cy and Cy arranged in a counterclockwise order along Cs, and assume without
loss of generality that uy = wy. Then u; = w; for everyi=1,...,m.

14



Proof. Assume to the contrary that u, # wy, for some 1 < k < n, then without loss of
generality we can assume that k = 2 (otherwise, let ¢ be the maximum index such that
u; = w; and replace u; with u;). Without loss of generality assume that Cy enters C
at u;. Then C] leaves Cs at u;. We will get a contradiction by showing that ws = us.
Assume to the contrary that ws = wu; for some 2 < j < m. Then uy = w; for some
2 < I < m. The curve C'| must enter Cy at the point us = w; because it leaves Cy at
uy. Therefore, Cy leaves C; at w; and consequently must enter C; at the point w;_;. It
follows that the portion ¢ of Cy between w; and w, in the counterclockwise direction along
(5 is contained in disc(Cy). Similarly, the portion ¢ of Cy between w;_; and w; in the
counterclockwise direction along Cy is contained in disc(C}). 6 and ¢ split disc(Cy) into
three regions A, A, and As, where A; is the region bounded by § and a portion of (',
Ay is the region bounded by both § and ¢ and two portions of C, and As is the region
bounded by ¢’ and a portion of Cy. The portion v of C; between u; = w; and uy = w;
in the counterclockwise direction along C is connecting a point on ¢, namely, w;, with
a point on ¢’, namely, w;. Since u; and us are the only intersection points of C and Cs
on 7, it follows that 7 is contained in the boundary of A,. Because C; leaves Cy at uq
and enters Cy at ug, it must be that v lies entirely outside of disc(Cs). It follows that the
interior of A; must contain points of disc(C}) Ndisc(Cy), and similarly, the interior of Az
must contain points of disc(C;)Ndisc(Cy). This is a contradiction to the assumption that
the interior of disc(C}) N disc(Cy) is a connected set. We conclude that u; = w; for every
1=1,...,mI

Claim 2.4.4. If Cy and Cy properly cross in exactly m points, then they create precisely
m ears.

Proof. Let uy, us, ..., u,, be the set of intersection points of C; and Cy arranged in a coun-
terclockwise order along (. By Claim 2.4.3 this set is the set of intersection points of C}
and Cy arranged in a counterclockwise order along C5. For every 1 < ¢ < m the portion
of €1 and C between u; and (i 41)mod(m) forms an ear. Hence, there are at least m ears.
We consider C; UC)y as a planar graph with m vertices and 2m edges. By Euler’s formula
we have m — 2m + F = 2, where I is the number of faces created by C; and C5. Hence,
F = m + 2. This count includes the unbounded face, namely R? \ (disc(Cy) U disc(Cy)),
as well as the intersection disc(Cy) N disc(Cy). We deduce that there are exactly m ears.

We now show that the curves C; and Cs cross in at least s + 2 points and thus obtain
a contradiction to our assumption that C has the s-intersection property.

Note that each vertex in 5] is surrounded by C; but not by Cs. Therefore, each vertex
in S; belongs to an ear. Similarly, every vertex in S5 belongs to an ear. Obviously, a
vertex in S; and a vertex in S5 cannot belong to the same ear.

We claim further that even if v; and v; are two vertices which belong to S;, then
they cannot belong to the same ear (we argue similarly if the two vertices belong to Ss).
Assume to the contrary that v;,v; € S; belong to the same ear R. R is contained in
disc(Cy). Draw an arc 7 inside R connecting v; to v; (see Figure 2. 4). The edge of
G connecting v; and v; together with « form a closed curve C that lies inside disc(Ch).
The vertices v;41,v,41 € S are surrounded by Cy but not by C) and therefore, any arc
connecting v; 41 and vj.; must cross C an even number of times. By Claim 2.4.2, the
edge of G between v;41 and v;1; crosses the edge of G between v; and v; an odd number

15



of times but does not cross v, as 7 lies entirely outside disc(Cy). Hence, the edge of G
connecting v; 41 and v;41 crosses C' an odd number of times, a contradiction.

