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Abstract

Flash memory is one of the most important types of non-volatile memory
(NVM) in use today. The high interest and many applications of such mem-
ories increase the importance of this research and lead to a wide range of
stimulating problems. Flash memory cells are electrically programable to
one of ¢ discrete states and therefore, can store logs ¢ bits. Reducing a cell
state into a lower state requires the erasure of the whole block to which the
cell belongs. This operation is very costly and should be avoided if possible.
To decrease the probability of over-shooting errors, charge is injected into a
cell over several iterations, which results in a slow programming. This PhD
research focus on two coding frameworks for flash memory: the asymmetric
limited magnitude error model and the rank modulation scheme.

The asymmetric limited magnitude error model addresses the inherit
asymmetric behavior of common error types in flash memory, under the rea-
sonable assumption that errors are not likely to exceed a certain limit. My
research in this context is restricted to the study of perfect error-correcting
codes. Using two concepts which are equivalent to perfect linear codes,
namely, lattice tiling and group splitting, constructions of perfect error-
correcting codes for the asymmetric limited magnitude error model are pre-
sented. It is also proved that perfect linear error-correcting codes for this
model do no exist for infinitely many parameters.

In many error models, error-correcting codes can be viewed as packings
of the n-dimensional Euclidian space with a certain shape. If the code is
perfect then the corresponding packing becomes a tiling, which is a parti-
tion of the space into translations of the shape. The asymmetric limited
magnitude error model is one example of such model. Another important
example is the binary symmetric channel for which error-correcting codes
can be viewed as packing of the n -dimensional Euclidian space with a shape
called the n-dimensional cross. The exact values of n for which a tiling with
the n-dimensional cross with arms of length half are presented along with
constructions of such tilings that are based on perfect coded for the binary



and ternary symmetric channels.

Rank modulation is a coding scheme that was designed to improve the
efficiency of programming a flash memory cell. Under this setup, data is
encoded into permutations which are derived by the relative charge levels of
the cells, rather than by their absolute levels. In this thesis the rank mod-
ulation scheme is studied for three fundamental concepts in coding theory;
perfect codes, systematic codes, and constrained codes. The main results in
this context include the nonexistence of some perfect single-error-correcting
codes, construction of systematic codes, and capacity computations of codes
under certain constraints.



Abbreviations and Notations

A — The set of integers

R —  The set of real numbers

e, — The rth unit vector.

0 —  The all-zero vector (the origin).

1 —  The all-one vector.

A" —  The Cartesian product of the set A,
A”déf{(al,ag, coan) ta; €A foralll <i<n}

u+S —  The translation of S C R™ by a vector u € R",
u+8d§f{u—i—x : x €S}

aS —  The multiplication of S C R™ by a scalar o € R",
anéf{a-x : x € S}

S1+ 8 — The addition of §1,S82 C R™,
Si+SYx+y : x€8), yeS)

[n] —  The set {1,2,...,n}.

[a, b] — The set {a,a+1,...,b},a,b€Z, a <b.

M — A multiset.

Sn —  The set of all permutations on [n].

S(la, b)) —  The set of all permutations on [a, b].

S(M) —  The set of all multipermutations on the multiset M.

G —  The graphic representation of S, with the Kendall’s
T-metric.

G(M) — The graphic representation of S(M) with the
Kendall’s T7-metric.

G¢ —  The graphic representation of S,, with the cyclic
Kendall’s T7-metric.

€ —  The identity permutation.

Too —  The multiplication of o € 5, and 7 € 5,,.
o a(i)défa(ﬂ(i)), for all i € [n].

o(S) — ForoeS,, SCR",



INCIRS

SK (Tl, ta U)
SK(’I’L, t)

SI (nv t> 0)
Sf(na t)
An,k

def
o(S)={(To(1)s Ta(2)s - - To(m)) * (T1,T2,...,20) € S}

A packing.

A tiling.

A set of points such that {x +S : x € P}

is a packing with §. Also called a packing.

A set of points such that {x+S : x € T}

is a tiling with §. Also called a tiling.

A lattice.

The volume of the lattice A.

The generator matrix of the lattice A.

The n-dimensionl unit cube centered at x € R",
CE)E{(Yr, v, yn) ER™ ¢ |z — 3] <05, 1 <i<n).
A code.

The expanded code of C.

The Hamming distance between x and y.

The Manhattan distance between x and y.

The Lee distance between x and y.

The cross distance between x and y.

The Kendall’s 7-distance between the permutations

o and 7.

The cyclic Kendall’s 7-distance between the permutations
o and .

The inversion distance between the permutations

o and .

The Hamming weight of x.

The Manhattan weight of x.

The cross weight of x.

The Kendall’s 7- weight of the permutations o.

The cyclic Kendall’s 7-weight of the permutations o.
The minimum Hamming distance between of the code C.
The minimum cross distance of the code C.

The (0.5, n)-cross scaled by two.

The n-dimensional chair for £, k € R".

The Kendall’s 7-sphere of radius ¢ centered at o € .S,,.
The Kendall’s 7-sphere of radius t centered at the identity
permutation € € S,,.

The inversion sphere of radius ¢ centered at o € 5.

The size of Sy(n,t,0).

The set of all permutations in .S, that satisfied the



Bnk

)

Sr(Agn,t,0)
Hn

S (S, t,0)
C(e)

C(e)

C(e, 9)

two-neighbor k-constraint.

The set of all permutations in .S, that satisfied the
asymmetric two-neighbor k-constraint.

The set A, , USi(n,t,0).

The set [n]™.

The set {y € S : du(y,x) <t}, for S C H,.

The capacity of two-neighbor k-constrained

codes, where k = O(n¢).

The capacity of asymmetric two-neighbor k-constrained
codes, where k = O(n¢).

The capacity of two-neighbor k-constrained
t-error-correcting codes, where k = ©(n¢) and t = ©(n?).
The capacity of asymmetric two-neighbor k-constrained
t-error-correcting codes, where k = ©(n€) and t = O(n?).



Introduction

Flash memory is a nonvolatile memory that is both electrically programmable
and electrically erasable. Its reliability, high storage density, and relatively
low cost have made it a dominant nonvolatile memory technology. In the
standard flash technology, every flash cell has g discrete levels and therefore
can store log, ¢ bits. The most conspicuous property of flash storage is its
inherent asymmetry between cell programming and cell erasing. While in-
jecting charge to a single cell is a fast and simple operation, reducing the
charge level of a single cell requires the erasure and reprogramming of a
large block of cells. Thus, a single-cell erase operation requires the cumber-
some process of copying an entire block to a temporary location, erasing it,
and then programming all the cells in the block. As a consequence, flash
cells programming is relatively costly in time and energy, since, in order to
avoid over-shooting errors, cells should essentially injected with their exact
designated charge level. The asymmetry between programming and erasing
of flash memory cells, causes significant error sources to change cell levels in
one dominant direction. Moreover, all reported common flash error mech-
anisms induce errors whose magnitudes (the number of level changes) are
small, and independent of the alphabet size, that may be significantly larger
than the typical error magnitude.

In this PhD research two coding frameworks for flash memory are stud-
ied: the asymmetric limited magnitude error model and the rank modulation
scheme.

The asymmetric limited magnitude error model addresses the asymmet-
ric nature of common errors in multi level cell flash memory. Errors in this
model are in one direction and are not likely to exceed a certain limit. This
means that a cell in level ¢ can be raised by an error to level j, such that
i1<j<qg—1landj—1i</{<q-—1, where £ is the error limited-magnitude.
Asymmetric error-correcting codes with limited-magnitude were proposed
in [2] and were first considered for nonvolatile memories in [9, 10]. Recently,
several other papers have considered these codes, e.g. [22, 23, 46, 102].



The rank modulation scheme has been proposed to improve program-
ming efficiency in flash memory [41]. Codes in this model are subsets
of Sy, the set of all permutations on n elements, where each permuta-
tion corresponds to a ranking of n cells’ levels. Permutation codes were
mainly studied in this context using two metrics, the infinity metric and
the Kendall’s 7-metric. Codes in S,, under the infinity metric were consid-
ered in [47, 75, 90, 92]. The Kendall’s 7-distance between two permutations
o,m € Sy is the minimum number of adjacent transpositions needed to
change ¢ into 7, where an adjacent transposition is the exchange of two
adjacent elements in a permutation. Under the Kendall’s 7-metric, codes
in S, with minimum distance d should correct up to L%J errors that are
caused by charge leakage and read disturbance. A comprehensive work on
error-correcting codes in S, using the Kendall’s 7-metric [44], is given in
[42]. In that paper [42] there is also a construction of single-error-correcting
codes using codes in the Lee metric. This method was generalized in [5] for
the construction of t-error-correcting codes that are of optimal size, up to
a constant factor, where ¢ is fixed. In [105, 106] systematic-error-correcting
codes for permutations were proposed and in [71] the capacity of permuta-
tion codes under a certain constraint was studied.

This PhD dissertation is comprises of two parts. The first part deals
with the concept of tiling of the n-dimensional Euclidian space with a cer-
tain shape. Such tilings are studied for two shapes, the (0.5,n)-cross and
the n-dimensional chair. Tilings with the n-dimensional chair form error-
correcting codes for the asymmetric limited magnitude error model. The
second parts is devoted to the study of error-correcting codes for permuta-
tions using the Kendall’s 7-metric.

Error-correcting codes and packing and tiling of the n-dimensional Eu-
clidian space with a certain shape are closely connected concepts. There-
fore, packing and tiling with a certain shape are two concept that attract a
substantial interest from the coding theory researchers. A tiling of the n-
dimensional Euclidian space with a shape S is a partition of the space into
translations of S. Basic definitions for tiling and packing are given in Chap-
ter 1, along with a discussion on the connection between these concepts and
error-correcting codes. Two of the most studied shapes in this context are
the semicross and the cross. A (k,n)-semicross is an n-dimensional shape
whose center is an n-dimensional unit cube from which n arms consisting of
k n-dimensional unit cubes are spanned in the n positive directions. A (k,n)-
cross is an n-dimensional shape whose center is an n-dimensional unit cube
from which 2n arms consisting of k n-dimensional unit cubes are spanned
in the n directions (one for the positive and one for the negative). Examples



of a (2,3)-cross and a (2,3)-semicross are given in Figure 1. Packing and
tiling with semicrosses and crosses is a well studied topic (see [84, 86] and
references therein). The high interest in packing and tiling with semicrosses
and crosses lies in the fact that such packing and tiling are corresponded
to error-correcting codes with the Hamming metric, which are codes that
correct symmetric errors [56].

avy

| 7 .

Figure 1: A (2,3)-cross and a (2, 3)-semicross.

Tiling with the (0.5, n)-cross are studied in Chapter 2. The (0.5, n)-cross
consists of one complete (non-fractional) unit cube and 2n halves unit cubes.
Usually, it is more convenient to handle tiling with complete unit cubes.
Hence, after scaling the (0.5, n)-cross by two a new shape is obtained. This
shape comprises of an n-dimensional unit cube of length 2, which consists of
2™ n-dimensional unit cubes, and to each of which n — 1-dimensional faces
attached are n-dimensional unit cubes. Example of the (0.5, 3)-cross and its
scaling by two is given in Figure 2.1. In addition to the interest on crosses
mentioned above, another motivation for the study of tiling with (0.5, n)-
cross was pointed out by Italo J. Dejter [18]. Such a tiling is equivalent to
a perfect dominating set in Z™, where each of its connectivity components
are n-dimensional unit cubes of length 2. This problem was considered
by several authors, e.g. [4, 98] and references therein. The main result of
Chapter 2, solves one of the main open problems on this topic. This result
states that an integer tiling of the n-dimensional Euclidian space with the
(0.5,n)-cross, scaled by 2, exists if and only if n = 2t — 1 or n = 3! — 1,
where t is a positive integer.

In Chapter 3, tilings with the n-dimensional chair are studied. An n-
dimensional chair is an n-dimensional box from which a smaller n-dimensional
box is removed from one of its corners (example of a three dimensional chair
is given in Figure 3.1). The study of tiling with the n-dimensional chair
is motivated by the asymmetric limited magnitude error model, since such
tilings are corresponded to codes that correct up to n—1 asymmetric limited
magnitude errors. These tilings have another application for constructing
WOM codes with multiple writing. Only lattice tilings are considered in
the context of the n-dimensional chair. An equivalent way to present a



lattice tiling is given. This method is called a generalized splitting and it
generalizes the concepts of splitting defined in [80]; and the concept of By, [¢]
sequences defined and used for construction of codes correcting asymmetric
errors with limited-magnitude in [46]. Two constructions of tilings based
on generalized splitting are presented. A lattice tiling is derived based on
constructions of splitting sequences. Mihalis Kolountzakis and James H.
Schmerl [51] pointed on [85], where this lattice tiling was first proposed, and
further discussed in [50, 73].

In the second part of this dissertation, codes for permutations using
the Kendall’s metric are discussed. Recently, to improve the number of
rewrites, the model of rank modulation was extended such that multiple
cells can share the same ranking [24, 25]. Thus, the cells no longer de-
termine permutations but rather multipermutations, which are also known
as permutations with repetitions. Error-correcting codes for multipermu-
tations subject to the Kendall’s 7-metric were presented in [72] and also
studied in [7]. Multipermutations are used to construct codes in Chapters 6
and 7. Basic definitions and properties of permutations, multipermutations,
and Kendall’s 7-metric are presented in Chapter 4.

In Chapter 5 the concepts of perfect codes and diameter perfect codes
for permutations are studied. Perfect codes for permutations, using the
Kendall’s 7-metric are shortly discussed in [105]. In this paper [105] sys-
tematic single-error codes in S, of size (n — 2)! are contracted. These codes
are of optimal size, assuming that a perfect single-error-correcting code does
not exist. However, they only prove the nonexistence of perfect single-error-
correcting codes for n = 4. The first section of this chapter is devoted
to perfect single-error-correcting codes in 5, using the Kendall’s 7-metric.
Perfect codes is one of the most fascinating topics in coding theory. A perfect
t-error-correcting code with the Kendall’s 7-metric is a code in S, such that
every permutation in 5, is at Kendall’s r-distance at most t from exactly
one codeword. It is proved that perfect single-error-correcting codes in .9,
where n > 4 is a prime or 4 < n < 10, do not exist. It is also proved that
if such a code exists for n which is not a prime then the code should have
some uniform structure. In Section 5.2 diameter perfect codes in .S,,, using
the Kendall’s 7-metric, are studied. As a result, known upper bounds on the
size of a code in S, with even minimum Kendall’s 7-distance are improved.
If the Kendall’s T-distance is slightly modified to define a cyclic Kendall’s 7-
distance, then we have at least one perfect single-error-correcting code in Ss.
This code is presented in Section 5.3, where the cyclic Kendall’s 7-distance
and more variations of the Kendall’s 7-metric are discussed. An algorithm
that computes the cyclic Kendall’s 7 distance between permutations in .S,



with time complexity O(n?) is given in Appendix B.

Chapter 6 deals with systematic error-correcting codes for permuta-
tions. As mentioned above, this concept for permutations was proposed
in [105, 106]. A systematic code C for permutations in S, is a code consists
of k! codewords. Each permutation of Sy (on a given set of specific k sym-
bols) is a sub-permutation (subsequence) of exactly one codeword of C. In
this PhD research some of the results in [105, 106] are improved. A con-
struction of systematic error-correcting codes for permutations, is presented
in Section 6.2. This construction is based on two ingredients. The first is
a partition of Sj into t-error-correcting codes. The second is a code C, for
multipermutations with minimum Kendall’s 7-distance 2¢, whose size is the
number of parts in the partition. Each code from the partition of Sy is sub-
stituted into a different codeword of C,. It is proved that for large enough k,
this construction uses less redundancy symbols than the number of redun-
dancy symbols in the codes of the known constructions. In particular, for a
given t and for sufficiently large k£ we can obtain r = t+ 1. This construction
is generalized in Section 6.3 to systematic codes for multipermutations.

Constrained codes for permutations are discussed in Chapter 7. This
work was inspired from a recent research by Sala and Dolecek [71, 70] who
studied a certain constraint that is motivated by the inter-cell interference
(ICI) in flash memory. The ICI is a phenomena in which the level of a cell,
called a wvictim cell might increase, if its neighbor cells are programmed to
significantly higher levels [52]. The ICI is caused by the parasitic capacitance
between neighboring cells, and in particular, multilevel cell programming is
severely influenced by this effect. In the model studied in [71], the authors
explored the single-neighbor constraint in which the levels difference between
adjacent cells is upper bounded. This constraint prevents the scenario in
which a high-level cell affects its low-level neighbor cell.

In this work, two constraints that captures the ICI phenomenon are
considered, the two-neighbor constraint and the asymmetric two-neighbor
constraint. The former constraint was proposed in [70]. A permutation
satisfies this constraint if the difference between the level of a cell and the
level of one of its neighbors is bounded by some prescribed value k. In the
asymmetric version, the level difference are constrained only for sequences
of the form high-low-high. This constraint is motivated by the fact that
the ICI in flash memories mainly affects sequences of the form high-low-
high and not the other ones. The capacities of these two constraints are
computed in Sections 7.1 and 7.2. The constraints studied in this work as
well as in [71] are effective in reducing the errors caused by the ICI. However,
random errors may still happen. In Section 7.3 error-correcting codes with

10



the Kendall’s 7 distance that yet consist of only permutations that satisfy
the constraints are studied.
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Part 1

Tiling of the n-Dimensional
Euclidian Space and its
Applications
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Chapter 1

Preliminaries: Tiling,
Packing, and
Error-Correcting Codes

Definitions and properties of tiling and packing are given in this chapter
and the connection between tiling and packing and error-correcting codes
is explained. The basic concepts presented in this chapter are widely used
throughout this part of the dissertation.

For a set S € R™ and a vector u € R" the translation of S by u is
u + Sdéf{u +x : x € §}. The multiplication of S by a scalar o € R is
defined by anéf{a -x : x € §}. For two sets S; C R™ and S; C R” the
set addition S1 + So is defined by S1 + Sgdﬁf{x +y : x€S81, y€ S}

Let S be an n-dimensional shape in the n-dimensional Euclidian space
(R™). We say that two translations of S, S; and Ss, are disjoint if their
intersection is contained in at most an (n — 1)-dimensional space.

Definition 1.1 A packing P of the n-dimensional Euclidian space with the
shape S is a set of disjoint translations of S.

Definition 1.2 A tiling T of the n-dimensional Fuclidian space with the
shape S is a packing of the n-dimensional Fuclidian space, R™, with the
shape S such that each point (x1,x9,...,2,) € R™ is contained in at least

one translation of S.

For a given shape S we choose a fixed point which will be called the
balanced point of the shape. In any other translation of S the balanced point
will be chosen in the same relative position. The set of balanced points in
the translations of S contained in the packing P defines the packing. Hence,

13



a packing P will be defined by a set of points P in R™ and a shape §. A point
x belongs to P if and only if the translation x + S belongs to P. Henceforth,
P will be called a packing if the shape S is known. In particular, for a tiling
7 with a shape S, the set ']I‘déf{x eR™ : x+ 8 € T} will also be called a
tiling with the shape S.

Lemma 1.3 If P is a packing (a tiling) with a shape S and u € R™ then
u + P is also a packing (a tiling) with S.

For a set S C R"™ and a permutation o of {1,2,...,n} = [n], let
def
O’(S)Z{((L'U(l),(ﬂo.@),...,(Ijg(n)) : (ml,mg,...,xn)eS}.

Lemma 1.4 If P is a packing (a tiling) with an n-dimensional shape S
and o is a permutation of [n] then o(P) is a packing (a tiling) with the
n-dimensional shape o(S).

Definition 1.5 A packing (a tiling) P with a shape S is called an integer
packing (an integer tiling), if P C Z™. An integer packing (tiling) is also
called Z-packing (Z-tiling).

Definition 1.6 For x € R", where x = (x1,x2,...,2y), an n-dimensional
unit cube centered at x, C(x), is defined as the set C(x)déf{(yl, Y2y vy Yn) €

R™ @ |z; —y| <05, 1 <i<n}.

Definition 1.7 An n-dimensional shape S is a discrete shape if S is a
union of n-dimensional unit cubes, whose centers are in Z".

A discrete n-dimensional shape S can be identified by a set of points in
Z". Conversely, a set of points in Z™ defines a discrete shape. By abuse of
notation, the same notation will be used for the discrete shape and the set
of points in Z" that defines the shape, where the meaning should be clear
from the context.

If T is an integer tiling with a discrete shape S, then each point of Z™
is contained in exactly one translation of S by an element of T. By abuse
of language, T is called a tiling of Z™ with the set S C Z". Similarly, if P
is an integer packing with S, then P is called a packing of Z" with the set
S Cz".

The vector (z1,x2,...,2y) is called the r-th unit vector and will be de-
noted by e, if z, = 1 and for all i # r, ; = 0. The origin (0,0,...,0) € R"
is denoted by 0. The all-one vector (1,1,...,1) € R™ is denoted by 1.

14



Definition 1.8 A set A is called periodic with period p if x € A implies
that x +a-p-e; € A, foralla € Z and 1 < i <n. A packing (a tiling) P
with the shape S is a periodic packing (a periodic tiling) if it is a periodic
set.

Lemma 1.9 A tiling T is a periodic with period p if and only if x € T
implies that x +p-e; € T for all i, 1 <i <mn.

Definition 1.10 A lattice A is a discrete, additive subgroup of the real n-

space R™,
def
A={urvy +uava + - +up vy 1 ur, U, Uy € Z§,
where {v1,Va,..., vy} is a set of linearly independent vectors in R™, i.e. the
lattice has rank n. The set of vectors {vi,va,...,v,} is called a basis for

A, and the n x n matriz

V11 V12 e Vin
V21 V22 ... Ugn
def
G(A)=
Unl Un2 ... Unn

having these vectors as its rows is said to be a generator matrix for A.

The volume of a lattice A, denoted by V(A), is inversely proportional to
the number of lattice points per a unit volume. More precisely, V(A) may
be defined as the volume of the fundamental parallelogram TI(A), which is
given by

H(A)d:ef {&vi+&va+ - +& v,  0<& <1, 1<i<n}.
There is a simple expression for the volume of A, namely, V(A) = |det G|.

A lattice A is a lattice tiling with S if TN forms a tiling with S. A
lattice tiling A is an integer lattice tiling with S if all entries of G are integers.
The following lemma is well known.

Lemma 1.11 A necessary condition that a lattice A defines a lattice packing
(tiling) with a shape S is that V(A) > |S| (V(A) = |S|). A sufficient
condition that a lattice packing A defines a lattice tiling with a shape S is
that V(A) = |S|.

A code C of length n over Z, (over Z) is a subset of Zy (of Z"). The
elements of C are called codewords. Let A,, be the lattice generated by the
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basis {¢g-e; : 1 <i<n}. AcodeCC Zg can be viewed also as a subset of
7",

Definition 1.12 The code E(C) = C + A, is the expanded code of C. If
E(C) is a packing (a tiling) of Z™ with the shape S then we also call C a
packing (a tiling) of Zy with the shape S.

Conversely, a tiling T C Z™ with a period p can be viewed as an expanded
code, E(C), of a code C of length n over Z,, where C = TN{0,1,...,p—1}".
If C is a packing of Zj; with the shape S then C is called an error-correcting
code with §, and § is called an error sphere. The elements of S are called
error-vectors. If C is an error-correcting code with and error sphere S then
for every y € Zj there exists at most one codeword x € C such that y € x+S8.
Therefore, if y = x + e, where x € C and e € S, then x can be uniquely
determined from y. If C is a tiling of Zy with the shape S then C is called
a perfect error-correcting code for S. In that case, for every y € Zj there
exists exactly one codeword x € C such that y —x € S.

One important example are error-correcting codes with the Hamming
metric. These codes are also known as error-correcting codes for the sym-
metric channel.

Definition 1.13 For every two given words X,y € Z, the Hamming dis-
tance dy(x,y) is the number of positions in which x and'y differ, i.e.

def, . .
dp(x,y)=|{i : z;#y, 1 <i<n}|.

The Hamming weight of x € Zy, wy(x) is the Hamming distance of x and
0.

A code C is a t-error-correcting code with the Hamming metric if for every
y € Zy there exists at most one codeword x € C such that dp(x,y) <t. Let
S ={y : wg(y) <t}. The shape S is called the Hamming sphere of radius
t, and C is a t-error-correcting code with the Hamming metric if and only if
C is a packing of Z; with the shape S. A perfect {-error-correcting code with
the Hamming metric is equivalent to a tiling of Zj with the shape S. In
particular, a perfect single-error-correcting code with the Hamming metric
is equivalent to a tiling of Zj with the ((¢ —1)/2,n)-cross. For a code C, its
minimum Hamming distance is the largest integer d for which dy(x,y) > d,
for every two distinct codewords x,y € C. The minimum Hamming distance
of C will be denoted by dp(C). A code C C Zy is a t-error-correcting code
if and only if d(C) > 2t + 1. If dg(C) > 2t + 1 then C is a perfect t-error-
correcting code if for every y € Zy there exists a codeword x € C such that

di(y,x) < t.
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Chapter 2

Tiling with the (0.5,n)-Cross

Packing and covering are two fundamental concepts in combinatorics. Tiling
is a concept which combines both packing and covering and hence it attracts
a substantial interest. Tiling of the Euclidian space with specific shapes
is one of the main interest in this respect. The (k,n)-cross and (k,n)-
semicross are two shapes that were intensively studied in this context. A
(k,n)-semicross is an n-dimensional shape whose center is an n-dimensional
unit cube from which n arms consisting of k n-dimensional unit cubes are
spanned in the n positive directions. A (k,n)-cross is an n-dimensional
shape whose center is an n-dimensional unit cube from which 2n arms con-
sisting of k nm-dimensional unit cubes are spanned in the, ,n directions, one
for the positive direction and one for the negative direction (see Figure 1
for example of a (2,3)-cross and a (2, 3)-semicross). As mentioned in [86],
the origins of the study of the cross and semicross are in several indepen-
dent sources [35, 43, 80, 93], some of which are pure mathematics and some
are connected to coding theory. Semicross and cross are two types of “error
spheres” as explained in [34]. Golomb and Welch [35] proved that the (1,n)-
cross tiles the n-dimensional Euclidian space for all n > 1. Such a tiling is a
perfect code in the Manhattan metric and if the tiling is periodic then it is
also a perfect code in the Lee metric. Their work inspired future work (see
[27] and references therein) on perfect codes in the Lee (and Manhattan)
metric.

As said before, packing and tiling with semicrosses and crosses are well
studied topics [14, 30, 35, 37, 38, 55, 80, 81, 83, 87, 88, 89]. The results
in these research works include bounds on the size of the arms, construc-
tions for such packings and tilings, parameters for which such tilings cannot
exist, lattice and non-lattice tilings, etc. Recently, the topic has gained a
new interest since the (k,n)-semicross is the error sphere of the asymmet-
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ric error model associated with flash memories [10, 46], the most advanced
type of storage currently used. Schwartz [74] investigated lattice tilings with
generalized crosses and semicrosses in the connection of unbalanced limited
magnitude error model for multi level flash memories.

Not much is known about tiling of crosses with arms which are not of
integer length. Moreover, most tilings considered in the literature are integer
lattice tilings. In this chapter the existence of tiling of the n-dimensional
Euclidian space with a (0.5, n)-cross is studied.

A unit cube centered at (c1,c2,...,¢,) € R™ is a union of two disjoint
half unit cubes in one of the n directions. For the r-th direction one half
unit cube is defined by the set of points {(z1,z2,...,2,) : 0 < x, —
¢r <05, |z —c¢| <05, 1 <i<mn,i#r}and a second half unit cube
is defined by the set of points {(z1,z2,...,2,) : —0.5 < z, —¢, <0,
|z; — ¢l <05, 1<i<m,i#r} A (0.5 n)-crossis a unit cube to which
two half unit cubes are attached in the r-th direction for each 1 < r < n,
one in its negative direction and one in its positive direction. It is more
convenient to handle shapes with complete unit cubes (discrete shapes) and
therefore the (0.5,n)-cross is scaled by two to obtain a new shape which
will be denoted by Y,. An example of a (0.5,3)-cross and an T3 is given
in Figure 2.1. The complete unit cube in the (0.5,7n)-cross is transferred
into an n-dimensional cube with sides of length two in Y,,. This cube in
T,, will be called the core of Y,,; the core consists of 2™ unit cubes. In the
sequel, only integer tilings with Y,, will be considered. In such an integer
tiling Y, can be represented by 2"(n + 1) points of Z™ which are the centers
of its 2"(n 4 1) unit cubes. The discussion on the shape T, is restricted
only for integer tiling (also known as Z-tiling) which is a tiling in which the
centers of the unit cubes are placed on points of Z™. Such a tiling is proven
to exists if and only if n = 2 — 1 or n = 3® — 1, where ¢ > 0. The related
tiling with a (0.5,n)-cross (obtained after scaling by 0.5) will be called a
%Z—tiling. Analysis of the structure obtained from such a tiling is presented.
The tiling which is considered for the (0.5, n)-cross is usually not an integer
tiling. Moreover, general tilings are considered and not just lattice tilings
as done in most literature.

&

Figure 2.1: A (0.5, 3)-cross and an Y3.

LI |
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Dejter [18] has brought to our attention that a tiling with Y, is a perfect
dominating set in Z". This problem was considered by several authors,
e.g. [4, 98] and references therein. The problem that is considered in this
chapter is one of the main open problems on this topic.

To handle tilings with the (0.5,n)-cross, three distance measures are
needed, the well known Hamming distance (see Definition 1.13), the Man-
hattan distance, and the new defined cross distance.

Definition 2.1 For every two given points X,y € Z" the Manhattan dis-
tance dyr(x,y) is defined as follows.

n
def
du(x,y)= E |zi — yil -
i=1

Definition 2.2 For every two given points x,y € R™ the cross distance
do(x,y) is defined as follows.

def =
do(x,y)= Y max{0, |y; — x| — 1}.
i=1

The Manhattan weight and cross weight of x € Zj are defined by
wM(x)défdM(x, 0) and wc(x)défdc(x, 0), respectively.

While the Hamming distance is an association scheme, the Manhattan
distance is only a metric distance and not an association scheme (see [56] for
the definition of an association scheme). The cross distance is not a metric,
but it will be most important in the discussion of tilings with a (0.5, n)-cross.

Let T be a tiling with Y. It is assumed throughout this chapter that if
x = (x1,22,...,2y) € T then the set {(c1,¢2,...,¢n) : ¢ €{z;—1,2;}, 1 <
i < n}is the related core of the translation x+7Y,,. The core of Y, is {—1,0}"
and Tndéf{u s dy(x,u) =1, x € {—1,0}"}. If T is a tiling with T, then
0.5T is a tiling with a (0.5, n)-cross. Clearly, if for each (z1,z2,...,2,) € T,
x; is even for all 1 < i < n, then also 0.5T is an integer tiling. However, if
there exists a point (z1,z2,...,z,) € T such that for at least one j we have
that z; is odd then 0.5T is not an integer tiling. To this end, a %Z—tiling is
defined. A tiling T is a §Z-tiling if T C 0.5Z".

Lemma 2.3 The tiling T is an integer tiling with Y, if and only if 0.5T is
a 3Z-tiling with a (0.5, n)-cross.

Given a set T C Z", it should be determined whether T is a tiling with
T,. To show that T is a tiling it is sufficient to prove the following.
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(P.1) For each point Y € Z" there exists a translation S; of T, in the tiling
such that &7 contains Y.

(P.2) A point Y € Z" is not contained in more than one translation of T, in
the tiling, i.e. for each two translations S; and Ss of T, in the tiling
we have S NSy = @.

A set T C Z" is a covering with T,, if it satisfies property (P.1) and it
is a packing with Y,, if it satisfies property (P.2). A tiling is clearly both
a covering and a packing.

The following two lemmas are immediate results from the definition of
T,.

Lemma 2.4 IfS is a translation of T,, and x € S is not a core point of S
then there exists a core point'y € S such that dyr(x,y) = 1.

Lemma 2.5 If S; and So are two translations of Ty, for which St NSy # &
then there exists a point x € S1 NSy which is not in the core of Sy.

Corollary 2.6 IfS; and Sa are two translations of T, for which S1NSa # &
then there exist two core points x1 € 81 and Xa € Sy such that dy(x1,%x2) <
2.

Lemma 2.7 If §; and S are two translations of Y, for which there exist
two core points x1 € Sy and X2 € Sy such that dy(x1,%2) < 2, then SNSy #
.

Proof. 1If dps(x1,x2) < 2 then there exists a point y € Z" such that
dyr(x1,y) <1 and dp(x2,y) < 1. By definition y € &1 N So.
O

Corollary 2.8 Let &1 and Sy be two translations of Y,,. Then SNSy = &
if and only if for every two core points x1 € &1 and xo2 € Sy we have
dpr(x1,%2) > 3.

Theorem 2.9 Let S =x+ 71, and So =y + T, where x,y € Z", be two
translations of Y,,. Then S NSy = & if and only if do(x,y) > 3.

Proof. Letx = (Z1,%2,...,%Ty) and ¥ = (41,92, - - -, Un) be the centers of
mass of &1 and Sy, respectively. Clearly, x and y are in (0.5,0.5,...,0.5) +
Z™. The core points of Sy are {(c1,¢2,...,¢n) : ¢ € {%; —0.5,%; + 0.5}}
and the core points of Sy are {(c1,¢2,...,¢n) : ¢ € {g; — 0.5,9; + 0.5} }.

Let x' = (2,2, ...,2}) and y' = (v}, 9, ...,y,,) be the two core points of
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S1 and Ss, respectively, defined as follows. If z; = g; then :Egdéf:ii 4+ 0.5 and

sdef -

y{dgﬂl +0.5. If 2; < g; then x;défi‘l + 0.5 and y, =g; — 0.5. If Z; > g; then
2% — 0.5 and /g + 0.5, Clearly, do(x,y) = do(%,§) = du(x,y")
and for any two core points X € §; and y € Sy we have that dy(%x,y) >
dy(x',y’). Now, by Corollary 2.8 we have that S NSy = & if and only if
de(x,y) > 3.

O

Corollary 2.10 The set T induces a packing of the n-dimensional Fuclidian
space with Yy if and only if for every two elements x,y € T, we have
de(x,y) > 3.

To prove that a set is a tiling with T,, it is sufficient to show that it
satisfies properties (P.1) and (P.2). For this purpose it is proven that
each point of Z" is contained (covered) in exactly one translation S of Y,
in the tiling. A point u € Z" is covered by a codeword x in a tiling T if u is
contained in the translation x + T,,. In this case it is said that x covers u.

Given a tiling T with T, it has to satisfy properties (P.1) and (P.2). By
considering how each point u € Z" is covered by a codeword x € T (property
(P.1)), the structure of T will be discovered. To this end, property (P.2)
is used, i.e. for each two codewords x,y € T we have that do(x,y) > 3 (by
Corollary 2.10).

2.1 The Nonexistence of Tilings with the (0.5,n)-
Cross

In this section it is proved that an integer tiling T with Y, exists only if
n =2 —1orn = 3" -1, for some t > 0. First, this claim is proved
for odd n if T is an integer tiling and for all n if T is a lattice tiling (see
Definition 1.10). Then, the proof is completed for even n. This goal is
obtained by proving that given a tiling T with Y,,, certain elements of Z"
must be contained in T. It is proved by considering how elements with a
small cross weight are covered. For the rest of this section let T be a tiling
with T,,. By Lemma 1.3, for every u € Z", u+ T is also a tiling with
T, thus, without loss of generality we assume throughout this section that
0 € T. By Corollary 2.10, if x,y € T \ {0}, where x # y, then w¢(x) > 3,
we(y) > 3, and do(x,y) > 3.
The first lemma is an immediate result from the definition of T,,.
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Lemma 2.11 Let x € T and u = (uy,ug,...,u,) € Z". The point u is
covered by x if and only if x; € {u; — 1, uj, u; + 1,u; +2}, for 1 <i <n, and
for at most one i we have z; € {u; — 1,u; + 2}.

Let Dy be the set of points from {0,1,2,3}" in which 2 and 3 appear
exactly once.

Lemma 2.12 Ifx € D1 NT then x = 3e, + 2e, for some r # s.

Proof. Assume without loss of generality that x = (3,2, 1, 24, ..., x,), where
x; € {0,1}, for 4 < ¢ < n. The point u = (1,1,-1,0,...,0) is covered by
a codeword y € T. By Lemma 2.11 we have that y ¢ {x,0} and we can
distinguish between three cases:

Case 1: If y; € {uj,u; + 1} for all i, 1 < i < n, then we(y) < 2, a
contradiction.

Case 2: There exists a j such that y; = u; — 1 and y; € {u;,u; + 1}
for all ¢ # j. Since we(Y) > 3 it follows that j = 3 and hence y =
(2,2,-2,94,...,Yn), where y; € {0,1}, for 4 < i < n. This implies that
do(x,y) = 2, a contradiction.

Case 3: There exists a j such that y; = u; + 2 and y; € {u;,u; + 1} for all
i # j. Since we(y) > 3 it follows that j # 3. Without loss of generality it
implies that y can take one of the following forms:

®y= (3727y37y47 .o ayn) ory = (2737y37y47 R 72-/11), where Y3 € {_170}
and y; € {0,1}, for 4 <i <n.

oy = (2,2,93,2,95,...,Yn), where y3 € {-1,0} and y; € {0,1}, for
5 <1< n.

Both forms implies that do(x,y) < 2, a contradiction.
Therefore, there is no codeword y € T which covers u, a contradiction.
Thus, if x € D1 N'T then x = 3e, + 2e; for some r # s.
O
Let Dy be the set of points from {0,1,4}" in which 4 appears exactly
once.

Lemma 2.13 Ifx € Do NT then x = 4e, for some 1 < r < n.

Proof. Assume without loss of generality that x = (4,1, x3,...,x,), where
x; € {0,1}, for 3 < i < n. The point u = (1,1,0,...,0) is covered by a
codeword y € T. By Lemma 2.11 we have that y ¢ {x,0} and we can
distinguish between two cases:

22



Case 1: If y; € {u;,u; + 1} for all 4, 1 < i < n, with a possible exception
for at most one j, for which y; = a; — 1, then wc(Y') < 2, a contradiction.
Case 2: There exists a j such that y; = u; + 2 and y; € {u;,u; + 1} for
all ¢ # j. Without loss of generality it implies that y can take one of the
following forms:

®y = (3a2ay37"'ayn>v y = (2337y35--~7yn)’ where Yi € {071} for 3 <
1 <n.

oy =1(2,2,2,y4,...,Yn), where y; € {0,1} for 4 <i <mn.

Hence, do(x,y) < 2, a contradiction.
Therefore, there is no codeword y € T which covers u, a contradiction.
Thus, if x € Do N T then x = 4e, for some 1 < r < n.
O

Corollary 2.14 For each r, 1 < r < n, the point 2e, is covered by a
codeword x € T, where either x = 4e, or x = 3e, + 2e, for some s # r.

Proof. By Lemma 2.11, x is not the all-zero codeword. Moreover, since
we(x) > 3 it can be easily verified that either x € Dy or x € Dy. It follows
from Lemmas 2.12 and 2.13 that either x = 4e, or x = 3e, + 2e, for some
s FEr.
O
Let D3 be the set of points from {0, 1,2}" in which 2 appears exactly
three times.

Lemma 2.15 If x = 3e, + 2e5 € T then for every k & {r,s} there exists a
unique j & {r,s,k} and a codewordy € D3 N'T such that y, = 1,ys = yp =

yj:2-

Proof. Let k ¢ {r, s} and consider the point u = e, + e, + ;. Assume with-
out loss of generality that r = 1, s = 2, and k = 3, i.e. x = (3,2,0,...,0)
and u = (1,1,1,0...,0). The point u is covered by a codeword y € T. By
Lemma 2.11 we have that y ¢ {x,0} and we can distinguish between three
cases:

Case 1: If y; € {u;,u; + 1} for 1 <1i < n, then since we(y) > 3 it follows
that y = (2,2,2,y4,...,Yn), where y; € {0,1}, for 4 < ¢ < n. Hence,
do(x,y) = 1, a contradiction.

Case 2: There exists a j such that y; = u; — 1 and y; € {u;,u; + 1} for
all i # 7. If j < 3 then we(y) < 2, a contradiction. If j > 3 then since
we(y) > 3 it follows that y = (2,2,2,94,...,yn), where y; € {—1,0,1} for
4 <1i < n, and hence dc(x,y) = 1, a contradiction.

23



Case 3: There exists a j such that y; = u; + 2 and y; € {u;,u; + 1} for
all i # 7. If j < 3 then since we(y) > 3 and deo(x,y) > 3 it follows that
y=(1,2,3,y4,...,Yyn), where y; € {0,1}, for 4 < i < n, a contradiction to
Lemma 2.12.

Therefore, there exists a j > 3 such that y; = u;+2 and y; € {u;, u; +1}

for all i # j. Assume without loss of generality that j = 4. Since wo(y) > 3

and de(x,y) > 3 it follows that y = (1,2,2,2,9s5,...,yn), where y; € {0,1},

for 5 < ¢ < n. The uniqueness of j follows from the fact that if there exists
another j and a related codeword y’ then deo(y,y’) < 2.

O

Corollary 2.16 If3e,+2e; € T, for somer,s € [n], r # s, then n is even.

Proof. By Lemma 2.15 all coordinates except for r and s should be paired,
in disjoint pairs (such a pair {k,j} induces a codeword of the form y =
(y1,92,---,yn) € D3NT, where y, = 1,ys =y = y; = 2). Thus, n is even.
O

From Corollaries 2.14 and 2.16 it is infered that

Corollary 2.17 If n is odd then for all x € T and 1 < r < n we have
x+4e, €T, i.e. T is a periodic tiling with period 4.

Theorem 2.18 If T is an integer tiling with Y,,, where n is an odd integer,
then n = 2t — 1 for some t > 0.

Proof. By Corollary 2.17 we have that T is a periodic tiling with period
4. Therefore, C = TN {0,1,2,3}" is a tilling of Z} with Y,,. Therefore,
|C| - |Y,| = 4™ and |Y,,| divides 4. The size of T, is 2"(n + 1) and hence
n = 2! — 1 for some t > 0.

O

Lemma 2.19 If there ezist two distinct codewords x = 3e; + 2e; and x' =
3e, +2e, in T then {i,j} N {r,s} =@.

Proof. Assume without loss of generality that i = 1 and j = 2. Since
do(x,x’) > 3 it follows that r» # 1 and x" # 3es +2¢;. If r =2 or s = 2
then assume without loss of generality that x’ = (0,3,2,0,...,0) or x' =
(0,2,3,0,...,0). By Lemma 2.15 we have a codeword y = (1,2,2,v4,...,Yn) €
D3N T. It implies that do(x’,y) = 1, a contradiction. The case where s = 1
and r > 2 is symmetric to the case where r = 2 and s > 2.

O

From Corollary 2.14 and Lemma 2.19 we have that
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Corollary 2.20 If 3e, + 2e; € T then 4e; € T.

Theorem 2.21 IfT is an integer lattice tiling with Y,, then eithern = 2! —1
orn =3"—1 for somet > 0.

Proof. Assume that there are exactly k codewords of the form 3e; 4 2e; in
T. From Corollaries 2.14 and 2.20 and by Lemma 2.19 the lattice T contains
a sublattice defined by these k& codewords and n — k codewords of the form
4e,. The generator matrix of this sublattice is a block-diagonal matrix with
k 2 x 2 blocks of the form [ g i ] and n—2k 1x 1 blocks of the form [ 4 ].
The volume of this sublattice is divided by the volume of the lattice T. The
volume of the sublattice is 3¥4"~* and therefore, the volume of the lattice
T is of the form 3527”, for some ¢ > 0 and m > 0. On the otherhand the
volume of the lattice T is the volume of the shape T, i.e. 2"(n+1). By
Theorem 2.18 we have that if n is odd then n = 2/ — 1 for some t > 0. If
n is even then n 4 1 is odd and since 3¢2™ = 27(n + 1) we must have that
n =3 —1 for some £ > 0.
O
It remains to prove that if there exists an integer tiling of Z™ with T1,,,
where n is even, then n = 3/ — 1, for some ¢ > 0. To this end, the concept of
packing triple system is required, which will be used to prove that if n is even
then T contains exactly % codewords of the form 3e, + 2e,, where the union
of their nonzero coordinates is the set of all n coordinates. The structure
of the codewords in T combined with arguments based on reflections and
translations of the tiling, will imply a period 12 for the tiling when n is even.
As a consequence it is infered that if n is even then n = 3! — 1, for some
t>0.
A packing triple system of order n is a pair (@, B), where @ is an n-set
and B is a collection of 3-subsets of @), called blocks such that each 2-subset
of @ is contained in at most one block of B. Spencer [79] proved that if

n#5 (mod 6) then
B < t; V;lﬂ : (2.1)

Lemma 2.22 For each 1 < i < j < n, the point e; + e; is covered by a

codeword x € T, where x = 3e; + 2e; or x = 3e; + 2e; or x € D3, where
€Ty = l’j = 2.