Lo T T TN
] N
\

’
Vit

Figure 2. 4: The curves C and Cs

We conclude that each vertex in S belong to a unique ear.

This implies that there are at least s+ 2 ears. It follows from Claim 2.4.4 that C; and
C5 intersects in at least s + 2 points, which is the desired contradiction.

This also concludes the proof of Theorem 2.1.1, as we have shown that F does not
shatter any set of s + 2 points. I

2.5 Proof of Theorem 2.1.3

It is an immediate corollary of Theorem 2.1.1 and the Shatter Function Lemma that if
P is a set of n points in the plane and C is a family of simple closed curves with the
s-intersection property and the connected intersection property, then F = {P¢ | C' € C}
consists of O(n*™!) members.

We will show, by a construction, that this bound can indeed be attained. For every
fixed even number s > 2, we will construct a set of n points P and a family C of bi-
infinite z-monotone curves with the s-intersection property such that F = {Po|C € C}
consists of Q(n*™') members, where Pg is defined as the set of all points in P that lie
bellow C. A bi-infinite z-monotone curve is a curve that intersects every vertical line
exactly once. Note that the intersection of the regions below each pair of curves in C is
a connected region, and therefore any collection of bi-infinite z-monotone curves satisfies
the connected intersection property. It is then an easy exercise to modify C to a family of
s-intersecting simple closed curves that has the connected intersection property, closing
each curve at infinity.

Let P be the set of integer lattice points P = {(a,b) | I <a <s+1land 1 <b< 25}
Then for every (s + 1)-tuple (by,...,bss1) € {1,..., 27 }**, let Gy, _s,,, be the graph

-----
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of the polynomial of degree at most s passing through each of the points (i,b; + %) for
1=1,...,5s+ 1. Let C be the collection of all these curves.

Since each of the curves in C is a graph of a polynomial of degree at most s, it follows
immediately that C has the s-intersection property. Finally, note that the number of
curves in C is (;27)**! = Q(n°*'). Each curve in C determines a unique subset of P, Fe,
consisting of all the points in P that lie bellow C. Therefore |F| = Q(n*!) and by the

Shatter Function Lemma, the VC-dimension of F is at least s + 1.
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Chapter 3

Sweeping an Arrangement of
s-Intersecting Curves By a Ray

3.1 Introduction and Basic Definitions

In this chapter we prove Theorem 3.1.1, which is a generalization of a result of J. Snoeyink
and J. Hershberger [15], stated in Theorem 1.0.6. But first we need to define the notion
of sweeping an arrangement of curves by a ray. An arrangement of curves is a quadruple
(C,V(C),E(C),F(C)). C is a finite set of simple closed curves in the plane. We denote
the arrangement by C as well. We assume that every curve is intersected by any other
curve of C only finitely many times. We assume throughout this work that at any point
in which two curves meet they intersect properly and never just touch. A wvertex of C is
an intersection point of at least two curves in C. An arrangement is simple if no three
curves share a common point. We assume in this work that the arrangements are simple.
V(C) is the set of vertices of C. An edge of C is a connected component of (UgecC)\ V(C).
E(C) is the set of edges of C. A face of C is a connected component of R? \ UgecC. F(C)
is the set of faces of C. In this thesis a ray is an oriented Jordan arc that starts at a
point and goes to infinity. Suppose the curves in the arrangement C surround a common
point O, and that there is a ray v, that starts at O and intersects each curve exactly
once. By sweeping the arrangement of the curves by the ray v, we mean that we can
move the ray continuously around the point O, say counter-clockwise, such that the ray
never intersects any curve of the arrangement more than once. More formally, we denote
by I' the collection of all the rays starting at O and intersect each curve in C exactly
once. Every ray v € T’ can be thought of as a continuous function 7 : [0, 00) — R?, where
v(0) = O. A sweep of C by the ray v is a continuous bijective map ¢ : [0,1] — I" such
that:

e ¢(0) =¢(1) =1.
e For any s,t € [0,1), ¥(s),¥(t) never cross each other.