Proof. Follows from Lemmas 2.11 and 2.12 and the fact that for each nonzero
codeword x € T we have we(x) > 3.
Od
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Let
floléf{{z',j} : 3e; + 2e; € T}

and

]:'Qdéf{{i’j7 k‘} : 2e; + 2ej + 2ep, + Z amenm €T, ay, € {07 1}} :
mg{i7‘j7k}

Since T is a tiling it follows that each point e; + e;, @ # j, is covered by
exactly one codeword of T. As a consequence of Lemma 2.22, we have that
each pair {r, s} is a subset of exactly one element from F; U F5. Therefore,
Fo is a packing triple system of order n.

Theorem 2.23 If T is an integer tiling with Y, then n # 4 (mod 6).

Proof. Assume T is an integer tiling with Y,,, n =4 (mod 6). By (2.1) we
have that )
n* —2n — 2
o < 2022

Since each pair {i,j} C {1,2,...,n} is contained in either F; or F3 it follows
that

| Fi| + 3| = (Z) .

Hence, |F1| > § + 1. Lemma 2.19 implies that |F1| < 5, a contradiction.
O
By using the same arguments as in the proof of Theorem 2.23 we have
that if » = 0 or 2 (mod 6) then |Fi| > §. Hence, by Lemma 2.19 the
following lemma is inferred

Lemma 2.24 Ifn is even and T is an integer tiling with Y,,, then there are
exactly 5 codewords of the form 3e, + 2es.

Combing Lemmas 2.19 and 2.24 results in the following corollary.

Corollary 2.25 Ifn is even and T is an integer tiling with Y,,, then there
are exactly 5 codewords of the form 3e, +2e, and the set {i : 3e;+2e; € T
or 3ej + 2e; € T} contains all the integers between 1 and n.

Let T’ be the tiling of Z™ with Y,, defined by ’]I"déf{x : —x € T}. Since
T’ is a tiling of Z™ with T, it follows that the lemmas and the corollaries
that hold for the tiling T hold also for T/. They imply new lemmas and
corollaries for T. For example we have

Corollary 2.26 For each r, 1 < r < n, the point —2e, is covered by a
codeword x € T, where either x = —4e, or x = —3e, — 2e; for some s £ r.
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In a similar way we can define 2™ tilings of Z" with T,,. For a = (a1, ag,...,ay),
where a; € {—1,1}, let T, be the tiling of Z™ with T,, defined by

def
T, = {(x1,22,...,2pn) : (@121, 0279, ... ,apzy) € T}.

As for TV = T(_1,-1,..,—1), each lemma and each corollary holds for T, and
thus implies new claims on T. Without loss of generality we assume (based
on Lemma 1.4, Corollaries 2.20 and 2.25) that 3eg;_1+2e9; € T and 4ey; € T,
foralllgigg.

Lemma 2.27 If x = 3e, + 2e; € T then —4e; € T.

Proof. Without loss of generality we will prove the claim for r = 1 and
s=2;leta=(1,-1,1,...,1). Since 3ey;_1 +2ey € T, for all 2 <i < %,
it follows that 3eg; 1 + 2eg; € Ta, for all 2 <4 < 5, and by Corollary 2.25
we have that either 3e; + 2e9 € T, or 2e1 + 3e; € T,. If 2e1 + 3ex € Ty,
then Corollary 2.20 implies that y = 4e; € T,. Therefore, y = 4e; € T,
and since d¢(x,y) = 1 we have a contradiction. Hence, 3e; + 2e9 € T,, and
therefore, by Corollary 2.20 we have that 4e, € T,, i.e. —4ey € T.

O

Corollary 2.28 4e; € T if and only if —4e; € T.
Lemma 2.29 If x = 3e, + 2e; € T then —3e, — 2e; € T.

Proof. Without loss of generality we will prove the claim for r = 1 and
s=2;leta=(-1,-1,1,...,1). Since 3ez;_1 +2ey € T, for all 2 <4 < %,
it follows that 3eg;_1 + 2eg; € Ty, for all 2 <4 < 5, and by Corollary 2.25
we have that either 3e; +2ey € T, or 2e1 +3ey € Ty, If 2e1 +3e5 € T, then
Lemma 2.27 implies that —4e; € T,. Therefore, y = 4e; € T, and since
do(x,y) = 1 we have a contradiction. Hence, 3e; + 2e3 € T,, and therefore
we have that —3e; — 2e5 € T.

O

Corollary 2.30 3e, + 2e; € T if and only if —3e, —2e; € T.
Lemma 2.31 If 3e, 4+ 2e; € T then 12e,,12e, € T.

Proof. By Corollary 2.20 we have that 4e; € T. The translation T = —4es+
T is a tiling with Y, for which 0, —4e, € T;. It follows by Corollary 2.28
that 4e; € Ty and hence 8e,; € T. Similarly, 12e, € T.

Similarly, by Corollary 2.30 we have that 0,3e, 4+ 2e; € T implies that
6e, + 4e;, 9e, + 6e,, 12e, + 8e; € T. The translation T = —12e, — 8e; + T
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is a tiling with Y,, for which 0, —3e, — 2e;, € T;. By Corollary 2.30 and
Lemma 2.27 we have that —4e, € Ty, and hence 12e, + 4e, € T. Similarly,
by Corollary 2.28 we have 12e, + 4e,, 12e, + 8es € T which implies that
12e, € T.

O

Corollary 2.32 Ifn is even and T is an integer tiling with Y, then T is
a periodic tiling with period 12.

Theorem 2.33 IfT is an integer tiling with Y, where n is an even integer,
then n = 3t — 1 for some t > 0.

Proof. By Corollary 2.32 we have that T is a periodic tiling with period 12.
Therefore, the size of Y, divides 12". The size of Y, is 2"(n + 1) and hence
n + 1 divides 2"3". Since n is even it follows that n 4+ 1 is odd and thus
n = 3t — 1 for some t > 0.

O

Theorems 2.18 and 2.33 are combined to obtain

Corollary 2.34 If T is an integer tiling with Y, then either n =2t — 1 or
n=3"—1, for somet > 0.

Corollary 2.35 If T is a %Z—tilmg with a (0.5,n)-cross, then either n =
2t —1 orn=3"—1, for somet > 0.

2.2 Tilings based on Perfect Codes in the Ham-
ming Scheme

In section 2.1 it is proved that a %Z—tﬂing with (0.5,n)-cross exists only if
n=2"—1orn=3"—1, for some t > 0. In this section it is proved that
this necessary condition is also sufficient. Surprisingly, two constructions
which produce the related tilings are based on perfect codes in the Hamming
scheme (for definition of Hamming distance see Definition 1.13) . If n = 2¢—1
then the perfect code is binary of length n and the construction of the tiling
is very simple. If n = 3' — 1 then the perfect code is ternary of length 5
Recall that for a code C, its minimum Hamming distance, dg(C), is the
largest integer d for which dy(x,y) > d, for every two distinct codewords
x,y € C. The minimum cross distance of a code C, dc(C), is defined simi-
larly. A code C C Zg with minimum Hamming distance 2¢ + 1 is a perfect
t-error-correcting code if for each word a € Zj there exists a codeword x € C

28



such that dy(a,x) < t. Such a code is capable to correct up to ¢ transmis-
sion errors [56]. The Hamming sphere of radius ¢ centered at u € Zg is the
set {v € Zy : du(u,v) <t}. The code C is a perfect single-error-correcting
code if and only if C is a tiling of Zg with a Hamming sphere of radius one.
Only single-error-correcting are used in this section. Henceforth, a perfect
single-error-correcting code will shortly be called a perfect code. Binary
(¢ = 2) perfect codes exists if and only if n = 2! — 1, where ¢ > 0. Ternary
(¢ = 3) perfect codes exists if and only if n = ?’tT*l, where ¢ > 0. These
are the only perfect codes which are of interest in this section. Finally, we
note that a perfect code is identified by its size, its minimum distance, and
the fact that each element of Zj is covered by at least one codeword. One
can easily verify that given any two of these parameters one can determine
whether the code is perfect or not perfect. This fact will be used throughout
this section.

Remark 2.1 A perfect code C of length n over Zq is known to exist if q is

i 71 , where t > 0. The related sphere of radius
q

. -1
one can be viewed as a (¢ — 1,n) -semicross or as a (5=, n)-cross. Thus,

a power of a prime and n =

these perfect codes form tilings with the related semicrosses and crosses.
Only if q is a prime some of the known tilings are lattice tilings (they are
related to linear perfect codes). If q is not a prime then the tiling of Z" is
done first by using any one-to-one mapping between GF(q) (on which the
codes are defined) and Zq. Tilings of this type have applications in flash
memories [74]. If ¢ = 2 then C is a tiling of Z% with (0.5,n)-cross and E(C)
forms a tiling of Z™ with (0.5,n)-cross.

2.2.1 Binary Perfect Codes

Since the size of of a sphere with radius one in Zg is n + 1, it follows that a
binary perfect code of length n = 2% — 1 has 2"~ codewords.

Theorem 2.36 There exists an one-to-one correspondence between the set
of binary perfect codes of length n = 2" —1 and the set of integer tilings with
Y, in which each codeword has only even entries.

Proof. Note first, that by Corollary 2.17 a tiling T of Z" with Y, is periodic
with period 4 and hence it can be reduced to a tiling of Z} with 1.

The size of an (1, n)-semicross is equal the size of a (0.5, n)-cross. It im-
plies that the number of codewords in a binary perfect single-error-correcting
code C of length n = 2! — 1 is equal the number of codewords in a tiling T
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of Z} with Y,,. If x,y € {0,2}" then 0.5x and 0.5y are binary words and it
is easy to verify that do(x,y) = dg(0.5x,0.5y).

Therefore, if C is a binary perfect code of length n = 2! — 1 then 2E(C)
is a tiling of Z™ with T,, in which each codeword has only even entries.
Similarly, if T is a tiling of Z™ with T,,, in which each codeword has only
even entries, then 0.5T N {0, 1}" is a binary perfect code.

O

Corollary 2.37 There exists an one-to-one correspondence between the set
of binary perfect codes of length n = 2! —1 and the set of integer tilings with
(0.5,n)-cross.

Do there exists any integer tilings with Y,,, where n = 2! — 1, except for
those implied by Theorem 2.367 The answer is that there exist many such
tilings. Let C be a binary code of length n. Its punctured code C’ of length
n — 1 is defined by C’déf{c : (c,z) €C, z€{0,1}}.

Construction 2.38 Let C be a binary perfect code of length n and C' its
punctured code. Let C. and C. be the set of codewords from C' with even
weight and odd weight, respectively. We define a code C*défCik UCs over ZY,
where

Cr%(2¢,27) : ceC, (c,2) €C} and 32 {(2¢,22+1) : c€C., (c,z) €C}.

Theorem 2.39 The expanded code of C*,
E(C*)=4{x€Z" : (z1( mod 4),z2( mod 4),...,z,( mod 4)) € C*},
defines a tiling of Z"™ with Y, in which not all entries are even.

Proof. Since dy(C) = 3 it follows that dy(C") = dy(Cl) = duy(Cl) = 2
and dc(Cy) = de(C3) = 3. If €1 € C, and €3 € C), then dp(¢y, €2) is an odd
integer. Hence, since dy(C') = 2, it follows that dg (€1, 2) > 3. Therefore, if
¢} € Cy and ¢4 € Cy then d¢ (€7, ¢5) > 3 and thus do(C*) > 3. The minimum
distance of the code C* and its number of codewords implies that C* is a
tiling of ZJ with Y,,. It is easy to verify that C has at least one codeword
(in fact it can be proved that it contains exactly half of the codewords) and
hence the last entry in at least one of the codewords of C* is 1 or 3.

O
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Example 2.40 The following code forms a tiling of Z with Yr:

0000000 0000222 2222000 2222222
2200201 2200023 0022201 0022023
2020021 2020203 0202021 0202203
2002002 2002220 0220002 0220220

Remark 2.2 Let & be a mapping from Zy to Zs defined by £(0) = £(1) =0,
£€2) =¢B3) = 1. If T forms a tiling of Z} with Y, then the code C =
{{(x) : x € T}, where &(z1,x2,...,2,) = (§(x1),&(x2),...,&(zy)) is a
binary perfect code of length n.

Remark 2.3 By Corollary 2.17 an integer tiling with Y, where n is odd,
has period 4. Hence, the related %Z—tiling T with (0.5,n)-cross has period 2.
It implies that this tiling is also a tiling with the (1,n)-semicross (even if T
is not a Z-tiling).

2.2.2 Ternary Perfect Codes

Let v = 5. Since the size of a sphere with radius one in Zj is 2v+1, it follows
that a ternary perfect code of length v has 3! codewords. Let A,, be the
lattice generated by the basis {3eg;—1 +2e9; : 1 <i<v}U{4dey : 1<
i <v}. Let Gy, be the quotient group Z"/A,,. The following lemma can be
readily verified.

Lemma 2.41 The group Go has size 12 and the 12 representatives of ele-
ments from Go (the cosets of Ay in Z?) can be taken as {0,1,2}x{0,1,2,3} =
[0,2] x [0, 3].

Let ([0,2]x[0,3])™% (10, 2] x [0,3]) x ([0,2] x [0,3]) x -+ x ([0,2] x [0, 3]).

m times

Corollary 2.42 The group Gy has size 12¥ and the 12¥ representatives of
elements from Gy, (the cosets of Ay, in Z™) can be taken as the elements of
(0,2] x [0,3])".

Consider the mapping ® : Z§ — G, defined by

O(z1,22,....x0) = (P(x1), d(2), ..., (1))
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where ¢ : Z3z — (9 is a mapping defined by

0,0) ifz=0
plx) =4¢(1,2) ifz=1.
(2,0)  ifz=2

It is easy to verify that both ¢ and ® are injective group homomorphisms.
Let C be a ternary perfect code of length v with 3~ codewords, and
let @(C)dﬁf{@(é) : € € C}. Since the elements of ®(C) are representatives of

elements of Gy, (see Corollary 2.42) it follows that the elements of ®(C) can

be considered as elements in Z". Let Tnd:effl)(C) + Ap.

Theorem 2.43 The set T,, is a tiling of Z"™ with T,.

Proof. Clearly, A,, is a lattice with period 12 and hence T, is a periodic code
of Z™ with period 12. Therefore, without loss of generality we can restrict
our discussion to Z7,. i.e. codewords of T, N [0,11]". Since |Y,| = 2?3
it follows that the size of the tiling T,, in [0, 11]", |T, N [0, 11]"|, should be
22v32v=t Ty prove that T, is a tiling of Z" with T,, we will show that the
size of T, N [0,11]" is 22¥32"~* and we will prove that each point of Z" is
covered by an element of T,,.
Claim: For any two codewords ¢1,¢2 € C, and two lattice points y1,y2 €
Ay, we have ®(¢1) +y1 # P(€2) + y2, unless ¢; = €2 and y; = yo.
Proof: Assume that ®(¢1)+y1 = ®(€2) +yo, i.e. (¢1)—P(€2) =y2—y1,
€1,¢2 € C and y1,y2 € A,. Hence, y2 —y1 = (aq,...,ay) is a lattice
point and unless y; = y2 we have that for at least one i, |a;| > 2. Denote
d(¢1) — P(¢2) = (B, .., 0n). By the definition of ®, for each i, 1 <i < n,
we have |5;| < 2. Therefore, y; = y2 and ®(¢;) = ®(¢2) and since P is an
injective mapping it implies that ¢; = ¢2 and the claim is proved.

The claim implies that |T,, N[0, 11]"| = |®(C)| - |A, N [0,11]"?|. Since ®
is an injective mapping we also have that |®(C)| = |C|. Since A, has period
12 and V(A,) = 12¥ it follows that |A,, N [0,11]"| = 12”. Therefore,

IT,.N[0,11]"| = |®(C)|-|A,N[0, 11]"| = |C|-|A,N[0, 11]"| = 3V~ 112V = 2232~

as required.
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class [(0,0)] (0,0) | (0,3) | (2,2) | (2,1) — (z1,22)
(P.1) | [(y1,92)] =1[(0,0)] | (0,0) | (0,4) | (3,2) | (3,2) | +— (u1,u2) + (y1,92)
(P.2) | [(y,y2)] =1[(1,2)] | (1,2) | (1,2) | (1,2) | (1,2) | «— (u1,u2) + (y1,92)
(P-2) | [(y1,92)] =[(2,0)] | (2,0) | (24) | (24) | (2,0) | +— (u1,u2) + (y1,¥2)

class [(1,2)] (1,2) | (1,1) | (0,1) | (0,2) — (x1,22)
(P.2) | [(y1,92)] = [(0,0)] | (3,2) | (3,2) | (0,0) | (0,4) | ¢— (u1,u2)+ (y1,92)
(P.1) | [(y1,92)] =1[(1,2)] | (1,2) | (1,2) | (1,2) | (1,2) | ¢— (u1,u2) + (¥1,92)
(P.2) | [(y1,92)] = [(2,0)] | (2,4) | (2,0) | (-1,2) | (-1,2) | ¢— (u1,u2) + (¥1,92)

class [(2,0)] (2,0) | (1,3) | (2,3) | (1,0) — (x1,29)
(P-2) | [(y1,92)] =[(0,0)] | (3,2) | (0,4) | (3,2) | (0,0) | +— (u1,u2) + (y1,¥2)
(P-2) | [(y1,92)] =[(1,2)] | (4,0) | (1,2) | (44) | (1,2) | +— (u1,u2) + (y1,¥2)
(P1) | [(y1,92)] = [(2,0)] | (2,0) | (24) | (24) | (2,0) | +— (u1,u2) + (y1,¥2)

Table 2.1: Properties (P.1) and (P.2).

To show that every point of Z" is covered by an element of T,, we first
partition the elements of [0, 2] x [0, 3] into three classes:

[(0,0)] =£(0,0),(0,3),(2,2),(2,1)}
[(13 2)] = {(17 2)7 (17 1)> (Oa 1)? (07 2)} )
[(2,0)] ={(2,0),(1,3),(2,3),(1,0)}

The following two properties are readily verified (as can be verified from
Table 2.1).

(P.1) For each element (z1,z2) in a class [(y1,y2)] there exists an element
(u1,uz) € Ag such that u; + y; € {x;, x; + 1}, for i € {1,2}.

(P.2) For each element (x1,z2) € [0,2] x [0, 3] and each class [(y1,y2)] there
exists an element (u1,u2) € Ag such that u;+y; € {z;—1,z;,x;+1, z;+
2}, for i € {1,2}, and for at most one i we have u;+vy; € {x;—1,z;+2}.

Consider the mapping ¥ : ([0, 2] x [0, 3])” — [0,2]” defined by
U (21,22, .y ) = (Y(x1, 22), (23, 24), ooy Y(Tp—1,Tn)) ,
where v : [0,2] x [0,3] — Z3 is a mapping defined by

0 if (z1,22) € [(0,0)]
1/)(.%’1,1’2) =<1 if (:El,ibg) S [(1,2)]
2 if (.731,.%2) c [(2,0)]

For a given point z = (21, 22,...,2,) € Z" we will exhibit a point x € T,
which covers z. By Corollary 2.42 we have that there exists an element
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y € A, such that z+y € ([0,2] x [0,3])”. Let b=2z+y = (b1,ba,...,b,)
and let ¥(b) = (a1, a2,...,0y) € Z§. Since C is a perfect code of length v
over Zs it follows that there exists a codeword (¢1,c2,...,¢,) € C such that
di((a1,a2,...,00), (c1,¢2,...,¢,)) < 1. Let v = ®(ey,c2,...,c,), where
~ = (71,72, --,7n). Note that by the definitions of ® and ¥ it follows that
(boi—1,b2;) and ¢(cy;) are in the same class, for all 1 < i < v. Now, we
distinguish between two cases:

Case 1: If (ag,a9,...,a,) = (c1,¢9,...,¢,) then by property (P.1) there
exists an element (ui,us,...u,) € A, such that u; +; € {b;,b; + 1}, for
1 < i < n. Therefore, by Lemma 2.11 we have that (uj,ug,...,u,) +
(1,725 - -,Yn) covers b and hence the required x is

x = (ur,ug,...un) + (71,72, -, M) — -

Case 2: If (aj,0,...,a0) # (c1,¢2,...,¢,) then the Hamming distance
between (aq,a2,...,q,) and (¢1,c¢,...,¢,) is one, and hence there exists
exactly one coordinate s such that as # cs. By properties (P.1) and (P.2)
there exists an element (u,ug, ..., u,) € A, such that u;+v; € {b;—1,b;,b;+
1,b;+2}, for 1 <i < n, and for at most one ¢ we have u;+~; € {b;—1,b;+2}.
Therefore, by Lemma 2.11 we have that (uj,ug,...,un) + (Y1,72, -+, Vn)
covers b and hence the required x is

x = (ur,u2,...,un) + (71,72, ) — Y-

Since we proved that the size of T, N [0,11]" is 22V3?*~* and each point
of Z™ is covered by an element of T,,, the theorem is proved.
Od

Theorem 2.44 If C is a linear code then T, is a lattice tiling.

Proof. Follows immediately from Theorem 2.43 and the facts that C is a
linear code and @ is a group homomorphism.
O
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Chapter 3

Tiling with n-Dimensional
Chairs and Their

Applications to Asymmetric
Codes

Storage media which are constrained to change of values in any location of
information only in one direction were constructed throughout the last fifty
years. From the older punch cards to later optical disks and modern storage
such as flash memories, there was a need to design coding which enables the
values of information to be increased but not to be decreased. These kind of
storage medias are asymmetric memories. The codes used in these medias
are called, asymmetric codes. Some of these memories behave as write-once
memories (or WOMs in short) and coding for them was first considered in
the seminal work of Rivest and Shamir [68]. This work initiated a sequence
of papers on this topic, e.g. [16, 31, 32, 99, 104].

The emerging new storage media of flash memory raised many new inter-
esting problems. Flash memory is a nonvolatile reliable memory with high
storage density. Its relatively low cost makes it the ideal memory to replace
the magnetic recording technology in storage media. A multilevel flash cell
is electronically programmed into g threshold levels which can be viewed
as elements of the set {0,1,...,¢ — 1}. Raising the charge level of a cell
is an easy operation, but reducing the charge level of a single cell requires
to erase the whole block to which the cell belongs. This makes the reduc-
ing of a charge level to be a complicated, slow, and unwanted operation.
Hence, the cells of the flash memory act as an asymmetric memory as long
as blocks are not erased. This has motivated new research work on WOMs,
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e.g. [11, 77,97, 101, 103].