We sometime refer 1(s) by its image vs.

It follows immediately by its definition that a sweep by a ray is a process that moves
the ray around its starting point in either clockwise or counterclockwise direction. From
this point on, whenever a sweep by a ray is mentioned, we mean to a sweep that moves
the ray in the counterclockwise direction.

We are now able to state the main result of this Chapter:
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Theorem 3.1.1. Let C be a finite family of simple closed Jordan curves surrounding a
common point O. If C has the connected intersecting property, then C can be swept by a
ray.

3.2 Proof of Theorem 3.1.1

In order to prove Theorem 3.1.1 we must show the existence of a ray -, by which we wish
to obtain a sweep. Because C has the connected intersection property, and all the curves
in C surround a common point, it follows immediately from Lemma 2.2.3 that for every
subset D C C, Ucepdisc(C) is a simply connected region. We can now apply Lemma 2.2.4
to obtain a ray -, starting at O and intersecting each of the curves exactly once. Although
a sweep by a ray is a continuous process, we can carry it out in discrete steps. Suppose
we have already defined the map ¢ in the interval [0, s] for some s € (0,1). We can carry
out the sweep as long as we do not meet a vertex of the arrangement. Every point in
the plane that lies on a ray (t) for some ¢t € [0, s] is said to be covered by the sweep
and we say that the sweep covers this point. Let Vi C V(C) be the set of all intersection
points of curves in C that the sweep has not covered. Let {wy,ws,..,w,}, {u1,...,u,} be
the intersection point of 7y, vs respectively with the curves in C according to the order in
which g, s intersect the curves. Assume that none of the points {w;}, {u;} belongs to
V(C). For a face f € F(CU {v,7s}) we say that v, sees the face f if the sweep hasn’t
covered the face and if one of the edges of f is a portion of 7,. We say that ~, sees an
edge e € E(C) if e belongs to a face that v, sees. We say that 75 sees a vertex v € V(C) if
v belongs to a face that 74 sees. Clearly, the sweep can progress through a vertex of the
arrangement if it belongs to a triangle (a face with three edges) that ~, sees, see Figure
3. 1. So in order to show the existence of a sweep by the ray v, we need to show that ~;
sees a triangle, for every s € [0, 1] for which the sweep is well defined in the interval [0, s],
except from the stage at which the sweep has covered all the intersection points of C. In
that stage 75 sees {wy, ..., w,} and the sweep can be completed.

Ys

Figure 3. 1: A sweep v

For every curve C' € C we define o : Vs N C — {1,2,....|Vs N Cl} s.t. ne(v) is the
position of v on the portion of C' that the sweep has not covered yet, starting with the
intersection point of C' with v, and moving on C' in the counterclockwise direction, see
Figure 3. 2. Since every vertex of the arrangement lies on exactly two curves, we assign
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to an intersection point v of two curves C, C” two positive integers, namely, nc(v), ner (v).

Figure 3. 2: n¢

Recall that our aim is to show that v, sees a triangle, and observe that v, sees a
triangle if and only if there are pair of curves C,C" € C and a vertex v € V, NC' N’ s.t.
ne(v) = ner(v) = 1. To this end we would like to define a partial order on V:

Definition 3.2.1. Let v, v € Vj such that v, v lie on the same curve C' € C. We say that
v < 0 ne(v) < ne(v).

<. 1s a relation on V;. We define the relation < on V, as the transitive closure of <.:

Definition 3.2.2. Let v, € V,. We say that v < v if there exists a sequence v; =
v, Vg, ..., U, = U € Vi such that v; <, vy <, ... <, v,.

Claim 3.2.3. (Vi, <) is a poset.