Moreover, usually in programming of the cells, the charge level in a
single cell of a flash memory can only to be raised, and hence the errors
in a single cell are asymmetric. Asymmetric error-correcting codes were
subject to extensive research due to their applications in coding for computer
memories [66]. The errors in a cell of a flash memory are a new type of
asymmetric errors which have limited-magnitude. Errors in this model are
in one direction and are not likely to exceed a certain limit. This means that
a cell in level 7 can be raised by an error to level j, such that i < j < ¢g—1
and j —i < /£ < g— 1, where / is the error limited-magnitude. Asymmetric
error-correcting codes with limited-magnitude were proposed in [2] and were
first considered for nonvolatile memories in [9, 10]. Recently, several other
papers have considered the problem, e.g. [22, 23, 46, 102].

In this work solutions for both the construction problem of asymmetric
codes with limited-magnitude and the coding problem in WOMs are pre-
sented. The proposed solutions use the concept of tiling. Tiling is a well
established concept in combinatorics and especially in combinatorial geom-
etry. There are many algebraic methods related to tiling [86] and it is an
important topic also in coding theory. Tiling in this work is done with a
shape § and only shapes which form an error sphere for asymmetric limited-
magnitude codes or their immediate generalization in R™ are considered (see
Chapter 1 for the definition of tiling).

As mentioned in Chapter 2, two of the most considered shapes for tiling
are the cross and the semi-cross [84, 86]. These were also considered in con-
nections to flash memories [74]. In this chapter another shape which will be
called in the sequel an n-dimensional chair is considered. An n-dimensional
chair is an n-dimensional box from which a smaller n-dimensional box is
removed from one of its corners (example of a three dimensional chair is
given in Figure 3.1). This is a generalization of the original concept which
is an n-dimensional cube from which one vertex was removed [53]. Lattice
tiling with this shape is discussed, regardless of the length of each side of
the larger box and the length of each side of the smaller box.

An equivalent way to present a lattice tiling is given. This method is
called a generalized splitting and it generalizes the concepts of splitting
defined in [80]; and the concept of Bj[f] sequences defined and used for
construction of codes correcting asymmetric errors with limited-magnitude
in [46]. Two applications of tilings with such a shape are presented. One
application is for construction of codes which correct up to n—1 asymmetric
limited-magnitude errors with any given magnitude for each cell; and a
second application is for constructing WOM codes with multiple writing.

36



An n-dimensional chair Spx C R", £ = (01,02, ...,0n), k = (k1, ko, ..., k) €
R™ 0 < k; < £; for each i, 1 < i <mn, is an n-dimensional 1 X o X --- X £,
box from which an n-dimensional k1 X ko X --- X k,, box was removed from
one of its corners. Formally, it is defined by

0<uxz; </, and there exists a j
Sg}kdgf{(l'l,l'Q,...,xn)GRn : - v x J: }

1 <j < n, such that z; < {; — k;

The following lemma on the volume of Sy i is an immediate consequence
of the definition.

Lemma 3.1 If €= ({1,0,....,0,), k = (ki1, ko, ..., kn) are two vectors in R™,
where 0 < k; < £; for each i, 1 <1 <mn, then

[Seadl =TT — % -
=1 =1

If £ = (41,09,....,0,), k = (k1,ko,....,kn) € Z" then the n-dimensional
chair Spy is a discrete shape and it can be viewed as a collection of connected
n-dimensional unit cubes in which any two adjacent cubes share a complete
(n — 1)-dimensional unit cube. In this case the formal definition of the
n-dimensional chair, which considers only points of Z", is

SdeEf{(xl - ) € T" : 0 <z; < ¥¢;, and there exists a j, }
K ™ 9 AR Rt . .

1 <j <mn, such that x; < /{; — k;

Forn=2,if {1 =¥, = ¢ and k1 = ko = £ — 1, then the chair coincides
with the shape known as a corner (or a semi-cross) [83]. Examples of a two-
dimensional semi-cross and a three-dimensional chair are given in Figure 3.1.

N %_

Figure 3.1: A semi-cross with £ = 4 and a 3-dimensional chair with £ = (5,4, 3)
and k = (3,3,1).

Let G be an Abelian group and let 3 = (1, 52, ..., B, be a sequence with
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n elements of G. For every x = (1, z2,...x,) € Z" we define

x-B=> i,
i=1

where addition and multiplication are performed in G.

A set § C Z" splits an Abelian group G with a splitting sequence
B = B1,82,..,Bn, Bi € G, for each i, 1 <i < mn, if theset {e-3 : ec S}
contains |S| distinct elements from G. We will call this operation a general-
ized splitting. The splitting defined in [36] and discussed in [39, 80, 82, 84] is
a special case of the generalized splitting. It was used for the shapes known
as cross and semi-cross [82, 83], and quasi-cross [74]. The Bj[¢] sequences
defined in [46] and discussed in [46, 48] for construction of codes which cor-
rect asymmetric errors with limited-magnitude are also a special case of the
generalized splitting. These Bp[f] sequences are modification of the well
known Sidon sequences and their generalizations [61]. The generalized split-
ting also makes generalization for a method discussed by Varshamov [94, 95].
The generalization can be easily obtained, but to our knowledge a general
and complete proven theory was not given before.

Lemma 3.2 If A is a lattice packing of Z™ with a shape S C Z™ then there
exists an Abelian group G of order V(A), such that S splits G.

Proof. Let G =7Z"/A and let ¢ : Z" — G be the group homomorphism
which maps each element x € Z" to the coset x+A. Clearly, |det G| = V(A).

Let B = p1, B2, ..., Bn, be a sequence defined by B; = ¢(e;) for each 1,
1 < i < n. Clearly, for each x € Z™ we have ¢(x) = x - 3.

Now assume that there exist two distinct elements e, f € S, such that

ble) =e-B=£-B=o(f).
It implies that
ble—f)=(e—f)-B=e-B-F-B-0.

Since ¢(x) = 0 if and only if x € A it follows that there exists x € A, x # 0,
such that
e=f+x.

Therefore, S N (x + S) # @ which contradicts the fact that A is a lattice
packing of Z™ with the shape S.
Thus, S splits G with the splitting sequence (.
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Lemma 3.3 Let G be an Abelian group and let S be a shape in Z™. If S
splits G with a splitting sequence B then there exists a lattice packing A of
Z" with the shape S, for which V(A) < |det G|.

Proof. Consider the group homomorphism ¢ : Z" — G defined by
p(x) =x- 8.

Clearly, A = ker(¢) is a lattice and the volume of A, V(A) = |¢(Z")| <
| det GI.

To complete the proof we have to show that A is a packing of Z™ with
the shape S. Assume to the contrary that there exists x € A such that
SN(x+S8) # @. Hence, there exist two distinct elements e, f € S such that
e = f + x and therefore,

¢(e) = o(f +x) = ¢(f) + ¢(x) = ¢(f).

Therefore, e - 3 = f - 3, which contradicts the fact that S splits G with the
splitting sequence 3.
Thus, A is a lattice packing with the shape S.
O

Corollary 3.4 A lattice tiling of Z™ with the shape S C Z exists if and
only if there exists an Abelian group G of order |S| such that S splits G.

If our shape S is a discrete shape, i.e., S can be viewed as a subset of Z",
then an integer lattice tiling with the shape S is equivalent to a group split-
ting. In fact, both methods are complementary. If we consider the matrix
H =[f1 P2 -+ By] then the vector x = (x1,x9,...,2,) € Z" is contained in
the related lattice if and only if Hx” = 0. Therefore, H has some similarity
to a parity-check matrix in coding theory. The representation of a lattice
with its generator matrix seems to be more practical. But, sometimes it is
not easy to construct one. Moreover, the splitting sequence has in many
cases a nice structure and from its structure the general structure of the lat-
tice can be found. This is the case in the next two sections. In Section 3.1
we present two constructions of tilings based on generalized splitting. Even
though the second one generalizes the first one, the mathematical structure
of the first one has its own beauty and hence both constructions are given.
The construction of the lattice, in R™, given in Section 3.2, was derived
based on the structure of the lattices, in Z™, obtained from the construction
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of the splitting sequences in Section 3.1. Mihalis Kolountzakis and James
H. Schmerl [51] pointed on [85], where this lattice was first proposed, and
further discussed in [50, 73].

3.1 Constructions based on Generalized Splitting

In this section a construction of a tiling with n-dimensional chairs based
on generalized splitting is presented. The n-dimensional chairs which are
considered in this section are discrete, i.e. £,k € Z™. First, a construction
in which all the #;’s are equal to ¢, and all the k;’s are equal to £ — 1 is
given. This construction is generalized to a case in which all the k;’s, with a
possible exception of one, have multiplicative inverses in the related Abelian
group.

For the ring G' = Z,, the ring of integers modulo ¢, let G* be the mul-
tiplicative group of G formed from all the elements of G' which have multi-
plicative inverses in G.

Lemma 3.5 Let n > 2, £ > 2, be two integers and let G be the ring of
integers modulo " — ({ — 1)", i.e. Zyn_(y_1yn. Then,

(P1) £ —1 and ¢ are elements of G*.
(P2) a={({ —1)"1 is an element of order n in G*.
(P3) 1+a+a?+--+a" ! equals to zero in G.

Proof.

(P1) By definition, ¢" —(£—1)" is zero in G = Zn_(y_1)n. We also have that

e (== (DU -1 =1+ (DX (-1 T
follows that (£ — 1)(— S} (M)(¢—1)""1) =1in G, and hence, (-1 €

G*. Since (" — (£ — 1)™ is zero in G, it follows that ¢ = (¢ — 1)", and
hence ¢ € G* if and only if £ — 1 € G*.

(P2) Clearly, o™ = *((¢ —1)~H™ and since " = (¢ — 1)", it follows that
a™ = (¢ —1)"(¢—1)"" = 1. This also implies that « has a multiplica-
tive inverse and hence a = £(¢ — 1)~! € G*.
Now, note that for each i, 1 <4 <n—1, wehave 0 < £ —({—1)! < {"—
(£—1)". Therefore, ! # (£—1)" in G and hence o = £¢((£—1)71)" # 1.
Thus, the order of « in G* is n.
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(P3) Clearly, 0 =a" — 1= (a— 1)(1+a+a? + ... +a"!). By definition,
a=/¢((—-1)"Yand hence a({—1) =, al—a ={,a—al ™ =1, a—1 =
al™t a—1=({—1)7L Therefore, 0 = ({—1)"1(1+a+a?+...+a" 1)
which implies that 1 + a4+ a? + ... + a" 1 = 0.

O

Theorem 3.6 Let n > 2, £ > 2, be two integers, G = Zyn_(y_1)n, and
a=/L0l—-1)"1 Then Sep, =, l,....0), k=(—-1,0—1,...,0—1),
splits G with the splitting sequence 3 = 51, B, ..., Bn defined by

Bi=a"t, 1<i<n.

Proof. We will show by induction that every element in G can be ex-
pressed in the form e - 3, for some e € Sp ..

The basis of induction is 0 = 0 - 3.

For the induction step we have to show that if x € GG can be presented
as x = e- 3 for some e € Sy, (i.e. e = (er,e2,...,e,) €Z", 0<¢; <l —1,
1 <i < n, and for some j, e; = 0), then also x 4+ 1 can be presented in the
same way. In other words, x +1 =& 3, where € = (€1, €2, ..., €,) € Sp k.

If e1 < £ —1 and there exists j # 1 such that e; = 0 then

r+1l=e- 3,

where €1 = e; + 1 and €; = ¢, for all 2 < j < n, and the induction step is
proved.

If e; = 0 and there is no j # 1 such that e; = 0 then by Lemma 3.5 (P3)
we have that >, 8; = 0 and hence

r+1l=(et+e —1)-3,

i.e. € =e+ ey — 1 is the required element of Sy and the induction step is
proved.

Now, assume that e; = £ — 1. Let j, 2 < j < n be the smallest index
such that e; = 0.

n
r+1=1L081+) efi
i=2
Note that for each 7, 1 <i <n —1,

B =007 (=) = (= DE(E =17 = (0 = DB
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Therefore,

r+l=(—1+e)Ba+ Y eifi.
=3

If j =2 then € = (0,¢ — 1,e3,...,e,) and the induction step is proved. If
eo >0, i.e. j > 2, then

r+1= (62 — 1),82 +€,82 —i—Zeiﬁi = (62 — 1),82 + (f— 1 +€3)53 +Zeiﬁi.

=3 i=4

By iteratively continuing in the same manner we obtain

Jj—1 n
rH1=) (i —1)Bi+(L—1+¢€)Bi+ Y efi
=2 i=j+1

and since e; = 0 we have that
e= (0,62 — 1,...,ej_1 — 1,€— l,ej+1,...,en)

and the induction step is proved.
Since | det G| = |Sg k|, it follows that the set {e - 5 : e € Sy} has [Sp |
elements.
O

Corollary 3.7 For each n > 2 and £ > 2 there exists a lattice tiling of Z"
with Spp, L= (0, 0,....0), k=—-1,0—1,...,0—1).

The next theorem and its proof are generalizations of Theorem 3.6 and
its proof.

Theorem 3.8 Let £ = ({1,0a,...,0y), k = (k1,ka, ..., k) be two vectors in
Z"™ such that 0 < k; < {; for eachi,1 <i<mn. LetT =[[;-, li, k = [[;— ki,
G = Zr_x and assume that for each i, 2 < i < n, k; € G*. Then Sy, splits
G with the splitting sequence 3 = (1, Ba, ..., B defined by

pr=1

Biv1 =k NiB 1<i<n-—1.

Proof. First we will show that k16, = £,8,. Since T — Kk equals zero
in G, it follows that 7 = k in G and hence k1 = £1/5 - - -an51k§1 . --k;l.
Therefore,

gn n — gnqulgn—lﬁn—l = = gngn—l t elkrjlk;il T kg_lﬂl = klﬁl .
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As an immediate consequence from definition we have that for each i, 1 <
1 <n—1,
4iBi = kit1Biv1 -

Next, we will show that

(L—k)-B=0. (3.1)
(C—k)-B= (ti—k)Bi =D (tifi — ki)
=1 =1

n—1
= ‘gnﬁn - knﬁn + Z(ki+1/8i+l - klﬁl)

=1
= gn,ﬁn - knﬁn + knﬁn - klﬁl =0

Since |Sg k| = | det G| it follows that to prove Theorem 3.8, it is sufficient
to show that each element in G can be expressed as e - 3, for some e € Sp ..
The proof will be done by induction.

The basis of induction is 0 = 0 - 3.

In the induction step we will show that if x € G can be presented as
e - 3 for some e € Sgj then the same is true for  + 1. In other words,
x+1=eé- B, where € = (€1, €, ...,€,) € Sp .

Assume

l.:e.ﬁ7

where e = (eq,e2,...,¢e,), 0 < e; < {; for each 7, and there exists a j such
that e; < éj — kj.

Ifeg <ty —ky —1orifeg <€ —1 and there exists j # 1 such that
ej < {j — kj, then since 81 = 1 it follows that

r+1=e- 3,

where € = e+ ey. Clearly, 0 < ¢; < ¥, —1; 61 <l —kiife; <l — k-1
and otherwise €; < £; — k;j. Hence, the induction step is proved.

If e1 = ¢1 — k1 — 1 and there is no j # 1 such that e; < ¢; — k; then by
(3.1) we have that (£ — k) - 8 = 0 and hence

r+1l=(e+e—(£L—k)) -3,

i.e. € = e+e; —L+kis the required element of Spj, and the induction step
is proved.
Now, assume that e; = ¢; — 1. Let 2 < j < n be the smallest index such
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that €; < fj — k‘j.

z+1=0p0+ Zezﬂi = (ka + e2)B2 + Zei/@i-

1=2 =3

If j =2 then € = (0, ka +e9, €3, ...,e,) and the induction step is proved.
If €9 Z 52 - ]432 then

x4+ 1="~00s+4 (ea — (by — k2)) B2 + Z eiBi
i—3

= (e — (ta = ka))Ba + (kz + e3)B3 + > eifs.

=4

By iteratively continuing in the same manner we obtain

j-1 n
1= (ei—(Li—k)Bi+ (kj+e))Bi+ Y ebi,
=2 i=j+1

and since e; < {; — k; it follows that
e= (0,62 — {9 —1—/@2,...,6]',1 —Ejfl —i—]{/‘jfl,k‘j —|—€j,€j+1,...,€n)

is the element of Sy x, and the induction step is proved.
O

Corollary 3.9 Let £ = ({1,02,...,0,), k = (k1, ko, ..., kn) be two vectors in
Z" such that 0 < k; < £; for each i, 1 <i<n. Let T =T["_,¢; and assume
that ged(ki, 7) = 1 for at least n — 1 of the k;’s. Then there exists a lattice
tiling of Z" with Sg .

3.2 Tiling based on a Lattice

Next, lattice tiling of R™ with Spp C R", where £ = ({1,02,....,4,), k =
(k1,ka, ..., ky) € R, is considered. As mentioned above, Mihalis Kolountza-
kis and James H. Schmerl pointed on [50, 73, 85], where this lattice tiling
can be found. For completeness and since the presented proof is slightly
different, this part is included in this work. The following lemma will be
useful in the proof of the next theorem.

Lemma 3.10 Let x = (x1,22,...,2,) € R". Then, Se N (x+ Sex) # @
if and only if |x;| < 4;, for 1 < i < n, and there exist integers j and r,
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1 <j,m <n, such that x; < {; — k; and —(b, — k) < ;.

Proof. Assume first that Spp N (x + Sez) # @, ie. there exists an
a€SprN(x+Spp), a= (ar,as...,a,). By the definition of Sp it follows
that

0<a;<¥, foreachi, 1<i<n, (3.2)
and there exists a j such that
a; < l; —k;j . (3.3)
Similarly, for @ + Sg j we have
i <a; <x;+¥¢ , foreachi, 1 <i<n, (3.4)
and there exists an r such that
ar < xp + 4. — k. (3.5)

It follow from (3.2) and (3.4) that z; < a; < ¢; and —¢; < a; — ¥; < x; for
each 7, 1 < i < n. Hence, |z;| < ¢; for each 7, 1 < i < n. It follow from
(3.3) and (3.4) that z; < a; < £; — k;. It follows from (3.5) and (3.2) that
Ty > ap — (by — k) > — (b — k).

Now, let x = (z1,x2,...,2,) € R" such that |z;| < ¢; for each i, 1 < i <
n, and there exist j, r such that x; < ¢; — k; and x,, > —(¢, — k,). Consider
the point a = (a1, ag, ...,a,) € R", where a; = max{x;,0}.

By definition, for each i, 1 < i <n,

Ogai<£i

and a; < {; — k;. Hence, a € Sp .
Clearly, if z; < 0 then a; = 0 and if x; > 0 then a; = x;. In both cases,
since 0 < x; + ¥¢;, it follows that we have

xi§a¢<xi+€i.

We also have 0 < x, + £, — k., and therefore z, < a, < x, + ¢, — k.. Hence,
acx+ Sg}k.
Thus, a € Sg,k N (a: + Sé,k)a ie. Sg’k, N (:B + Sg,k) #+ .

The next Theorem is a generalization of Corollary 3.9.
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Theorem 3.11 Let £ = ({1,0,....0,) € R"™ and k = (k1, k2, ....kn) € R",
0<k; <ty foralll <i<mn. Let A be the lattice generated by the matrix

{61y —ky O 0 0
0 by —k3 O 0
gl -
0 0 lp—o —kp—1 O
0 0 0 b1 —ky
| —k1 O 0 0 by |

Then A is a lattice tiling of R™ with Sp .

Proof. 1t is easy to verify that V(A) = |det G| = [ € — [[i= ki =
|Se,k|. We will use Lemma 1.11 to show that A is a tiling of R with Sg .
For this, it is sufficient to show that A is a packing of R™ with S .

Let x € A, x # 0, and assume to the contrary that Sp N (T + Se i) # @.
Since x € A it follows that there exist integers Ao, A1, Ao, ..., Ay, = Ag, not all
zeros, such that z; = \;¢; — N\;_1k;, for every ¢, 1 < ¢ < n. By Lemma 3.10
we have that for each i, 1 <i <mn,

—&‘ < )\Z& — )\i—lki < Ez s

i.e. Nk Nk
i—1 Z_1<)\i< i—1hg

1.
l; ¢; +

Since A; is an integer it follows that \; = L%J or \;, = {%—‘ For

i i

each i, 0 <7 <n—1,if \; = p > 0 then since k;+1 < £;11 we have that

0< V’fiﬂJ < iy < {Pki-i-l—‘ <
lita liva

Hence,
0< Ait1 <\ (3.6)

Similarly, if A; < 0 we have that
Ai <A1 <0
If Ao > 0 then by (3.6) we have

>\0:)\n§)\n71§"'§)\1§)\07
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and hence \; = p for each ¢, 1 <4 < n. Similarly, we have \; = p for each
i, 1 < i< nif \g 0. If p > 0 then since p is an integer we have that
x; = p(l;—k;) > 0; — k;, for each i, 1 <4 < n. Hence, there is no j such that
xj < {; — kj, which contradicts Lemma 3.10. Similarly, if p < 0 then for
each i, 1 <i<mn, x; = p(l; — ki) < —(¢; — k;), and hence there is no r such
that z, > —(¢; — k;), which contradicts Lemma 3.10. Therefore, p = 0, i.e.
for each i, 0 < i < n, A; =0, a contradiction. Hence, A is a lattice packing
of R™ with Sp
Thus, by Lemma 1.11, A is a lattice tiling of R™ with S g.
O

Remark 3.1 Note, that the construction (Theorem 3.11) is based on lattices
covers all the parameters of integers which are not covered in Section 3.1.
3.2.1 Asymmetric Errors with Limited-magnitude

The first application for a tiling of Z™ with an n-dimensional chair is in con-
struction of codes of length n which correct asymmetric errors with limited-

magnitude.
Let @ ={0,1,...,¢g—1} be an alphabet with ¢ letters. A code C of length
n over the alphabet @) is a subset of Q™. A vector e == (e1,e€2,...,¢e,) is

a t-asymmetric-error with limited-magnitude £ if the Hamming weight of e,
wpr(e) (i-e. the number of nonzero entries in e), is at most ¢ and 0 < e; </
for each 1 <4 < n. The sphere S(n,t,¢) is the set of all t- asymmetric-errors
with limited-magnitude ¢. A code C C Q" can correct t-asymmetric-errors
with limited-magnitude ¢ if for any two codewords @,y, and any two t-
asymmetric-errors with limited-magnitude ¢, e, f, such that x + e € Q",
y+ f€Q", we have that x + e £y + f.
The size of the sphere S(n,t,{) is easily computed.

Lemma 3.12 |S(n,t,0)| =Y\, (")
Corollary 3.13 |S(n,n—1,0)| = (£ +1)" — (™.

For simplicity it is more convenient to consider the code C as a subset
of Zy, where all the additions are performed modulo ¢. Recall, that a code
C can be viewed also as a subset of Z™ formed by the expanded code of C,
E(C). Note, in this code there is a wrap around (of the alphabet) which
does not exist if the alphabet is ), as in the previous code.

A linear code C, over Zy, which corrects t-asymmetric-errors with limited-
magnitude £, viewed as a subset of Z", is equivalent to an integer lattice
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packing of Z™ with the shape S(n,t,¥). Therefore, we will call this lattice a
lattice code.

Let A(n,t,¢) denote the set of lattice codes in Z™ which correct t-
asymmetric-errors with limited-magnitude ¢. A code £ € A(n,t,¥) is called
perfect if it forms a lattice tiling with the shape S(n,t,£). By Corollary 3.4
we have

Corollary 3.14 A perfect lattice code L € A(n,t,{) exists if and only if
there exists an Abelian group G of order |S(n,t, )| such that S(n,t,£) splits
G.

A code L € A(n,t,¢) is formed as an extension of a code over Z;. Assume

we want to form a code C C X", where Edéf{o, 1,...,0 — 1}, which corrects

t asymmetric errors with limited-magnitude ¢. Assume that a construction
with a large linear code C C %™ does not exist. One can take a lattice code

L € A(n,t,0) over an alphabet with ¢ letters ¢ > 0. Then a code over the

alphabet ¥ is formed by ¢ 2 2. Note that the code C is usually not

linear. This is a simple construction which always works. Of course, we
expect that there will be many alphabets in which better constructions can
be found.

There exists a perfect lattice code £ € A(n,t,¢) for various parameters
with ¢ = 1 [46, 48]. Such codes also exist for t = n and all £ > 1 and for
the parameters of the Golay codes and the binary repetition codes of odd
length [56].

The existence of perfect codes which correct (n — 1)-asymmetric-errors
with limited magnitude ¢ was proved in [48]. The related sphere S(n,n—1,¢)
is an n-dimensional chair Sp g, where £ = (( + 1,0+ 1,...,/+ 1) and k =
(£,¢,...,0). Sections 3.1 and 3.2 provide constructions for such codes with
simpler description and simpler proofs that these codes are such perfect
codes.

In fact, the constructions in these sections provide tilings of many other
related shapes. More than that, there might be scenarios in which different
flash cells can have different limited magnitude. For example, if for some cells
we want to increase the number of charge levels. In this case we might need
a code which correct asymmetric errors with different limited magnitudes for
different cells. Assume that for the i-th cell the limited magnitude is ¢;. Our
lattice tiling with Sp i, £ = (1+1,la+1, ..., lp+1) € 2" k = ({1, 4o, ..., Ly),
produces the required perfect code for this scenario.
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3.3 Nonexistence of some Perfect Codes

Next, we ask whether perfect codes, which correct asymmetric errors with
limited-magnitude, exist for ¢ = n — 2. Unfortunately, such codes cannot
exist. The proof for this claim is the goal of this section. Most of the proof
is devoted to the case in which the limited magnitude £ is equal to one. We
conclude the section with a proof for ¢ > 1.

For a word & = (x1,x2,...,2,) € Z", we define

Ny(e) = {ai | 2> 0}, N_(@) = [{a; | & < 0}].

We say that a codeword x € L, L € A(n,t,¥), covers a word y € Z™ if there
exists an element e € S(n, t,¢) such that y = x + e.

Lemma 3.15 Let £ € A(n,t,0), and assume that there exists x € L, © =
XT1,X2,...,%n), T £ 0, such that |x;| < £, for every i, 1 < i < n. Then,
Ni(x)>t+1or N_(x)>1t+1.

Proof. Let ¢ = (x1,x2,...,2,) € L,  # 0, such that |x;| < ¢, for every
i, 1 < i < n. Assume to the contrary that Ny(z) < ¢ and N_(x) < t.
Let et = (ef,e5,...,¢}) where ef = max{z;,0} and e™ = (e],e5,...,¢€,)
where e; = max{—xz;,0}. Clearly, e™, e~ € S(n,t,{) and x + e~ =e™.
Therefore, S(n,t,¢) N (x + S(n,t,¢)) # &, which contradicts the fact
that £ € A(n,t,¢). Thus, Ny(x) >t+1or N_(x) >t+ 1.
O

Lemma 3.16 Let L € A(n,n — 2,{) be a lattice code. The word 1 € Z",
the all-one vector, can be covered only by a codeword of the form 1 — X - e;,
for some i, 1 <1i < n; where X is an integer, 0 < A < £.

Proof. Assume that € L is the codeword that covers 1. Then there
exists e = (e1,€9,...,e,) € S(n,n—2,¢) such that t+e=1,i.e. z; =1—¢;
and therefore, 1 — ¢ < x; < 1 for each i, 1 < i < n. Since wy(e) < n —2
it follows that there are at least two entries which are equal to one in «.
By Lemma 3.15, it follows that Ny (x) > n — 1. Hence, there are at least
n — 1 entries of & which are equal to one. Therefore, x = 1 — A\e; for some
i, 1 <14 <n; where XA is an integer, 0 < A < /.

O

Lemma 3.17 Let £ € A(n,n — 2,{) be a lattice code. For every j, 1 <
Jj <n, the word w; = 1 — e; can be covered only by a codeword of the form
1 — Xej, where X is an integer, 1 < X < £+ 1.
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Proof. Assume that x € £ is a codeword that covers w;. Then there
exists e = (eq,e2,...,e,) € S(n,n — 2,¢) such that x + e = w;. Clearly,
xj = —ej < 0, and for each 7 # j, x; = 1 — ¢; and therefore —¢ < x; <1
for each i, 1 < ¢ < n. Since wy(e) < n — 2 it follows that there are at most
n — 2 negative coordinates in . Therefore, by Lemma 3.15, it follows that
Ni(x) > n — 1. Hence, there are at least n — 1 coordinates of x which are
equal to one. Thus, € =1 — Aej, where 1 <\ < /4 1.

O

Lemma 3.18 If there exists a perfect lattice code in A(n,n —2,{) then
|S(n,n — 2,0)| divides (£ +1)""2({+1+ X(n —2—{)) for some integer A,
0< A</

Proof. Let L € A(n,n — 2,¢) be a perfect lattice code. By Lemma 3.16
and w.l.o.g we can assume that 1 is covered by the codeword x = 1 — e,
where 0 < A < /. Combining this with Lemma 3.17 we deduce that for
all i, 1 < i < n—1, the word w; = 1 — e; is covered by the codeword
yi = 1—({+1)-e; (y; cannot be equal 1 —ae;, 1 < a < ¢ since it would cover
1 which is already covered by x). We have n distinct codewords in £, and
since L is a lattice, the lattice L' generated by the set {x,y1,y2,...,Yn—-1}
is a sublattice of £, and therefore V(L) = |S(n,n — 2, /)| divides V(L'). Let

G be the matrix whose rows are @, Y1, Y2, ..., Yn—1-
1 1 1 1-A
—¢ 1 1
1 —/ 1
det G =
1 1 -/ 1 1
1 1 1 ... =/ 1

Subtracting the first row from every other row, we obtain the determinant

1 1 1 1 1—\
—(0+1) 0 0 0 A
0 —(0+1) 0 0 A
0 0 —(0+1) 0
0 0 0 =1 A

Subtracting the first column from all the other columns, except from the
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last one, we obtain the determinant

1 0 0 0 1— A
—(t+1) (+1 41 ... (41 A
0 —(0+1) 0 0 A
0 0 —(t+1) - 0 A
0 0 0 =1 A

Finally, replacing the second row by the sum of all the rows, except for the
first one, we obtain the determinant

1 0 0 0 1— A
—(t+1) 0 0 0 An-—1)
0 —(t+1) 0 0 A
0 0 —(t+1) 0 A
0 0 0 ... —(t+1) A

Now, it is easy to verify that V(L") = |det G| = [A(n — 1)({ +1)""2 + (1 —
N+ =4+ 1)" 20+ 1+ An—2—10))|.
O

Theorem 3.19 There are no perfect lattice codes in A(n,n —2,1) for all
n > 4.

Proof. By Lemma 3.18, it is sufficient to show that |S(n,n —2,1)| =
2" —n — 1 does not divide 2"2(2 + A(n — 3)), for A = 0, 1.

If A = 0 then we have to show that 2 —n — 1 does not divide 271, It
can be readily verified that 2 —n — 1 > 27~! for all n > 3, which proves
the claim.

If A = 1 then we have to show that 2" —n—1 does not divide 2" 2(n—1).
If 2" = ged (2" — n — 1,2"72) then 0 < r < logy(n + 1). Hence, we have to
show that 27" — ”TJil does not divide n — 1. We will show that for all n > 7,
2n—T — "Q—Jil > n — 1. It is easy to verify that

n+1
27’

QTL—T’

> 2n—10g2(n+1) - (n + 1) _
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Therefore, it is sufficient to show that

2n
n—+1

—-n—1>n-1,

or equivalently
2" > 2n(n +1).

This is simply proved by induction on n for all n > 7.
To complete the proof we should only verify that for n = 4, 5, and 6, we
have that 2" — n — 1 does not divide 2"~ 2(n — 1).
O

Theorem 3.20 There are no perfect lattice codes in A(n,n —2,¢0) if n >4
and ¢ > 2.

Proof. Let n > 4 and ¢ > 2 and assume to the contrary, that there exists
a perfect lattice code £ € A(n,n — 2,¢). Without loss of generality, we
can assume by Lemma 3.16 that the word 1 € Z" is covered by a codeword
x = 1—)e,, where A is an integer, 0 < A < /. From the proof of Lemma 3.18
we have that for all i, 1 < ¢ <n—1, the word w; = 1 — e; is covered by the
codeword y; =1 — (¢ + 1) - e;. Therefore, y = (y1,92,...,Yn) = Y1 + Y2 =
2:1—(¢+1)-e;—(¢+1)-ez is a codeword Clearly, y1 = y2 =2—({+1) =14
and since ¢ > 2 it follows that for all i, 1 < ¢ < n, |y;| < ¢. Moreover,
N_(z) =2 <n—2and N4 (x) = n—2, which contradicts Lemma 3.15. Thus,
if n >4 and ¢ > 2, then there are no perfect lattice codes in A(n,n — 2, /).
O
Combining Theorems 3.19 and 3.20 we obtain the main result of this
section.

Corollary 3.21 There are no perfect lattice codes in A(n,n —2,0) ifn >4
for any limited magnitude ¢ > 1.

The existence of perfect lattice codes in A(n,n — 1,¢) and their nonex-
istence in A(n,n — 2,¢) might give an evidence that such perfect codes do
not exist in A(n,n —¢,£) for £ > 1 and some € > 1. It would be interesting
to prove such a claim for n > 4 and 2 < e < [3].

3.4 Application to Write-Once Memories

A second possible application for a tiling of Z™ with an n-dimensional chair
is in constructions of multiple writing in n cells write-once memories. Each
cell has ¢ charge levels {0,1,...,g—1}. A letter from an alphabet of size o,
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¥ ={0,1...,0 — 1}, is written into the n cells as many times as possible.
In each round the charge level in each cell is greater than or equal to the
charge level in the previous round. It is desired that the number of rounds
for which we can guarantee to write a new symbol from ¥ will be maximized.

An optimal solution for the problem can be described as follows. Let A
be an ¢ X g X - - - X ¢ n-dimensional array. Let ¢ : A — ¥ be a coloring of the
array A with the o alphabet letters. The rounds of writing and raising the
charge levels of the n cells can be described in terms of the coloring v of the
array A. If in the first round the symbol s; is written and the charge level
in cell i is raised to ¢}, 1 < i < n, then the color in position (ci,cl, ... cl)
is s1. Therefore, we have to find a coloring function v such that the number
of rounds in which a new symbol can be written will be maximal.

Cassuto and Yaakobi [11] have found that using a coloring 1 based on
a lattice tiling A with a two-dimensional chair provides the best known
writing strategy when there are two cells. A coloring ¢ of Z™ based on a
lattice tiling A with a shape S has |S| colors. The lattice have |S| cosets,
and hence |S| coset representatives, xg, x1,. .. ;&|5|—1- The points in Z" of
the coset x; + A are colored with the i-th letter of . Now, the coloring
of entry (z1,xo,...,x,) of A given by 1 is equal to the color of the point
(z1,22,...,2,) € Z" given by the coloring 1. The method given in [11]
suggests that a generalization using coloring based on tiling of Z™ with an
n-dimensional chair will be a good strategy for WOM codes with n cells [100].
The analysis with two cells, i.e. two-dimensional tiling was discussed with
more details in [11]. The analysis for the n-dimensional case will be discussed
in research work which follows by the same authors and another group as
well [100].
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Part 11

Permutation Codes for Rank
Modulation
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Chapter 4

Preliminaries: Permutations,

Multipermutations, and the
Kendall’s 7-Metric

Basic definitions and properties for permutations, multipermutations, and
the Kendall’'s 7-metric are given in this chapter. These basic concepts will
be used throughout this part of the dissertation.

Let S, be the set of all permutations on the set of n elements [n] =
{1,2,...,n}. For a,b € Z, where a < b, we denote by [a,b] the set {a,a +
1,...,b} and by S([a,b]) the set of all permutations on [a,b]. We denote
a permutation o € S, by 0 = [0(1),0(2),...,0(n)]. For two permutations
o, € Sy, their multiplication 7 o o is defined as the composition of o on ,
namely, 7o o(i) = o(n(i)), for all 1 <4 < n. Under this operation, the set
Sy is a noncommutative group known as the symmetric group of order n!.
We denote by € = [1,2,...,n], the identity permutation of S,,.

A more general concept is multipermutations, which is also known as
permutations with repetitions. A multiset M = {v"*,v5"?,--- v, } is a
collection of the elements {vi,v2,...,v,} in which v; appears m; times, for
each i, 1 < i < . The elements of {vi,v,...,v¢} are called ranks while
for every i, 1 < i < £, the positive integer m; is called the multiplicity of
the ¢th rank. If mqy = m9 = --- = my = m then M is called a balanced
multiset. A multipermutation on the multiset M is an ordering of all the
elements of M. Note, that a permutation is a special case of a multipermu-
tation. By abuse of notation we denote a multiplication o of length n by
o=[o(1),0(2),...,0(n)], n = Zle m;, where it should be clear from the
context whether ¢ is a permutation or not. For example, if M = {12, 23,3},
then o = [1,2,2,1,3,2] is a multipermutation on M. We denote by S(M)
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the set of all multipermutations on M. The size of S(M) is equal to #'mz'

Given a multipermutation o € S(M), an adjacent transposition, (i,i+1),
is an exchange of two distinct adjacent elements o(i),0(i+ 1) in o, for some
1 < i < n—1. The result is the multipermutation 7 = [o(1),...,0(i —
1),0(i+1),0(i),0(i +2),...,0(n)]. If o is a permutation then the permu-
tation 7 can also be written as 7 = (i,7 + 1) o o, where (4,7 + 1) is the cycle
decomposition of the permutation [1,2,...,i —1,i+ 1,4,i+2,...,n|. Two
adjacent transpositions (i,7 + 1) and (j,j + 1) are called disjoint if either
1+1<jorj+1<u.

For two multipermutations o, 7 € S, the Kendall’s T-distance between
o and m, dg(o,7), is defined as the minimum number of adjacent transpo-

sitions needed to transform o into .

Example 4.1 If o = [1,1,2,2] and 7 = [2,1,2,1], then dg(o,7) = 3,
since at least three adjacent transpositions are required to change the multi-
permutation o to w: [1,1,2,2] — [1,2,1,2] — [2,1,1,2] — [2,1,2,1].

The Kendall’s 7-metric was originally defined for permutations [21, 44].
For two permutations o,m € S, it is known [42, 49] that dx (o, 7) can be
expressed as

dg(o,m) = {(i,4) : o1 (i) <o '(j), 7 1(@) > 7' ()}-

For ¢ € S, the Kendall’s 7-weight of o, wk (o), is defined as the
Kendall’s T-distance between ¢ and the identity permutation e.

The Kendall’s 7-metric on Sy, is right invariant [20], i.e., for every three
permutations o, 7, p € Sy, we have dx (o, 7) = di (o 0 p, 7o p).

For a multipermutation o € S(M), where M = {v",v3", ... v/}, we
distinguish between appearances of the same rank in o, by their positions
in 0. We consider the increasing order of these positions. By abuse of
notation we sometimes write o(j) = v;, and j = 0~ 1(v;,) to indicate that
the rth appearance of v; is in the jth position in o. The computation of the
Kendall’s 7-distance between two permutations can be generalized to two
multipermutations o, m € S(M) as follows

o) =[{(Gn. G+ TS0,

Hvir) > 7 (v),5)
Let ng = 0 and, for all 1 < ¢ < £, let n; = Zj.:l mj, which im-

plies that n = ny. For a multipermutation ¢ € S(M) and permutations
Y1525 - - -, Ve, such that v; € S([ni—1+1, n;]), for all i € [¢], the assignment of
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the permutations 71,72, . .., v in the multipermutation o is the permutation
a=o0(7,%2,...,7) € Sy defined as follows. For all1 < j <mn,ifo(j) = v,
then a(j) = 7;(r). For example, let o = [1,2,1,3,2,3] € S({12,22,3?}) and
let v1 = [2,1], v2 = [3,4] and 3 = [6,5]. Then o(y1,72,73) = [2,3,1,6,4,5].

Lemma 4.2 Let o,7 € S(M) and let v1,72,...,%¢, 01,02,...,0p, where
7i76i S S([ni_l + 1,ni], fO?“ all i € [é] IfU(’yl,’yQ, . ,")/g) = 71'(51,(52, ... ,5@),
then o =7 and ~; = 6;, for i € [{].

Proof. Let a = o(v1,72,...,7) and let 7 € [n]. If a(j) = s, then
ni—1+1 <s <n,; for some i € [{] and o(j) = 7(j) = i. Since this is true for
every j, j € [n], it follows that o = ¢. Moreover, if 7;(r) = s then a(j) =
~i(r) which implies that o(j) = 7(j) = i,. Therefore, a(j) = d;(r) = s and
hence, 7;(r) = §;(r). Since this is true for every r and i, r € [m;], i € [{], it
follows that v; = ¢, for all i € [¢].

O

Lemma 4.3 For every two multipermutations o,m € S(M) and permuta-
tions v1,v2, ..., ve, Vi € S([ni—1 + 1,n;]) for all i € [¢], we have

dK(O', 7T) == dK(O-(’Ylv’YQ? CIEaE 7’7[)7 77(717')’27 o 7’”))-

Proof.
Let a« = o(v1,72,---,v), B=m(y1,72,---,7), and let

0_—1 Vi 0'_1 V;
I = {((i,T‘), (J,8) - 7['_151):'7:; i 77_12’();"3 }’

I ={(a,b) : a"H(a) < a1 (b), B~ (a) > B (D)} .

Then, dg(o,7) = |1] and di(a,B) = |I2|. Let ((i,7),(j,5)) € I, ie.,
o Y viy) < 07l (vjs) and 7 (v;,) > 77 1(vj5). By definition, if v;, is in
the kth position in o, then ~;(r) is in kth position in a. Hence, a=1(y;(r)) =
o Yviy). Similarly, a71(v;(s)) = o7 (v;s), B7H(y(r)) = 7 1(viy), and
B7(v;(s)) = 7 H(vjs). It follows that a~L(v;(r)) < a=t(y;(s)) and simi-
larly, 871 (7i(r)) > B71(v;(s)). This implies that (v;(r),v;(s)) € 2. Con-
versely, let (a,b) € Iy, i.e. a”1(a) < a~1(b) and f71(a) > B7L(b). There
exist 4,7 € [{], r € [my], and s € [m;], such that a = v;(r), b = ~;(s).
It follows that o~ (v;,) = a™(a) < a1(b) = 071 (v)s) and 7 (v;,) =
B~1(a) > B71(b) = 7 !(vjs), which implies that ((i,7), (j,s)) € I1. Hence,
the mapping that maps ((,7), (4, s)) to (vi(r),7;(s)) is a bijection of I; into
IQ. Thus, dK(U, 7T) = ‘[1‘ = ’IQ| = dK(Oé,,B).

O
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Example 4.4 If o = [1,1,2,2], 7 = [2,1,2,1], 1 = [2,1], and 72 = [3,4],
then di (o, m) = 3, and di (o (71,72)), (71, 72) = dK([27 1,3, 4]7 [37 2,4, 1]) =
3.

The Kendall’s 7-metric is graphic, i.e., for every two multipermutations
o,m € S(M) their Kendall’s 7-distance is equal to the length of the shortest
path between o and 7 in the graph G(M), whose vertices set is the set S(M),
and two vertices are connected by an edge if and only if their Kendall’s 7-
distance is one. We call the graph G(M) the graphic representation of S(M)
under the Kendall’s 7-distance. The graphic representation of .S,, is denoted
by G(n). The graphic representation of the Kendall’s 7-metric is useful in
the proof of the following two lemmas.

Lemma 4.5 Let o,m € S(M) and let y1,7v2,...,%, 01,02,...,00, where
Vi, 0; € S([ni—1 + 1,n;]), for alli € £. Then

l
dic(0(1,72 - 70), (61,02, ..., 6¢)) > dic (o, ) + Y dic (i, 65).
i=1

Proof.

Let « = o(y1,72,---,%), 8 = 7(01,02,...,d¢), and dg (o, B) = t. There
exists a path I' : &« = p1 — p1 — ... = pr+1 = B in the graph G(n), where
n= Zle m;. Every edge in the path I' is of the form e; = ps — ps41 where
psi1 = (j,j + 1) 0 ps, for some j, 1 < j <n—1.

If there exists an ¢ € [¢] such that ps(j), ps(j+1) € [ni—1+1,n;], then the
edge ey is corresponded to the exchange of two adjacent elements in a permu-
tation vg € S([n;—1+1, n;], resulting in a permutation vsy1 € S([n—1+1, n;l.
Let €5, ;5,5 €s,,, be all such edges according to the order of their ap-
pearance in the path I'. Then the path I'; : v = vg,, — Vs, — ... —
Vs;,, — Vs,,,+1 = 0; is a path in the graph G([ni—1 + 1,n;]) from ~; to d;.
Since the length of the path T; is ¢;, it follows that t; > dx (i, 0;).

If there exist 4,7 € [£], i # i, such that ps(j) € [ni_1 + 1,n4], ps(j + 1) €
[n;_; + 1,n;], then the edge ey is corresponded to the exchange of two
adjacent elements in a multipermutation us € S(M), resulting in a mul-
tipermutation psy1 € S(M). Let eg,es,,...,e5 be all such edges ac-
cording to the order of their appearance in the path I'. Then the path
L:0 =g, — flsg = ... = fis; = fis;+1 = 7 is a path in the graph G(M)
from o to . Since the length of the path I' is ¢, it follows that ¢t > dg (o, 7).