Proof. The relation < is anti-reflexive: assume that v < v, then there are vertices
v = vy,...,v, = v such that v; <, vy <, ... <, v,. We assume without loss of generality
that r is minimal. For each i € {1,2,...,r — 1} the points v;, v;1; lie on some curve C;.
Denote the portion of C; connecting v; with v;; by e;, we obtain a drawing of a cycle.
Since the edges of this cycle are all oriented at a counterclockwise direction, there are
only two possible cases:

Case 1: The direction of the cycle is clockwise. Let y be a point inside the cycle. Since
C has the connected intersection property, and all the curves in C surround a common
point, we can apply Lemma 2.2.3 and Lemma 2.2.4 to conclude that there is an arc from
y to infinity that intersects every curve in C' at most once. This is clearly a contradiction,
since every ray starting at y must enter one of the curves C;, i € {1,2, ..., — 1}, thus it
must intersect C; at least twice.

Case 2: The direction of the cycle is counterclockwise. In that case O must be inside
the cycle. Assume to the contrary that O is outside the cycle and fix a point y inside the
cycle. Any arc from O to y must enter one of the curves C;, i € {1,2,...,7 — 1}. Since O
is surrounded by all the curves C4,Cs, ..., C._1, an arc from O to y that enters C; must
leave C; first. Then, any arc from O to y intersects one of the curves at least twice. This
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is a contradiction because by Lemma 2.2.3 and Lemma 2.2.4 there exists an arc from O
to y that intersects any curve at most once. We conclude that O is inside the cycle and
therefore, v, must intersect the curve C; for some i € {1,2,...,r — 1}. Since 7¢, numbers
the intersection points on C; according to their position in the counterclockwise direction,
starting from the intersection of C; with ~,, we conclude that n¢, (vit1 < n¢,(v;), which
implies that v;11 <, v; and so we have reached a contradiction.

< is transitive: If v < v and u < w then there are vertices v = vy, vs...,v, = u and
u = U1,09...,0s = w such that v <, v9 <, ... <, v, and v; <, Uy <4 ... <4 Us. The
sequence v = vy, ..., Uy, Ua, ..., Us = w implies that v < w.

< is anti-symmetric. If v < v and v < v then by transitivity v < v, but we have
already proved that < is anti-reflexive.

< is anti-reflexive, anti-symmetric and transitive, and thus (V;, <) is a poset.l

Since (V;, <) is a finite poset, V5 has a minimum point v. Clearly, v € V, N C' N’ is
a minimum if and only if nc(v) = ner(v) = 1. Then 7 sees a triangle and the sweep can
pass v. This shows that the arrangement C can be swept by a ray and concludes the proof.l

It follows from Theorem 3.1.1 that a collection of s-intersecting simple closed curves,
that are surrounding a common point and satisfy the connected intersection property, can
be realized, after one-to-one and continuous transformation of the plane, as a collection of
s-intersecting bi-infinite z-monotone curves. Let P be a set of n points in the plane and
let C be a family of s-intersecting bi-infinite x-monotone curves, where s > 0 is an even
integer. Let F be the set system on the ground set P, consist of all the subset S C P
for which there exists a curve C' € C such that S is the set of all the points in P that lie
below C'. For any integer 0 < k < |%] we define Fe pj, = {S € F||S| = k} . In [4] the
authors prove Theorem 1.0.7 that states that |F¢, x| = O((kn)2) and this upper bound
on |Fe.pk| is best possible. Combining Theorem 1.0.7 together with Theorem 3.1.1 we
obtain the following Corollary:

Corollary 3.2.4. Let P be a set of n points in the plane and let C be a family of simple
closed Jordan curves surrounding a common point O. If C has both the s-intersecting
property, for some integer s > 0, and the connected intersecting property as well, then the
number of sets in F = {P N disc(C)|C € C} of cardinality k < |2] is O((kn)2). This

2
upper bound is best possible.
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Chapter 4

Paths With No Small Angles on
Points in Convex Position

In this Chapter we deal with a special case of a problem of S. Fekete and G.J Woeginger
([8] and [9]). Given a set X of n points in the plane, an ordering of the points of X,
r1%s...x, is identified with a polygonal path P on X: Its edges are the straight segments
connecting x; to x;1;. An edge connecting z,y € X is denoted by (z,y). The angle of
P at x; is £x;_1x;x;11. A path is called a-good if all of its angles are at least o, where
a > 0.