The paths 'y, To,...,Ty, and T are corresponded to a partition of the
edges of I' into disjoint sets. Thus,
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4 y4
dK(a,B) =t=1+ Zti > dK(O', 7T) + Zd}((%,(ﬁ).
=1

i=1

Lemma 4.6 If p1, p2, p3, are three multipermutations in S(M), then
di (p1, p2) + di (p2, p3) = di (p1, p3) (mod 2).

Proof. Let t1 = dg(p1,p2), t2 = dx(p2, p3), and t3 = dx(p1,p3). There
exist paths I';,T'2,T's, in the graph G(M), where I'; is a path of length ¢;
between p1 and ps, I'y is a path of length o between py and p3, and I's is a
path of length ¢35 between p3 and p2. By concatenating these paths we obtain
a cycle, A, of length t; +t2+t3 in G(M). Every edge in the cycle A is of the
formy — 6, 7,6 € S(M), where ¢ is obtained from 7 by exactly one adjacent
transposition. For every i,j € [n], where i < j, there must be an even
number of edges in the cycle A that correspond to an adjacent transposition
that exchanges the elements ¢ and j. Therefore, the number of edges in the
cycle A must be even i.e., di(o,7) + dg(m, p) + di (o, p) =0 (mod 2), and
the lemma follows.

O

Lemma 4.7 Let o,p € S, be two permutation. Then

wi (o 0 p) = wk (o) +wr(p)( mod 2).

Proof. Since the Kendall’'s 7-distance on S, is right invariant it follows

that wg (o o p) = dg(o,p!) and di(p~t,e) = di(e,p) = wk(p). By

Lemma 4.6 we have that di (p™!,0) = dg (0,¢) +dx(p~',€)( mod 2). Thus,
wg (o 0p) =wk (o) + wk(p)( mod 2).

O

For a permutation o € S,,, the sphere of radius ¢ centered at o is the set

Sk(n,t,o) ={m €S, : drx(o,m) <t}

We denote by Sk (n,t) the sphere of radius ¢ centered at £. Since the
Kendall’s 7-distance on S, is right invariant it follows that the size of a
sphere of radius ¢ is .5,, does not depend on its center, i.e., for all o € S,
‘SK(nv t, J)‘ = ’SK(n7 t)’

A code C C S, is a t-error-correcting code with the Kendall’s T-distance
if for every p € S, there exists at most one codeword o € C such that
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dg (o, p) < t. Equivalently, C is a t-error-correcting code with the Kendall’s
7- distance if for every o, € C such that o # 7w we have that Sk (n,t,0) N
Sk(n,t,m) = 2.

Given a code C, where |C| > 2, in a space V endowed with a distance
masseur (a metric) d(-,-), the minimum distance of C is the minimum dis-
tance between two distinct codewords in C, i.e.,

min{d(z,y) : =,y €C, = # y}.

A code C C S, is a t-error-correcting code with the Kendall’s 7-distance
if and only if the minimum distance of C is at least 2t + 1. The following
theorem is known as the sphere packing bound.

Theorem 4.8 IfC C S, is a t-error-correcting code then
Cl - ISk (n, t)| < nl.

A code C C S, is called a perfect t-error-correcting code if C is a t-error-
correcting code and the size of C achieves the sphere packing bound with
equality, i.e., |C| - |Sk(n,t)| = nl. A code C C S, is a t-error-correcting code
if and only if for every m € S, there exists exactly one codeword o € C for
which dg (o, 7) < t.
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Chapter 5

Permutation Codes

The rank modulation scheme has been proposed for efficient writing and
storing data in non-volatile memory storage [41]. In this model codes are
subsets of S,, the set of all permutations on n elements, where each per-
mutation corresponds to a ranking of n cells’ levels. Permutation codes
were mainly studied in this context using two metrics, the infinity metric
and the Kendall’s 7-metric. In this chapter error-correcting codes using the
Kendall’s 7-metric and some variation of the Kendall’s 7-metric are consid-
ered. Under the Kendall’s 7-metric, codes in S,, with minimum distance
d should correct up to L%J errors that are caused by charge leakage and
read disturbance [42]. Error-correcting codes using codes in the Lee metric
were constructed in [5, 59, 59]. In [105], systematic-error-correcting codes
were proposed. In particular, they constructed a systematic single-error-
correcting code in S, of size (n — 2)!, which is of optimal size, assuming that
a perfect single-error-correcting code does not exist. But, they only prove
the nonexistence of perfect single-error-correcting codes for n = 4.

The first section of this chapter is devoted to perfect codes in S,, that
correct a single error, using the Kendall’s 7-metric. It is proved that perfect
single-error-correcting codes in S, where n > 4 is a prime or 4 < n < 10,
do not exist. It is also proved that if such a code exists for n which is not a
prime then the code should have some uniform structure.

In Section 5.2 diameter perfect codes in .5,,, using the Kendall’s 7-metric,
are studied. As a result, known upper bounds on the size of a code in S,
with even minimum Kendall’s 7-distance are improved.

If we slightly modify the Kendall’s 7-distance to define a cyclic Kendall’s
T-distance, then we have at least one perfect single-error-correcting code in
S5. This code is presented in Section 5.3 along with more variations of
the Kendall’s 7-metric. An algorithm that computes the cyclic Kendall’s
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T-distance between two permutations o, € .5, is given in Appendix B. The
algorithm running time is O(n?).

5.1 Uniform Codes and the Nonexistence of Some
Perfect Codes

In this section it is proved that a perfect single-error-correcting code in .S,
T
r positions the same number of times. As a consequence it is proved that

is r-uniform for r < i.e., each r distinct symbols in [n] appear in each
there are no perfect single-error-correcting codes in .S,,, where n is a prime
greater than 4. By using similar techniques we also show that there are no
perfect single-error-correcting codes in S, for 4 < n < 10.

Foreachi,1 <i<mn,letS,; ={o : 0 €Sy, o(i) = 1},i.e. S, ; consists
of all the permutations o € S, for which 1 appears in the ith position of o.
Clearly, |Sy,| = (n — 1)

Assume that there exists a perfect single-error-correcting code C C S,,.
For each i, 1 <17 < n, let

C;=Cn Sn,z’ and x; = ’Cz‘

A codeword o € C covers a permutation m € S, if di(o,m) < 1. Since
C is a single-error-correcting code, it follows that every permutation in Sy, 1
must be at distance at most one from exactly one codeword of C and this
codeword must belong either to C; or Cy. Every codeword o € Cy covers
exactly n — 1 permutations in S, 1. It covers itself and the n—2 permutations
in S, 1 obtained from o by exactly one adjacent transposition (i,7 + 1),
1 <4 < n. Each codeword o € Cy covers exactly one permutation 7 € Sy, 1,
m = (1,2) o 0. Therefore,

(n—1)z1+x2=(n—1)". (5.1)

Similarly, by considering how the permutations of S, , are covered by
codewords of C, it follows that

Tn—1+(n—1z,=(Mn-—-1). (5.2)

For each 7, 2 < i < n — 1, each permutation in S, ; is covered by ex-
actly one codeword that belongs to either C;_1, C;, or C;+1. Each codeword
o € C; covers exactly n — 2 permutations in S, ;. It covers itself and the
n — 3 permutations in .S, ; obtained from o by exactly one adjacent trans-
position (7,7 + 1), where 1 < j <i—1or i < j < n. Each codeword in
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Ci—1 UCi41 covers exactly one permutation from S, ;. Therefore, for each ¢,
2 <1 <n—1, we have the equation
Ti—1+ (TL — 2)1‘2‘ + Tig1 = (TL — 1)! . (5.3)

Let x = (z1,2,...,x,) and let 1 denote the all-ones vector. Equations
(5.1), (5.2), and (5.3) can be written in matrix form as

Ax = (n—1)!-1, (5.4)

where A = (a;) is defined by

n—1 1 0 o --- 0 0 0
1 n—2 1 o --- 0 0 0
0 1 n—-2 1 -+ 0 0 0
A=
0 0 0O -+ 1 n-2 1 0
0 0 o --- 0 1 n—2 1
0 0 o --- 0 0 1 n—1

Since the sum of every row in A is equal to n it follows that the linear
equation system (5.4) has a solution y = w -1. We will show that if
n > 3 then A is a nonsingular matrix and hence y is the unique solution
of (5.4), i.e., x = y. To this end, we need the following lemma, that can
be easily verified (a sketch of the proof is given), and is also an immediate
conclusion of the well known Gerschgorin circle theorem [33].

Lemma 5.1 Let B = (b;;) be an n x n matriz. If |bi;| > 32, |bij| for all
i, 1 <1i < n, then B is nonsingular.

Proof. Let z = (21, 22, ..., 2,) be a nonzero vector and let s be an index
such that |z5| > |z; for each i, 1 <1i < n. Clearly, the sth entry of Bz is not
ZETO.

O

For n > 4, we have that for each ¢, 1 < ¢ < n, 4;; >n—-2>2 >
> ki A; j. By Lemma 5.1 it follows that A is nonsingular. For n = 4 it can

be readily verified that the matrix A is nonsingular. Hence, x = @ -1

for n > 4. If n = 4 or n is a prime greater than 4, then @ is not an

integer and therefore, a perfect single-error-correcting code does not exist.

Theorem 5.2 There is no perfect single-error-correcting code in Sy, where
n >4 1is a prime or n = 4.

63



Theorem 5.3 Assume that there exists a perfect single-error-correcting code
C C Sp, where n > 11. If r < 7, then for ezch sequence of r distinct el-

ements of [n], i1,42,...,%,, and for each set of r positions 1 < j; < ja <

(n—r)!
n

such codeword o we have o(jy) = iy, for each £, 1 < ¥ <r.

.. < Jr < n, there are exactly codewords in cC, such that for each

Proof. Let iy,1i2,...,i, be a sequence of r distinct elements of [n]. For
every J = {j1,J2,...,Jr} C [n], where 1 < j; < jo < ... < jp < n, let
Sng={0€ S, : a(je) =1ig, forall 1 <¢ <r}. Clearly, S, s| = (n—7)l
Let

Cs=CNSny and xy=|Cj|.

Since C is a single-error-correcting code, it follows that every permutation
in Sy, 7 must be at distance at most one from exactly one codeword of C.
For every J,L C [n], |J| = |L| = r, let as, be the number of permutations
in 5,7 which are covered by a given codeword in Cr. Therefore, we have
the following linear equations system

> aspzr=|Sl=Mm-r), forallJCn], |[J|=r (55)
LC|[n], |L|=r

Each codeword o € C; covers at least n — 2r permutations in S, ;. It
covers itself and at least n — 2r — 1 permutations in S,, ; which are obtained
from o by exactly one adjacent transposition (i,i+1), where i,i+1 € [n]\ J.
Hence, aj; > n — 2r and since the size of a sphere of radius one is n, it
follows that

S asgp=n, forallJcC[n], |J]=r (5.6)
Lcfn), |Ll=r

Therefore,

Z ajr = Z ajr, —ayy <n—(n—2r)=2r

LC[n], |L|=r, L#J LcC[n], |L|=r

If r < 7 then

ajg=>mn—2r>2r> Z ajr.
LC(n], |L|=r, L#J

Hence, by Lemma 5.1 it follows that the linear equations system (5.5) has
(n—r)!

a unique solution and by (5.6) we have that z; = ~—=, for every J C [n],

|J| = r. Thus, for each sequence of r distinct elements of [n], i1,i2,... 4,
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and for each set of r positions 1 < j; < js < ... < jr < n, there are
exactly @ codewords in C, such that for each such codeword o we have
o(je) = ig, for each £, 1 < £ <r.

O

Theorem 5.3 implies that perfect single-error-correcting codes must have
a very symmetric structure. This might be useful to rule out the existence
of these codes for other parameters as well.

For the case n = 6,8, 10, we use similar arguments and obtain systems
of linear equations. We use a computer to show that these systems have no
solutions over the non negative integers, and conclude that perfect single-
error-correcting codes in S, do not exist for these values of n. More details
on these cases can be found in Appendix A.

5.2 Anticodes and Diameter Perfect Codes

In all the perfect codes the minimum distance of the code is an odd integer.
If the minimum distance of the code C is an even integer then C cannot
be a perfect code. The reason is that for any two codewords ci,co € C
such that d(ci,co) = 20, there exists a word z such that d(z,c;) = § and
d(x,cy) = 6. For this case another concept is used, a diameter perfect code,
as was defined in [1]. This concept is based on the code-anticode bound
presented by Delsarte [19]. An anticode A of diameter D in a space V is a
subset of words from V such that d(z,y) < D for all z,y € A.

Theorem 5.4 If a code C, in a space V of a distance regular graph, has
minimum distance d and in an anticode A of the space V the mazimum
distance is d — 1 then |C| - |A| < |V].

Theorem 5.4 which is proved in [19] is a generalization of Theorem 4.8
and it can be applied to the Hamming scheme since the related graph is
distance regular. It cannot be applied to the Kendall’s 7-metric since the
related graph is not distance regular if n > 3. This can be easily ver-
ified by considering the three permutations o = [1,2,3,4,5,...,n], 7 =
[3,1,2,4,5,...,n], and p = [2,1,4,3,5,...,n] in S,. Clearly, dg(o,m) =
dg (o, p) = 2 and there exists exactly one permutation « for which dg (o, o) =
1 and dg (o, m) = 1, while there exist exactly two permutations «, /3 for which
dg(o,a) =1, dg(a,p) =1, dg(0,8) =1, and dg (5, p) = 1. Fortunately, an
alternative proof which was given in [1] and was modified in [27] will work
for the Kendall’s 7-metric.
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Theorem 5.5 Let Cp be a code in S, with Kendall’s T-distances between
codewords taken from a set D. Let A C Sy, and let Cl, be the largest code in
A with Kendall’s T-distances between codewords taken from the set D. Then

col _ [Cp|

nl T |Al

Proof. Let Bd:ef{(a, m) : 0 €Cp, me Sy, oom € A}. For a given
codeword o € Cp and a word « € A, there is exactly one element 7w € S,
such that a = o o 7. Therefore, |B| = |Cp| - |A|.

Since the Kendall’s 7-metric is right invariant it follows that for every m €
Sy, the set {com : ¢ € C),} has Kendall’s 7-distances between codewords
taken from the set D. Together with the fact that C, is the largest code in
A, with Kendall’s 7-distances between codewords taken from the set D, it
follows that for any given word 7 € S,, the set {o : 0 € Cp, o-7 € A} has
at most |C| codewords. Hence, |B| < |C}| - nl.

Thus, |Cp| - |A] < |Cp]| - n! and the claim is proved.

O

Corollary 5.6 Theorem 5.4 holds for the Kendall’s T-metric, i.e. if a code
C C Sy, has minimum Kendall’s T-distance d and in an anticode A C S,
the mazimum Kendall’s T-distance is d — 1 then |C| - |A] < nl.

Proof. Let D = {d,d+1,..., (Z)} and let Cp be a code from S,, with
minimum Kendall’'s 7-distance d. Let A be a subset of S,, with Kendall’s
T-distances between words of A taken from the set {1,2,...,d — 1}. i.e. A
is an anticode with diameter d — 1. Clearly, the largest code in A with Lee
distances from D has only one codeword. Applying Theorem 5.5 on D, Cp,
and A, implies |Cp| - |A| < n!. Thus, the claim is proved.

O

If there exists a code C C S,, with minimum Kendall’s 7-distance d =
D +1, and an anticode A with diameter D such that |C|-|A| = n!, then C is
called a D-diameter perfect code. In that case, A must be an anticode with
maximum distance (diameter) D of largest size, and A is called an optimal
anticode of diameter D. Thus, it is important to determine the optimal
anticodes in .S, and their sizes. Using the size of such optimal anticodes we
can obtain by Corollary 5.6 an upper bound on the size of the related code
in S,,.

An intriguing question is whether a sphere with radius t in S, using
the Kendall’s 7-metric, is an optimal anticode of diameter 2¢t. Such types of
questions for other metrics were considered in [3]. For n = 4, the sphere with
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radius 1 has size 4 and it is an optimal anticode of diameter 2. There exists
an optimal anticode of diameter 2 in Sy, which is not a sphere with radius
1. For example, the set A = {[1,2,3,4],[2,1,3,4],[1,2,4,3],[2,1,4, 3]} is an
optimal anticode of diameter 2. A similar example exists for an optimal
anticode of size 9 and diameter 4 in Sy. However, for n > 5, it is showed
that every optimal anticode of diameter 2 in S, is a sphere of radius 1. To
this end, the following lemma will be useful.

Lemma 5.7 Let A be an anticode in S,, with diameter 2 such thate € A. If
A contains at least four elements of weight 2 then there exists a permutation
o € 8, of weight 1 such that all elements in A of weight 2 are at distance
one from o.

Proof. If there exists some ¢ € [n—2] such that (i,i+1)o(i+1,i+2), (i+
1,i4+2)o(i,i+1) € A, then every permutation of weight 2 is at distance at
least four from either (i,i+1)o (i+1,i+2)or (i+1,i4+2)o(i,i+ 1) and
therefore A4 contains at most two elements of weight 2.

If only one of the permutations (i,i+1)o(i+1,i42), (i+1,i4+2)o(i,i+1)
belongs to A, say (i,i+ 1) o (i + 1,7 + 2) € A, then every permutation of
weight 2 in A4 must be at distance 2 from (i,i+1)o(i+1,7+2) and therefore
must be of the form (5,7 + 1) o (i + 1,7 + 2) for some j ¢ {i + 1}. Then
(i+ 1,7+ 2) is a permutation of weight 1 who is at distance one from every
permutation of weight 2 in A.

Otherwise, every permutation of weight 2 in A is a multiplication of 2
disjoint adjacent transpositions. Let o = (i,i+ 1) o (j,j +1) € A. Then
every permutation in A of weight 2 is of the form (¢, + 1) o (4,5 + 1) or
(6,0 + 1) 0 (i,i+1). Assume without loss of generality that m = (¢,£+ 1) o
(j,7+1) € A 7 # o. If every permutation of weight 2 in A is of the form
(k,k+1)o (j,7 + 1) then the lemma is proved. Otherwise, there exists a
permutation of weight 2, p € A\ {o, 7}, of the form (¢,¢+1)o(i,i+1). Since
every permutation of weight 2 in A\ {o, 7, p} must be a multiplication of
both (i,7+1) and (7, j+1) it follows that A contains at most three elements
of weight 2.

O

Theorem 5.8 Every optimal anticode with diameter 2 in S,, n > 5, using
the Kendall’s T-distance, is a sphere with radius 1, whose size is n.

Proof. Let A C S,, n > 5, be an anticode of diameter 2. Since the
Kendall’s 7-metric is right invariant, it is assumed without loss of generality
that € € A. In that case all elements of A are of weight at most 2. We
distinguish between three cases:
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Case 1: A does not contain a permutation of weight 2. In that case A is
contained in the sphere of radius 1 centered at ¢.

Case 2: There exists a permutation o € S,, of wight 1 such that every permu-
tation in A of weight 2 is at distance one from ¢. In that case A cannot
contain elements of weight 1 rather than o, unless A contains exactly
one element of weight 2, which implies that |A| < 4 < n. Therefore A
is contained in the sphere of radius 1 centered at o.

Case 3: There is no permutation o € .S, of weight 1 such that every permuta-
tion in A of weight 2 is at distance 1 from o. In that case A does not
contain permutations of weight 1. By Lemma 5.7 A contains at most
three permutations of weight two. Hence, |A4] < 4 < n.

We proved that either A is contained in a ball of radius 1 or |A| < 4,
and therefore, if n > 5 then every optimal anticode of diameter 2 in S, is a
ball of radius 1.

O

Let S C 5, and let w € S,,. The right multiplication of S by 7 is defined
by

Sorm={com : 0§}

Theorem 5.9 Let n > 4 and let Sk (n,1) be the sphere of radius 1 in Sy,
centered at the identity permutation, €. Then the set

A=S8Sk(n,1)U (Sk(n,1)0(1,2))
is an optimal anticode of diameter 3, whose size is 2(n — 1).

Proof. It can be readily verified that A is an anticode of diameter 2 and
of size 2(n — 1). Let A be an optimal anticode of diameter 2 in S,, where
n > 5. Let

Ac={0cA: wg(c)=0(mod 2)}, A,={o€A: wg(s)=1(mod 2)}.

By Lemma 4.6, both A, and A, are anticodes of diameter 2. If n > 5 then by
Theorem 5.8 it follows that |A.| < n, and |A,| = n if and only if A is a ball
of radius 1. Since the Kendall’s 7-distance on S, is right invariant it follows
that also |A,| < n—1, unless A, is a ball of radius 1. The anticodes A, and
A, do not contain two elements at distance 1 from each other, and therefore,
cannot be balls of radius 1. It follows that [A.| <n —1, |4,| <n —1, and
A = |Ae| + |Ao| <2(n—1).
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For n = 4, since € € A, it follows that A, \ {¢} contains only elements of
weight 2. It can be readily verified that any set of 3 permutations of weight
2 in Sy contains two permutations at distance at least 4 from each other, and
therefore the size of A, is at most 3. Since the Kendall’s 7-metric is right
invariant, it follows that the size of A, is also at most 3. Hence, |A| < 6.

O

The following corollary is derived by a combination of Corollary 5.6 and
Theorem 5.9.

Corollary 5.10 IfC C S, is a code with minimum Kendall’s T-distance 4,
then

n!
< — .
Cl = 2(n—1)

For a permutation o € S,, we define the reverse of o to be the permuta-
tion off = [o(n),o(n —1),...,0(2),0(1)].

Lemma 5.11 For every o € Sy, the reverse of o, o', is the unique permu-

tation in S, at distance (g) from o. Moreover, for every w € Sy,

di (o, 7) + di (7, 0%) = di (0, 07) = <Z>

Proof. For w € S,, we have

dc(o,m) = [{(i,5) 07 ()) < o7 (5), 71 (@) > 7 ()}

Then d (o, m) < (5) and di(o,m) = (5) if and only if m = o, For every
pair (4,7), where 7=1(i) > 771(j), we have that o=1(i) < o~!(j) if and
only if (6%)71(i) > (¢f)71(j). Since there are exactly (3) pairs for which
771(3) > 771(4) it follows that

dg (o,7) + di (o™, m) = [{(i,§) : 07" (@) <o (), () > 7 (j)}+
{(@i,5) : (™)) < (™)), 77 1(@) > 7 1)} = (Z)
O

Theorem 5.12 Ift < % then every sphere of radius t in S, is a mazximal
anticode of diameter 2t .

Proof. Let Sk (n,t) be the sphere of radius ¢ in .S, centered at the identity
permutation, £. Since the Kendall’s 7-metric is right invariant, it is sufficient
to prove that Sk (n,t) is a maximal anticode of diameter 2¢.
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Let m € S, \Sk(n,t), i.e. the weight of 7 is grater than ¢. Let wx (7) = w.
Assume to the contrary that Si(n,t) U {r} is an anticode of diameter 2t.
A contradiction will be derived by proving that there exists a permutation
o € Sk(n,t) such that dg(m,0) > 2t. If the reverse of 7, 7%, belongs to
Sk(n,t), then by Lemma 5.11, dg (7, 7f) = (g) > 2t. Otherwise, 7% ¢
Sk(n,t) and wg(nf) = (5) —w > t. Let w' = () — w. There exist w’
adjacent transpositions ai, s, ...,y such that 7% = a,y 0 ayy_j0...0
Qo 10...0a90a1. Let 0 = azoaz_10...0a90a;. The weight of
o is t and therefore, o € Sk (n,t). Moreover, o is at distance w’ — ¢ from
78, and By Lemma 5.11, ¢ is at distance () — w' +¢ =1t +w > 2t from 7.
This shows that for every m € S, \ Sk (n,t), the diameter of Sk (n,t) U{r}
is grater than 2¢, thus, Sk (n,t) is a maximal anticode of diameter 2t.

O

Theorem 5.13 Let A C S,,. Then A is an optimal anticode of diameter
(g) — 1 if and only if for every o € S,, A contains exactly one of the
permutations o and o™t.
Proof. If A is an optimal anticode of diameter (Z) — 1 then for every
o € Sy, A cannot contain both ¢ and o. Moreover, if both ¢ and ¢’ do
not belong to A then AU {5} is an anticode of diameter (5) — 1 and of size
|A| + 1, which contradicts the assumption that A is an optimal anticode of
diameter (g) — 1. Thus, for every o € S,, A contains exactly one of the
permutations o, c".
On the other direction, if for every o € S,,, A contains exactly one of the
permutations o and o’ then A is an optimal anticode of diameter (721) —1.
O

5.3 The Cyclic Kendall’s 7-metric

In this section we discuss a new metric which naturally risen in the context
of the Kendall’s 7-metric.

Given a permutation o € S,, a c-adjacent transposition is either an
adjacent transposition or the exchange of the elements o(1) and o(n).

For two permutations o, m € S,,, the cyclic Kendall’s T-distance between
o and 7, dy(o,7), is defined as the minimum number of c-adjacent transpo-
sitions needed to transform o into 7.

For example, if 0 = [0,1,2,3] and 7 = [3,2, 1, 0], then d (o, 7) = 2, since
two c-adjacent transpositions are enough to change o to m: [0,1,2,3] —
[3,1,2,0] — [3,2,1,0], and we need at least two c-adjacent transpositions for
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this purpose. Clearly, dy (o, p) < dg (o, p) and therefore, if C has minimum
cyclic Kendall’s 7-distance d then C also has minimum Kendall’s 7-distance
at least d.

For a permutation o € S, the cyclic Kendall’s T-weight of o, w(o),
is defined as the cyclic Kendall’s 7-distance between ¢ and the identity
permutation in Sy, €

As the Kendall’s 7-distance, the cyclic Kendall’s T-distance is graphic,
i.e., for every two permutations o, m € S, their cyclic Kendall’s 7-distance is
equal to the length of the shortest path between ¢ and 7 in the graph G¢,
whose vertices set is the set .5, and two vertices are connected by an edge
if and only if their cyclic Kendall’s T-distance is one. Note, that the graph
G¢ (and also the graph G,,) is a Cayley graph [13], and therefore, it is right
invariant, i.e., for every o,m, p € Sy, dx(o,7) = di(0 0 p, 7o p). Hence, for
every 0,7 € Sp, d(0,7) = we(o om1). An algorithm that computes the
cyclic Kendall’s 7-weight of o € S, is presented in Appendix B. The running
time for the algorithm is O(n?).

By Theorem 5.2 there is no perfect single-error-correcting code in Sj,
using the Kendall’s T-distance. However, there exists a perfect single-error-
correcting code in S5, using the cyclic Kendall’s 7-distance. For example,
the following 20 codewords form such a code.

0,1,2,3,4], [0,2,4,1,3], 0,3,1,4,2], [0,4,3,2,1]
1,2,3,4,0], [2,4,1,3,0], [3,1,4,2,0], [4,3,2,1,0]
[ 3 4 0 1]7 [4 1 3 0 2]7 [1’4’2’073]7 [3’2’]"074]

] ] ] ]

3,4,0,1,2], [1,3,0,2,4], [4,2,0,3,1], [2,1,0,4,3
[4,0,1,2,3], [3,0,2,4,1], [2,0,3,1,4], [1,0,4,3,2].

Note, that the permutations in each column are cyclic shifts of the first
permutation in the column. Moreover, the permutations in the first row are
of the form [0, o, 2, 3cr, 4a], where 1 < o < 4, and multiplication is taken
modulo 5.

Remark 5.1 Since c-adjacent transpositions refer to elements that are ad-
jacent on a cycle of length n it is more convenient to consider the positions
and elements of the permutations as residues modulo n. Hence, throughout
this section the positions and elements of permutations of length n are taken
from the set {0,1,2,...,n—1}.

Another related distance measure is defined when we consider the follow-
ing equivalence relation F on S,,. For two permutations o = [01, 09, ... ,04]
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and m = [my,m2, ... ,m,] we have that (o,7) € E if there exist an inte-
ger i, 1 < i < n, such that ¢ = [m, miy1, ... , 7,71, ... ,mi—1]. Let,
0 =12,3,...,n,1]. The permutation ¢ can be written as the multiplication
' o 7. Clearly, F is an equivalence relation on S, with (n — 1)! equivalence
classes, each one of size n. Let S¢ denote the set of these (n—1)! equivalence
classes. Two elements of S, are at Kendall’s 7-distance one if there exist two
representatives of the two equivalence classes whose Kendall’s 7-distance in
one. Similarly, two elements of St are at cyclic Kendall’s 7-distance one if
there exist two representatives of the two equivalence classes whose cyclic
Kendall’s T-distance is one.

Lemma 5.14 The minimum cyclic Kendall’s T-distance of an equivalence
class {m € S, : (o,m) € E} isn — 1, where n > 2.

Lemma 5.14 is proved in Appendix B, using the algorithm to computes
the cyclic Kendall’s 7-distance. Lemma 5.14 implies that if C¢ C S is a
code with minimum Kendall’s 7 distance d < n — 1 then the union of the
equivalence classes that belong to C¢ is a code in .S, with minimum Kendall’s
7 distance at least d.

For example, [0,1,2,3,4],[0,2,4,1,3],[0,3,1,4,2], and [0,4,3,2,1] are
four representatives of four equivalence classes in Sg, and the union of their
equivalence classes forms a code in S5 with minimum Kendall’s T-distance
3.

Construction 5.15 Let u = [0,1,2,4,3,6,5] and let v = [0,1,2,3,6,4,5].
For a scalar x € {1,2,3,4,5,6} and a permutation o € Sy, let x - 0 =
[-0(0),z-0(1),...,2-0(6)], where multiplication is taken modulo 7. The
code

C={0o(x-0)ob : oce{ur}, 1<x<6, 0<i,j <6}

is a code in Sy of size 2-7 -7 -6 = 588 whose minimum cyclic Kendall’s
T-distance s 3.

We use a computer to show that the @ = 84 equivalence classes of the

code C from Construction 5.15, under the equivalence relation E, form a
code in S7 with minimum cyclic Kendall’s 7- distance 3. By Lemma 5.14
the minimum cyclic Kendall’s 7-distance in any equivalence class is 6, and
hence, the code C has minimum cyclic Kendall’s 7-distance 3 as well. The
minimum Kendall’s 7-distance of C is also 3, and C is the largest known
single-error-correcting code in S7. Prior to the discovery of the code C, the
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best known lower bound on the size of a single-error-correcting code in S7
was 526 [42]. The equivalence relation E and the cyclic Kendall’s 7-distance
over Sf; may be useful to construct codes of large cardinality whose minimum
distance is at most n — 1.
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Chapter 6

Systematic Codes for
Permutations with Kendall’s
7-Metric

The rank modulation scheme has motivated the study of permutation codes
in S,,, with the Kendall’s 7-metric [41, 42]. Recently, to improve the number
of rewrites, the model of rank modulation was extended such that multiple
cells can share the same ranking [24, 25]. Thus, the cells no longer determine
permutations but rather multipermutations, which are also known as per-
mutations with repetitions. Error-correcting codes for multipermutations
subject to the Kendall’s 7-metric were presented in [72] and also studied
in [7].

The main goal of this chapter is to construct systematic error-correcting
codes for permutations. This concept for permutations was proposed in [105,
106]. A systematic code C for permutations in S,, is a code consists of k!
codewords. Each permutation of Sj is a sub-permutation of exactly one
codeword of C. The k symbols in [k] are called information symbols while
the n — k symbols in [n] \ [k] are called redundancy symbols.

In this work some of the results in [105, 106] are improved. A con-
struction of systematic t-error-correcting codes for permutations that uses r
redundancy symbols is presented in Section 6.2. This construction is based
on two ingredients. The first is a partition of Sy into t-error-correcting
codes. The second is a code C, for multipermutations from the multiset
{0 k+1,...,k +r} with minimum Kendall’s 7-distance 2¢, whose size is
the number of parts in the partition. Each code from the partition of S}, will
be substituted into a different codeword of C,. We will also perform some
analysis for the number of redundancy symbols of these codes. For a given
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large enough number of information symbols k£, and for any integer ¢, the
construction uses less redundancy symbols than the number of redundancy
symbols in the codes of the known constructions. In particular, for a given
t and for sufficiently large k we can obtain r =t + 1. The construction will
be generalized in Section 6.3 to systematic codes for multipermutations.

6.1 Error-Correcting Codes

For the construction of systematic error-correcting codes for permutations
and multipermutations given in Sections 6.2 and 6.3, general error-correcting
codes for multipermutations are needed. In this section constructions for
such error-correcting codes for multipermutations with the Kendall’s 7-
distance are discussed. Such a construction was given in [72]. It is based on
a metric embedding (mapping) of S(M), where M is a balanced multi-set,
into the metric space Z"~", where m is the multiplicity of the ranks. The
Manhattan distance (also called the Li-distance) is used in Z"~™. This con-
struction is a generalization of the constructions in [5, 42] for error-correcting
codes for permutations.

Let x,y € ZV, x = (z1,292,...,2N), Y = (¥1,%2,...,yn). Recall that
the Manhattan distance djs(x,y) is defined by

N
def
dur(x,y)= Z i — yil.

i=1

This metric embedding (mapping) is injective and for every two multiper-
mutations o and 7 in S(M), di (o, 7) is greater or equal to the Manhattan
distance between their images in Z"~"". These properties allow to construct
error-correcting codes in S(M) from error-correcting codes in the Manhat-
tan metric over Z" ™.

We present a slightly modified version of this mapping. It will be defined
on S(M), where M is any multi-set, not necessarily a balanced multi-set.
We will also restrict its range to its image, in order to obtain a bijective
mapping. This is important for encoding purpose. We will show an encoding
of S(M), based on the enumerative encoding algorithm of Cover [17] in the

full version of this paper.

A vector x = (x1,z2,...,2%) € ZF is monotone if xy > x9 > ... > xk.
For a set S of integers let [S]* be the set of all monotone vectors of length
k over S. Let

ef 1 ! l
[Z]Md: (Zny 2] X Ly 2] X oo X (L] ™
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The mapping ¥ : S(M) — [Z]M is defined as follows. For every o € S(M),

(o) is the vector x € [ZJM, x = (x2,X3, .. .,X¢), where for each i, 2 < i </,
X = (i1, i2, ..., Tim,), and for each r, 1 <r < my,
def

zip =k : k>0 (viy) Ao(k) <i}l.

Namely, z;, counts the number of ranks, v;, where j < ¢, which appear to
the right of the rth appearance of v;. For example, if 0 = [2,1, 3,4, 3,2, 1,4]
then 1/)(0') = (X27X37 X4) = ((27 1)7 (27 2)’ (37 0))

Lemma 6.1 The mapping ¢ is bijective.

Proof. Let o,m € S(M), 0 # 7, and let ¥(0) = x, ¢(w) = y, where
X = (X2,X3,...,Xy) and y = (y2,¥3,---,ym)- Let k be the largest integer
in [n] such that o(k) # 7(k), and let o(k) = v, 7(j) = vj,. Assume with
out loss of generality that i < j. Let o7 1(v;s) = k’. By definition, ;4
is the number of ranks v; in [o(k' + 1),0(K + 2),...,0(n)], where i < i'.
Similarly, y;,s is the number of ranks v; in [7(k 4+ 1),7(k + 2),...,m(n))],
where 7 < j. Since o(k) = 7 (k), for all k < k < n, and o(k) = v;, where
i < j, it follows that k < k" and z;, < y;,. Hence, x # y. This proves that
1 is injective. To complete the proof, the reader can readily verified that
|[Z]m’?| = o = |S(M)], and therefore, ¥ is bijective.

Ly

O

Lemma 6.2 For every two multipermutations o,m € S(M), if dx(o,7) =
1, then dp((0), ¢ (m)) = 1.

Proof. Let o,m € S(M) such that dx(o,m) = 1. Then there exists a
k, 1 <k < n, such that o = [7(1),7(2),...,m(k —1),7(k+ 1), 7(k), 7(k +
2),...,m(n)] and (k) # n(k+1). Let (k) = vip, 7(k+1) = v;,, and
assume without loss of generality that ¢ < j. Let ¢(0) = x and ¢(7) =y,
X = (X2,X3,..,Xm), ¥ = (¥2,¥3,--.,¥m). For every k' & {k,k + 1},
1 < k' < n, we have that o(k') = n(k") = vy, for some 1 < ¢/ < ¢ and
1 <r" < my, and if ¢/ > 1 then zy,» = yy,». Since v, = o(k+ 1) =
(k) > n(k+1) = o(k) = vjs, and o(k') = n(k'), for all k + 1 < k' < n, it
follows that if ¢ > 1 then z;, = y;,. Moreover, since ¢ < j it follows that
Tjs = Yjs + 1. Then

m T
du(x,y) = Z Z |zir b — Yirpl = |Tia — Yial = 1.

/=2 b=1

This completes the proof.
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Lemma 6.3 For any two multipermutations o, ™ € S(M) we have

dyr(¥(0), (7)) < dk (o, 7).

Proof. Let di(o,7) = s. Then there exists a path T := 0 = pg — p1 —
... = ps—1 — ps in the graphic representation of S(M) under the Kendall’s
T-distance, G(M), i.e., dx(pu, pu+1) = 1 for all 0 < u < s — 1. By Lemma
6.2 it follows that dps(¥(pu), ¥(put1)) = 1, for all 0 < u < s — 1. By the
triangle inequality it follows that

s—1
dyr (o), (7)) <Y di(th(pu), ¥(putn)) = 5.
u=0

O
Let Zév be the set of all vectors of length /N over the alphabet Z,. For
every two vectors X,y € Zév, the Lee distance dy,(x,y) is defined by

N
def :
dr(x,y)= Zm1n{|1:i = ¥il,q — |z — wil}-
i=1

Clearly, dy(x,y) > dp(x,y) for all x,y € ZJ'. The set [Z]M is a subset
of Zy =™, where ¢ > ny—1. Hence, dr(¢(0), (7)) < dk(o, ) for every two
multipermutations o,7 € S(M). We are now in a position to present a
construction which transfers codes with the Lee metric to codes with the
Kendall’s 7-metric. The related theorem is a slight generalization of the
result in [72]. This construction will be a major component in our main
construction of systematic codes, which is the primary goal of this chapter.

Theorem 6.4 If there exists a code C, C Zg™™, q > ny—1, with minimum
Lee distance d, then there exists a code Crx C S(M) with minimum Kendall’s
T-distance at least d and of size |Cx| = |Cp N [Z]M].

Proof. Let Cx = {oc € S(M) : (o) € Cr}. By Lemma 6.3 , the
minimum distance of Cf is at least d. Since v is a bijection on [Z]M it
follows that the size of Cx is exactly |Cr N [Z]M].

O

By Theorem 6.4, error-correcting codes in S(M) with the Kendall’s 7-
metric can be constructed from error-correcting codes over Z; ™! in the Lee
metric. Next, we present some of the known constructions of error-correcting
codes in the Lee metric and use Theorem 6.4 to obtain error-correcting codes
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in S(M) and to estimate the size of these codes. First, we consider single-
error-correcting codes in the Lee metric. Golomb and Welch [35] presented
the following construction of a perfect linear single-error-correcting code in
the Lee metric.

Theorem 6.5 For every positive integer N, the code
N
Cr = {XGZQZN+1 : Zz:nZ =0 (monN—l—l)}
=1
s a perfect linear single-error-correcting code in ZéVN 41 with the Lee metric.

The construction in Theorem 6.5 was used in [42] to construct single-
error-correcting codes for permutations with the Kendall’s 7-distance. Com-
bining this construction with Theorem 6.4 implies the following corollary.

Corollary 6.6 There exists a single-error-correcting code Cx C S(M) of
ze |Cx| > IS(M)]
size |Cx| 2 g5,

The following construction was first proposed by Varshamov and Tenen-
golts [96] (see also [5]) for codes which correct a single asymmetric error.
Let ||x|| denote the Manhattan weight of x.

Theorem 6.7 Let ¢ > N and let hy, ha,...,hxy be integers, 0 < h; < ¢q
for all 1 <i < N. Assume that for every e € ZN with ||e|| < t, the sums
Zi]\il e; - h; are all distinct modulo q. Then the code

N
C’—{XEZJQV ] Za:zwhiEO(modq)}
i=1

18 a linear t-error-correcting code in Zév with the Lee metric.

In order to use the construction in Theorem 6.7 we need the following
theorem of Barg and Mazumdar [5].

Theorem 6.8 Let q be a power of a prime and M = (¢! —1)/(q¢ —1). Let

M — tt+1)M, tis odd
b tt+2)M, tis even

Then there exist integers hi, ha, ..., hqr1 such that for alle € Z3t1, |le|| < t,
the sums 23:11 eih; are all distinct modulo M;.
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The construction in Theorem 6.7 of a t-error-correcting code in the Lee
metric, combined with Theorem 6.8, was used in [5] to construct t-error-
correcting codes for permutations with the Kendall’s 7-metric, and also used
in [72] to construct t-error-correcting codes with the Kendall’s 7-metric for
multipermutations over a balanced multi-set. Other constructions of codes
with the Kendall’s T-distance that might useful in this context can be found
n [59]. By combining the construction in Theorems 6.4, 6.7, and 6.8 we
obtain the following Corollary.

Corollary 6.9 Let M = ((n—mq—1)""t—1)/(n—m1—2), where n—my —1
is a power of a prime. There exists a t-error-correcting code C C S(M) in
the Kendall’s T-metric, whose size satisfies

S(M )
cl > { l(tj— )3\‘/[ t is odd

[S(M)] ~
2 M t 15 even

Now, after presenting the concepts and ideas in constructions of error-
correcting codes for multipermutations, we are ready to present our main
results on systematic error-correcting codes for permutations and multiper-
mutations in the next two sections.

6.2 Systematic ECC for Permutations

In this section we present systematic t-error-correcting codes for permu-
tations. Let k,n be integers such that n > k£ > 1. For a permutation
a € Sy, we define o, to be the permutation obtained from o by deleting
all the elements of {k + 1,k + 2,...,n} from a. We also define oo to
be the multipermutation obtained from « by replacing in « every element
of {1,2,...,k} by 0. For example, if a = [2,5,4,1,3,6] and k£ = 3 then
ajr = [2,1,3] and ag—o = [0,5,4,0,0,6]. In [105], the authors define sys-
tematic codes in the following way. A code C C S, is an (n, k) systematic
code if for every o € S}, there exists exactly one a € C such that oy, = o,
which implies that |C| = k!. The number of redundancy symbols of an (n, k)
systematic code is r =n — k.

Let r be a positive integer and let M, rdﬁf

{0 k+1,k+2,...,k+7r}.
For every permutation o € Sj, and multipermutation p € S(Mj,,.), we define
the permutation ¢ * p to be the permutation in Si,, obtained from p by
replacing the k zeros in p by the k elements of {1,2,...,k}, in the same
order as in 0. For example, if K = 4, r = 3, p = [0,6,0,0,5,7,0], and

o=12,4,1,3], then o % p = [2,6,4,1,5,7, 3].
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Lemma 6.10 For every p € S(My,) and o € S, we have
1) (o*xp)p =o0.
2) (0% p)k—so = p.
By Lemma 4.5 we have.

Lemma 6.11 Let o,m € S and p1,p2 € S(My,). Then

dg (o * p1,m* p2) > di (o, 7) +dg(p1, p2) -

We are now in a position to present our construction for systematic
error-correcting codes for permutations.

Theorem 6.12 Let hyi,hs, ..., hxy_1, and M, be integers such that for ev-
ery e € ZF1 with ||e|| < t, the sums Zf:_ll eih; are all distinct modulo
M;. Assume further that there exists a code C, C S(My,) with minimum
Kendall’s T-distance 2t and of size |C,.| > My. Let po,p1,-...,pr—1 be dis-
tinct multipermutations in C,.. Let C be the code in Ski, defined as follows.

k—1
C={oxp; : o €8, Z(@Z)(U))thi =j ( mod My;)}.
i=1

Then the code C is a (k + 1, k) systematic t-error-correcting code.

Proof. The code C from Theorem 6.12 is clearly a (k + r, k)-systematic
code. We have to show that the minimum Kendall’s 7-distance of C is at
least 2t + 1. Let o, 8 € C be two distinct codewords and let oy, = o,
Qls0 = Pj1> Bk = B, Brso = pj,. By definition of C we have

e
—

(¥(0))ir1hi = j1 (mod M),
1

.
Il

and

T
L

(W(m))it1hi = j2 ( mod My).
1

We have to show that di (o, ) > 2t + 1. By Lemma 6.11

.
I

di (o, B) > d (o, 7) + dr(pjy Pjy)-

If dg(o,m) > 2t + 1 then di (o, ) > 2t + 1. Assume dg (o, 7) < 2t. We
show that j; # jo. Assume to the contrary that j; = jo. Then
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k—1
> ((¥(0))is1 = (®(7))ig1)hi = 0 ( mod My).
=1

Since dg (o, m) < 2t it follows that dps(v(0), ¢ (m)) < 2t. This implies
that there exist e, f € ZF¥~!, where e = (e1, ea,...,ex_1), f = (f1, fo, .-, foz1),
and ||e|| <t, |f] <t, such that ¢(0) +e = (w) +f.