Fekete and Woeginger have conjectured that for every finite set X of points in the
plane, there exists a £-good path on X. In [3] Bardny, Pér and Valtr proved the existence
of §-good path on every finite set of points in the plane. They also generalized this
result to higher-dimensional spaces and proved that for every d > 2 there is a positive
a4, depending only on d, such that for every finite set of points X € R? there exists an
ag-good path on X. In [2] Bardny and Pér have generalized this problem to an infinite
set of points in the plane, and proved the existence of a-good path, with o = . In this
chapter we focus on a special case of the problem, where X is a set of points in the plane
in convex position. A set of points X in the plane is in convex position if the points in X
are the vertices of some convex polygon.

The main result of this chapter is the following:

Theorem 4.0.5. Let X be a set of points in a convex position in the plane. Then there
exists a Z-good path on X.

This result cannot be improved:

Claim 4.0.6. For every integer n > 5, there exists a set X of n points in the plane in
convex position with no a-good paths, for any a > .

4.1 Proof of Theorem 4.0.5

The points in X are the vertices of some convex polygon which we denote by conv(X).
A convex polygon has at most two angles less than . This is true since the sum of every
three angles in a convex polygon is at least 7, as every three vertices form a triangle that
is contained in the convex polygon, and therefore, has angles that are not greater than
the angles of its vertices on the polygon. In particular, a convex polygon has at most two
angles less than £. We prove Theorem 4.0.5 by case analysis.
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In case conv(X) has no angle less than T, we can obtain a good path by omitting one
of the edges of dconv(X) (the boundary of conv(X)). See the left side of Figure 4. 1.

In case conv(X) has exactly one angle less than T, we can obtain a good path by
omitting one of the two edges of dconv(X) incident to that angle. See the right side of

Figure 4. 1.

~<--____ .z

Case thereis no angle less than g Case thereis one angle less than g

s

Figure 4. 1: Case there is at most one angle less than %

The only non-trivial case is the case in which conv(X) has exactly two angles that
are less than . In this case any other angle of conv(X) must be at grater than 3?“ Let
x,y be the vertices of the two small angles of conv(X). Note that x,y must be the end
vertices of every good path. We define the distance of © and y on dconv(X), which we
denote by d(z,y), as the number of edges in the smallest path on dconv(X) connecting
x and y. For every pair of points x1, 25 € X, we denote the straight segments connecting
x1 and x5 by (21, x9). For every three points xi, 22, x3 of X we denote the angle between
(1, 22) and (xq,x3) by Lrizo23.

We continue the proof by case analysis according to the distance of x and y.

Case d(z,y) = 1: In that case the straight segment (z,y) is an edge of dconv(X).

By omitting the edge (z,y) from dconv(X) we obtain a Z-good path on X. Figure 4. 2
illustrates the £-good path on X.

Figure 4. 2: The path P in case d(x,y) = 1

23



The rest of the proof is by induction on |X| = n, where n > 7. Note that the remain-
ing cases are possible only if n > 4. We will later show the basis of the induction for
n € {4,5,6}.

Case d(z,y) = 2: there exists a point z € X such that (z,z) and (z,y) are edges
of dconv(X). We denote all the other vertices of conv(X) by wuy,ug, ..., u,_3 such that
Yuis...U, 322 is cyclic order in which the points lie on dconv(X). The following claim
will help us to narrow down the possibilities of the configuration of the points in P.

™

Claim 4.1.1. 1. We may assume that the angle £zujuy is at least %,

KZun—?)un—4 Z % .

and similarly,

s

2. We may assume that the angle £xzu, 3 is less than %,

and similarly, £yzuy < %.

Proof. Assume that £zujus < %. Since Lyujus > 3?” it follows that Lyu;2 > . By the
induction hypothesis we can find good path on the points X \ y that connects u; and x.
By adding to this path the edge (y,u;) we obtain a good path on X and conclude the
proof of 1.

In order to proof the second part of the claim, let us assume that Lzzu, 3 > . It
follows by 1 that xzu, _3u,_s...usu y is a good path.i

The left side of Figure 4. 3 illustrates the configuration of the points under the
assumptions we made above according to Claim 4.1.1. The double arc symbol indicates

that the angle is at least £ and the single arc indicates that the angle is less than %.

Figure 4. 3: The path P in case d(z,y) = 2

Since every other angle in dconv(X) is at least %’r we deduce that Lujzu,_3 = Lrzy —
Lrzun,_3 — Lyzu; > %. Clearly, every angle of a convex polygon which is formed by a
subset of X that contains x and y, must be at least %’r Then Lyusuy, Lujusx > 3?” and
the path yusuy...u, 3zuiusx is Z-good. See Figure 4. 3.

Case d(z,y) = 3: There are two points z,w € X such that (z,z2), (z,w), (w,y) are
all edges of dconv(X). We denote all the other points in X by wy,...,u,_4 such that
YU Us... U, gxzw is cyclic-order in which the points lie on dconv(X).
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Claim 4.1.2. We may assume that the angle Luywz is at least T, and by symmetry,
LW2Up g, £ 2Up—gUp—5, LWULUy are al least F.

Proof. The proof is similar to the proof of Claim 4.1.1. Assume that £Lzwu; < %, then
Lywuy > 2% By the induction hypothesis there is a £-good path on the points X \ {y}
which connects w and x. Adding to this path the edge (y,w) we obtain a Z-good path
on X1

We denote two of the angles of the triangle formed by vy, u,_4, 2 by a = Lyzu, 4,3 =
Lyu,—4z. At least one of the angles «, 3 is grater or equal I, see Figure 4. 4.

Either a orp are at Ieasg

Figure 4. 4: Case d(x,y) =3

If 3 > %, then the path yu, szwujus...u, sz is Z-good. This path is illustrated in
Figure 4. 5.

Figure 4. 5: Case d(z,y) =3 and 8 > £

We may therefore assume that 5 < £ and by symmetry, we may also assume that the
angle v = Lwu;r < §. We deduce that a > £ (see Figure 4. 6). Since two of the angles
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of the triangle formed by w,u;,z are less than % it follows that the angle £rwu, is at

least, %’r Then the path yzu,—4u,—3..uywz is g-good.

Figure 4. 6: Case d(v,y) =3 and 3 <

Case d(x,y) > 4: Let zuy,us,...ug, y,v1, V2, ..., Uy_g_o denote the points in X ac-
cording to the counter-clockwise order in which the points lie in dconv(X). We assume
that k,n — 2 — k > 3. Consider the triangle formed by vy, v, _r_o and u;. At least one
of its angles other than Av,_p_oyu; is at least T, say a = AYvy_p_oUy > z. Then
YUn—gp—2uu2.. . upvlv2..v, 3 is a -good path on S, as illustrated in Figure 4. 7 below.

Figure 4. 7: The path P in case d(x,y) > 4

4.1.1 The Basis of the Induction

In order to prove the basis of the induction we need to show the existence of a Z-good
path on every set X of n € {4,5,6} points in the plane in a convex position for which
conv(X) has two angles that are less then T and the vertices of the small angles are at
distance at least 2 on dconv(X).

Case n = 4: Let X = {x,y,z,w} and assume that x,y are the vertices of the small

angles in conv(X). Then z,z,y,w is a cyclic order in which the points in X lie on
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Odconv(X). We can argue the same as in the first part of Claim 4.1.1 to reduce this case
to a case in which the angles £Lzwy, £ 2wz, Lwzy, Lwzx are at least . Then rzwy is a
£-good path.

Case n = 5: Denote the points in X by x, uy, us, y, z according to the cyclic counter-
clockwise order in which the points lie on deconv(X). By applying the same arguments as
in the proof of Claim 4.1.1, we can assume that the angles £ zujus, £zusu; are at least z
and that the angles £xzu, £yzuy are less than £. Then the path zu;zusy is F-good (see
Figure 4. 8).

Figure 4. 8: Case n =5

Case n = 6: In that case d(z,y) € {2,3}. If d(z,y) = 2, we denote the points in X
by x,uq, us, us, y, z according to cyclic order in which they lie in dconv(X). Arguments
similar to those argued at the proof of Claim 4.1.1 can be applied to reduce to a case in
which Lxzuy, Lyzuz < § and £Lzujus, Lzuszug > £. It follows that the angle Lu;zuz > %.
If both angles £uyzug, Luszug are at less than T, then £yu;z > £ because the sum of the
angles Lyuyz, Luyzus, Luszus, Luzzy and £ zyu, is 7. In that case, the path zususzuqy is
£-good. We may therefore assume without loss of generality that £u;zus; > T. One of the
angles Lujusz, Lususz is at least oIt Lugugz > %, then the path zujuzzuzy is Z-good.
Then we may assume that Lujugz < T and Lugupz > %. It follows that Lujzuy > %,
because the angles of the triangle formed by x,us and z must sum to 7. Figure 4. 9
illustrates the assumptions we made so fur.

The path zu;zususy is F-good (see Figure 4. 10). This covers all possible configura-
tions of six points in the case d(z,y) = 2.

If d(x,y) = 3, we denote the points by z,uy, us, y, v1,ve according to cyclic order in
which the points lie in deconv(X). We can argue as in Claim 4.1.2 to conclude that we
may assume that £uyvavy, Lvaviug, Lvau vi, Lviuguy are at least £. If Lxviv2 > £, then
rv1v2uiugy is a I- good path. Then we may assume that Lxvivy < £ and similarly,

the angles Axu2£1,4yu1u2,éyv2v1 are less than £. Consider the triangle formed by
x,us, and v;. One of the angles {xvius, £xusv; must be at least 2 Similarly, one
of the angles £yvouy, Lyu vy, of the triangle formed by y,u;,ve is at least Z. If both
Lrviug, Lyvouy > £ then the path zviusuivey is Z-good. If Lrviug, Lyvouy < T, then
TUV1vou1Y is @ £-good path. Therefore, we may assume that Lyvou; < T and Lrviug > %
and similarly, we may assume that Lyujve > £ and Axusu; < £. We conclude that the
angles £xvouy, Lyusvy are at least oI Aruiv9 > %, then zujvaviugy is a £-good path.
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u,

X
Figure 4. 9: Case n =6 and d(z,y) = 2

Figure 4. 10: A -good path in the case n = 6 and d(z,y) = 2

Then we may assume that £zru;v, < % and similarly, Lyviv, < §. Figure 4. 11 illustrates
the assumptions we made above.

Consider the triangle yuqivy. If Lyuiv; < =2 then Lvjuv9 > =2 because the sum of the
angles £Lyu vy, Lyvauy, £voyuy and Lviuivy is w. Moreover, the angle Lujvius is at least
£ because the sum of the angles Luyviug, Lv1ury, Lyusus, £rusuy and Lrugvy is exactly
the sum of the angles of the triangle formed by u;,us and v; and therefore, equals to .
Then the path rvyujviusy is T-good. A symmetric case is when Lzviu; < . Then we
may assume that £Lyuiv; and Lxviu; are at least £ and the path zvviuiuzy is Z-good
(see Figure 4. 12).

This concludes the proof of the basis of the induction.
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X
Figure 4. 11: Case n = 6 and d(z,y) = 3

y
¥\\

A
Z

u;

Figure 4. 12: The path p in case n = 6 and d(x,y) = 3

4.2 Proof of Claim 4.0.6

Let a > £ be a fixed number, and let X be a set of n > 5 points in the plane, arranged

on a triangle as illustrates in Figure 4. 13.
Clearly, there are no a-good paths on X. Although the points in X are not in convex

position, they can be perturbed to a set of points in convex position with no a-good path.



N

Figure 4. 13: An example of n points with no a-good path, o > £
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