~

Then
k—1
(fi — ei)hi =0 ( mod My).
i=1
It follows that
k—1 k—1
fihi = ) eih; =0 ( mod M),
=1 i=1
which is a contradiction to the assumption on the integers hi, ha, ..., hg—1.

Hence, ji # j2, and therefore, di (pj,, pj,) > 2t which implies that

di (o, 8) > dg(o,7) +dK(Pj1,Pj2) > 1+2¢.

This completes the proof.
O

Example 6.13 Let k be an integer, let r = 2, and let My = 2(k — 1) + 1.
As in Theorem 6.5, for every e € ZF71, ||e|| < 1, the sums 2?2—11 eii are all
distinct modulo M. For the construction, we need a code in S(My,2) with
minimum distance 2 and of size at least M. To this end, fix a multipermuta-
tion p € S(My2) and consider the codes C5 = {y € S(My2) : dx(p,7) =
0 (mod 2)} and C§ = {v € S(Mz2) : dr(p,7) = 1 (mod 2)}. By
Lemma 4.6, the minimum distance of both C5 and C3 is 2. Clearly, the size
of either C5 or C3 is at least 52l — (DL (404D - por 1) ;> 1 e
have that W > 2(k— 1)+ 1 and hence by Theorem 6.12 there exists
a (k4 2,k) systematic single-error-correcting code.

Example 6.14 Let k be an integer such that k — 2 is a power of a prime,
let r = 3, and let My = 8((k —2)3 —1)/(k —3) = 8((k —2)> + k — 1).
By Theorem 6.8, it follows that there exist hy, ho, ..., hx_1 such that for all
ec ZF1, |le|| <2, the sums Zfz_ll e;h; are all distinct modulo M. We have
to show the existence of a code in S(My3) with minimum distance 4 and
of size at least My. By Corollary 6.6, there exists a single-error-correcting
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code Cx C S(My3) of size |Cx| > % We fix a multipermutation

p € S(My3) and consider the codes C§ = {v € Cx : di(p,7) =0 (mod 2)}
and C§ = {y € Ckx : dk(p,7) =1 (mod 2)}. By Lemma 4.6, it follows

that the minimum distance of the codes C§ and CS is 4. One of these codes
must be of size at least @ If C3 is this code then |Cs| > W =
(112;34)! = (k+3)(kff)(k+1). For all k > 113 we have that w >

8((k —2)? +k — 1) and hence by Theorem 6.12, if k > 113 such that k — 2

is a power of a prime then there exists a (k + 3,k) systematic double-error-

correcting code.

In [105, 106] a construction of systematic (k, k+2) single-error-correcting
codes for permutations with two redundancy symbols, which is the same
number of redundancy symbols as in Example 6.13, was given. The authors
in [105, 106] construct (n,k) systematic t-error-correcting codes with at
most 2t + 1 redundancy symbols. If & and ¢ have the same magnitude
then our construction uses the same number of redundancy symbols, but
for most parameters the number of redundancy symbols of the codes in our
construction is considerably better. Our main theorem is stated as follows.

Theorem 6.15 Let k be an integer, let t = k€ be a positive integer, and let
r = [ut], where

u>14+e for 0<e<l1

u>1+% for 1<e.

If k is large enough then there exists a (k-+r, k) systematic t-error-correcting
code.

Proof. Let k' = 21821 'let M = ((K' — 2)"*! — 1) /(K — 3), and let

M — t(t+1)M, tisodd
L t(t+2)M, tiseven

Since k' > k and by Theorem 6.8, it follows that there exist hi, ho, ..., hr_1
such that for all e € Z*~1, ||e|]| < t, the sums Zf;ll e;h; are all distinct
modulo M;. We have to show the existence of a code in S(My,,) with
minimum distance 2t and of size at least M;. Let r/ = 2M°8271 and let
M, = ((r' = 1)t —1)/(+" — 2). Since r <+’ and by corollary 6.9 it follows
that there exists a t-error-correcting code Cx C S(My,) in the Kendall’s
T-metric, whose size satisfies

t(+1) M, °
|S (M)

T(t+2)M,

Mol 4 1 g odd
ICx| >
t —11is even
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We have to show that if k is large enough then |Cx| > M;. Since

SMin) (k+ )l —2)

Cxl = 26— 1)(t+ DM, ~ k-2(t— D+ 1)((2r — 1)+ — 1)

and
My < t(t+2)(2k)

It is sufficient to show that if k is large enough then
(k+7)! >tk k14t (6.1)

By the Stirling approximation, n! ~ v/2mn (%)n, and therefore, the right
hand side of inequality (6.1) is approximately

k
27k (k> t4kt(4#t)t < 2ﬂ_k,e—kkk+4e+k:5+eke(4N)k5_
e

Similarly, the left hand side of inequality (6.1) is approximately

e\ k+upke
o (k + ko) (k +e“k )

Hence, it is enough to show that
(k + ,U,ke)k+’uk€ > (46uu)k€kk+4e+k€+ek€ (62)

The left hand side of inequality (6.2) is at least k*F+Hk",
For 0 < e <1, we show that

JRHIES S (gl )R phraethetek
If k is large enough and

k+ pk® >k + k€ + k€,

i.e, u > 1+ ¢, then inequality (6.1) is satisfied.
For € > 1, the left hand side of inequality (6.2) is at least (uk€)~+rF,
If k is large enough and

ek + euk® > k + k° 4 ek*,

i.e., 1> 1+ 1 then inequality (6.1) is satisfied.

The following corollary is a special case of Theorem 6.15.
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Corollary 6.16 Let t be an integer and let r = t + 1. Then there exists
an integer Ky such that for every integer k > K, there exists a (k + r,k)
systematic t-error-correcting code.

6.3 Systematic ECC for Multipermutations

In this section we generalize the construction in Section 6.2 to obtain sys-
tematic error-correcting codes for multipermutations. In the most general
definition of systematic codes for multipermutations we have a multiset X
with k elements (with repetitions) serving as the information symbols and
a multiset R with r elements serving as the redundancy symbols. The
intersection between K and R must be empty. The codewords are mul-
tipermutations over the multiset U R. The number of codewords in the
error-correcting code must be the number of distinct multipermutations over
the multiset IC. In the systematic code C each multipermutation over the
multiset K, appears as a sub-multipermutation of exactly one codeword from
C. The construction for systematic multipermutations will be a direct gen-

eralization of the construction in Theorem 6.12. Instead of the set My, , we

use the set M defined by Mdéf{Ok} U R, where 0 is a symbol which does

not appear in R. The size of the code C, C S(M) is at least M;.

The challenge for systematic permutations codes is to minimize the num-
ber of redundancy symbols of the codes. For systematic error-correcting
codes for multipermutations there is a tradeoff between the number of re-
dundancy ranks and the magnitudes of their multiplicities. For example, in
a systematic code for multipermutations with only one redundancy rank, the
multiplicity of the redundancy rank might be large. However, by allowing
two redundancy ranks, the multiplicity of each redundancy rank should be
smaller. The construction in Theorem 6.12 allows any desirable number of
redundancy ranks.

Example 6.17 Let IC = {1™,2™2 ... ("™} be a multi-set which consists
of k = Zle m; information symbols, let R = {{ + 1,0 + 1} and M =
{0 0 +1,0+1}. Let My = 2(k —mq) + 1. For every e € ZF"™, |le|]| < 1,
the sums Zf;lml e;i are all distinct modulo M. For the construction, we
need a code in S(M) with minimum distance 2 and of size at least M;. To
this end, fix a multipermutation p € S(M) and consider the codes C§ =
{ye SM) : dr(p,v) =0 (mod 2)} and C§ = {y € S(M) : dk(p,y) =

1 (mod 2)}. By Lemma 4.6 it follows that the minimum distance of both C§
ISIM)| _ (k+2)!

and C3 is 2. Clearly, the size of either C§ or C3 is at least =5~ = 515 =
%“(k‘m. For all k > 1 we have that W > 2(k —m1) + 1 and
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hence by Theorem 6.12 there exists a systematic single-error-correcting code
in SICUR).
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Chapter 7

Constrained Codes for Rank
Modulation

Motivated by the rank modulation scheme, a recent study by Sala and Dole-
cek explored the idea of constrained codes for permutations. The constraint
studied by them is inherited by the inter-cell interference phenomenon in
flash memories, where high-level cells can inadvertently increase the level of
low-level cells. It was said that a permutation o € S, satisfies the single-
neighbor k-constraint if |o; — 011 < k for all 1 <i < n —1. In this chapter,
the model studied by Sala and Dolecek is extended into two constraints.

Definition 7.1 Let n and k be positive integers such that k < n. A per-
mutation o € Sy, is said to satisfy the two-neighbor k-constraint if for all
i,2<i<n-—1, either |o(i—1)—c(i)| < k or|o(i) —o(i+1)] < k. We
denote by A, ;. the set of all permutations in S, satisfying the two-neighbor
k-constraint. A two-neighbor k-constrained code is a subset of Ay . Fi-
nally, for 0 < e < 1, the capacity of the two-neighbor k-constraint, where
k = [n€], is defined as
C(e) = limsup 10g | Al |Ank|
nooo  logn!

For example, the permutation o = [4,7,5,3,1,2,6] satisfies the two-
neighbor 2-constraint but not the two-neighbor 1-constraint. Clearly, if
k' =mn —1 then A,; = S,. Note that the two-neighbor constraint does
not distinguish between high-low-high and low-high-low patterns and thus
eliminates them both. A weaker constraint which may fit better to the
inter-cell interference problem is defined next.

Definition 7.2 Let n and k be positive integers such that k < n. A permu-
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tation o € S, is said to satisfy the asymmetric two-neighbor k-constraint if
foralli,2 <i<n-—1, eithero(i—1)—o(i) <k oro(i+1)—o(i) < k. The
set of all permutations satisfying the asymmetric two-neighbor k-constraint
is denoted by B . An asymmetric two-neighbor k-constrained code is a
subset of By, i, and the constraint’s capacity, where k = [n], for 0 <e <1,

is defined as
log | By, |

Cle) = hyrlrisolip log 1!

For example, the permutation [5,3,1,6,4, 2] satisfies the asymmetric two-

neighbor 2-constraint but not the asymmetric two-neighbor 1-constraint.

Note that every permutation which satisfies the two-neighbor k-constraint

satisfies the asymmetric two-neighbor k-constraint as well and thus for any
0<e<1,Cle) < Cle).

We show that the capacity of the first constraint is (1+¢)/2 in case that

k = ©(n) and the capacity of the second constraint is 1 regardless to the

value of k. We also extend our results and study the capacity of these two

constraints combined with error-correction codes in the Kendall’s 7-metric.

7.1 The Two-Neighbor Constraint

In this section we study the two-neighbor constraint and in particular find
its capacity. This will be done first by a construction of two-neighbor k-
constrained codes which provides a lower bound on the capacity. The con-
struction is based upon assigning permutations into a special family of mul-
tipermutations. Then, we will show how to bound the size of the set A, ;.
which will result with an upper bound on the capacity that will coincide
with the lower bound.

We denote by My, = {1™,2™,...,0™} the balanced multiset whose
ranks are the elements of [¢], each rank appears m times (definition of a
balanced multiset can be found in 4. The set of all multipermutations over
My is denoted by P ,,.

Note, that multipermutations, besides of being a tool in our solutions,
find interest also in flash memory applications. The rank modulation scheme
was recently generalized such that multiple cells can hold the same rank and
thus represent a multipermutation; see e.g. [24, 25]. As a consequence, error-
correction codes for multipermutations have attracted attention as well [7,
72]. Hence, the generalization of the aforementioned constraints and similar
ones for multipermutations is also very important and interesting, however
is out of the scope of this work.
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For an even integer m, the set Dy, C Py, is defined as follows. A
multipermutation p € P, belongs to Dy, if for every j, 1 < j < ¢m/2,
p(25 — 1) = p(2j). For example, let p = [1,1,2,2,2,2,3,3,1,1,3,3]. Then
p € k= D34 since p(1) = p(2), p(3) = p(4), and so on. The size of Dy, is
equal to the size of Py, /.

Recall that for a multipermutation p € P, and permutations 1, 72,

.+s Y, such that v; € S([(i — 1)m + 1,im]) for i € [¢], the assignment of
the permutations 71,72, ..., v¢ in the multipermutation p is the permutation
a = p(Y1,72,---57) € Sem, defined as follows. For all 1 < j < n, if p(j) =
ir then a(j) = ~i(r). Recall, also that by Lemma 4.2 the assignment of
the permutations 7; in the multipermutation p is an injective operation.
This fact will be useful in the following construction of a two-neighbor k-
constrained code.

Construction 7.3 Let n = {(k + 1), where k is an odd positive integer
and £ is a positive integer. Let Ciy,:” C S, be the code consists of all the
permutations o € Sy, of the form o = p(y1,72,--.,%), where p € Dy 41 and
vi € S([(i —1)(k+ 1)+ 1,i(k + 1)]), for i € [€]. That is,

v €S —1)(k+1)+1,i(k+1)])

The correctness of Construction 7.3 as well as the code cardinality are proved
in the next lemma.

Lemma 7.4 Let n,k,l be as specified in Construction 7.3. Then, the code

Ciy,:l s a two-neighbor k-constrained code and its cardinality is

nk L (M)w ’
= )!

Proof. Let o € Ciy,zn Then there exist p € Dyjy1, and v1,7v2,..., 7,
where ; € S([(i — 1)(k + 1) + 1,i(k + 1)]), for all ¢ € [¢], such that o =
(71,72, ---,7). Let 2 < j < mn —1 be an odd integer and assume that
p(j) = i, for some ¢ € [¢] and r € [k + 1]. By the definition of Dy 1, it
follows that p(j+1) = 4,41. Hence, o(j) = vi(r) € [(i—1)(k+1)+1,i(k+1)]
and similarly o(j + 1) =v(r+1) € [ — 1)(k+ 1) + 1,i(k + 1)]. It follows
that |o0(j) — o(j + 1)| < k. The case of j even is handled the same with
respect to the symbol in position j — 1. Thus, o satisfies the two-neighbor

k-constraint.
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For the computation of the cardinality of Cn,k , note that by Lemma 4.2
it follows that every choice of p € Dyx41 and v1,72,...,7, where 7; €
S([(e—1)(k+1)+1,i(k+1)]), for i € [¢], generates a different codeword of
the form p(vy1,72,...,7¢). Therefore,

e D)1k + 1)1
|Cn:tjk :‘D&k_&_ﬂ(k;_‘_l)lfz%

O
Even though Construction 7.3 provides two-neighbor constrained codes
only to the case where k is odd, it can be easily modified for the case that k

is even as well. In any event, we will not need this modification in order to
calculate a lower bound on the capacity, which is stated in the next theorem.

Theorem 7.5 For all0 <e<1, C(e) > %

Proof. Assume that k = [n/¢] that n’ = ¢(k + 1), for some integer ¢. By
Lemma 7.4 we have that

(l’ l(k + 1)!1@2—1
2) €\ !
’An’,k| :Q — :Q(n,<1; )n)
SR
Then,
/ 1+e /
- log [Aw g log<n(2)”> 1te
lim ———=~ > = )
n'=oo  log n'! n/—o00 log n'! 2

, where the limit is over values of n’ that are divided by k. Thus, % is a

partial limit of the sequence loil;;!”“' and therefore C/(e) > 1£<

O
In order to derive an upper bound on the capacity C(e) we show an
upper bound on the size of A, j.

Lemma 7.6 For all positive integers n, k such that k < n,
|Apg| <4V 1ESp2 T

Proof. Let ¢ : A, , — Z" be the following mapping. For a permutation
o€ Ay, ¥(o) = x = (z1,22,...,2,) € Z", where 1 = o(1), and for
each i, 2 < i < n, x; = o(i) — o(i — 1). Clearly, ¢ is an injection and
therefore, the size of the set A, ; is equal to the size of the image of 1,
Y(An k) = {¥(0) : o€ A}t We will show an upper bound on the size of

Y(Ank)-
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Let x = (o) for some ¢ € A, ;. For any position j, 2 < j < n —1,
either |o(j) —o(j —1)] < kor |o(j + 1) — o(j)| < k. Therefore, at least
|25 of the n — 1 elements z2, 23, ..., z,, are in the range [k, k] \ {0}. Let
I C [2,n] be a set with at least [252| elements and let Dy be the set of
all vectors x € (A, ) for which z; € [—k, k] \ {0}, for every i € I and

xj € [—n,n]\ [=k, k], for every j € [2,n]\ I. Then,

|t (Ank)| < > 1Dy (7.1)

1C2,n], [11>] 252 ]

For each ¢ € I there are 2k choices for x; and for each j € [2,n]\ I there
are at most 2(n — k) < 2n choices for ;. Finally, there are n choices for z;.
Therefore,

D7 < n- @k 2n) [ ] = on gl [ T,

Since the number of choices for I is less than 2”1 according to (7.1),
the following upper bound on the cardinality of A,, ; and ¢(A,, 1) is derived

|A”J€‘ = ’w(An,k)‘ < on—1. 2”71]?\.”7_”71,["7_11*‘1

O
As a result of the last lemma we derive the following which provides an
upper bound on the capacity.

Theorem 7.7 For all0 <e<1, C(e) < 1‘2"5.

Proof. By Lemma 7.6, |A, x| < 4" 'k3n37! and thus, if k = [n¢] then

log(4"1kzn3th)

< 1
Cle) < nhﬁnolo logn!
_log(4" 'kzn2th)
= lim
n—00 nlogn
y 2n — 2+ 5logk + 5logn + logn
= lim
n—00 nlogn
selogn+ 5logn  1+e€
= lim = .
n—00 nlogn 2

O
The following Corollary, which is an immediate result of Theorems 7.5
and 7.7, summarizes the discussion of this section.
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Corollary 7.8 For all0 < e <1, C(e) = 1£<.

7.2 The Asymmetric Two-Neighbor Constraint

In this section we find the capacity of the asymmetric two-neighbor con-
straint. Our main result states that for all 0 < ¢ < 1, C(e) = 1. Since the
capacity is at most 1, and the capacity is nondecreasing when ¢ increases,
we will need to show that C (0) = 1. This will be done by a construction of
an asymmetric two-neighbor 1-constrained code that confirms this capacity
result.

For a set I, let I/, respectively I, denote the ordering of all elements
in I according to their increasing, respectively decreasing, order. For the
construction of an asymmetric two-neighbor 1-constrained code we will need
the code Cff{T, where 7’ is even, from Construction 7.3. Recall that a per-

mutation 7 € C./}" is of the form

T =p(Y1,72, Vo),

2

T/ /,,,/

other words, for every j, 1 < j < 5, there exists 1 < ¢ < %5 such that
{7(2) — 1), 7(2))} = {20 — 1,2i}.

Construction 7.9 Let m be an integer, 1 <m < 7.

Forr =2m + 1, let the code C, C Sy, defined as follows. A permutation
o € Sy, belongs to C, if there exists a partition of the set [r,n] into r nonempty
sets I, Iy, . .., I, and a permutation = € C;*'T | such that

0= [I5ﬂ12\7ﬁ(1)aﬂ(2)7157]>7'-'77T(T72)77(7’7 1)aI/]

For r = 2m + 2, the code C, C S, is defined in a similar way. A
permutation o € Sy, belongs to C, if there exists a partition of the set [r—1,n]
into r nonempty sets Iy, I, ..., I., and a permutation w € Cﬁ%gl such that

o= I 1,7 (1),x(2),I5 1% ..;w(r — 3),m(r —2), 17, M.

yir—D S

Finally, let C;*Y™ C S, be the code

[n/4-1]
Cp¥™ = U Com+1 U Comqa.

m=1
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Example 7.10 Forn =15 andr =5, let I} = {5,8,10}, I = {6,12}, I3 =
{7,15}, Iy = {9,13}, Is = {11,14} be a partition of [5,14] into 5 nonempty
sets and let m = [4,3,1,2]. Note, that 1 = p(y1,72) where p = [2,2,1,1],
m = [1,2] € S([1,2]), and v2 = [4,3] € S([3,4]), hence, 7 is a codeword in
C4". Let o € Si4 be a permutation of the form

0= [Il/(v12\"777(1)777(2)713/‘714\777(3)777(4)715/‘]

=1[5,8,10,12,6,4,3,7,15,13,9,1,2,11, 14].

. Then o € C5. Note, that o can also be obtained from other partitions such
as I, = {5,8,10,12}, I, = {6}, and I; = I;, for all 3 <i < 5.

A position i, 2 < i < n —1, is called a valley in a permutation o € S,
if o(i —1) > o(i) and o(i) < o(i + 1). For example, in the permutation
o = [4,7,5,6,1,2,3], the third and fifth positions are valleys. The next
lemma will be used in proving the correctness of the construction, which
will be proved next.

Lemma 7.11 Let m be an integer, 0 < m < %' Then, every permutation

0 € Comt1 U Comya has exactly m valleys.

Proof. Let 0 € Copmy1 U Comao. Then o is formed as described in Con-
struction 7.9 by a permutation 7w € Cay, 1 and a partition of the set [2m+1, n],
L, I, ..., I, where r € {2m+1,2m+2}. If 0(i) € I for some 2 <i <n—1
and 1 < s < r, then either (i — 1) < (i) or o(i + 1) < o(7), and hence i
cannot be a valley in 0. Therefore, if i is a valley then o (i) = w(j) for some
1 < j < 2m. Since for every j', 1 < j' < &, there exists an 7/, 1 < ¢/ < &,
such that {7 (25’ — 1), 7(25")} = {2i — 1,2i} and since 7(25’ — 1) and 7(25’)
are adjacent elements in o, it follows that ¢ is a valley in ¢ if and only if
m(j) is odd. Hence, every element in Copy+1 U Cam2 has exactly m valleys.

O

The correctness of the construction of the code C4 is proved in the next

lemma.

Lemma 7.12 For alln > 1, the code Cpy™™ is an asymmetric two-neighbor
1-constrained code.

Proof. Let o € C,*Y™ and let m be the number of valleys in ¢. By Lemma
7.11 it follows that o € Copmy1 U Comya. According to Construction 7.9 it
follows that there exists a permutation ™ € C;gﬁ such that the valleys of o
are the positions ¢ where o(i) = m(j), for some 1 < j < 2m, and 7 (j) is odd.
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It follows that either o(i — 1) = o(i) + 1 or o(i + 1) = o(i) + 1. Then the

valleys in ¢ do not violate the asymmetric two-neighbor 1-constraint and
therefore o satisfies the asymmetric two-neighbor 1-constraint.

O

Next, we will analyze a lower bound on the cardinalities of the codes
from Construction 7.9. First, we use the following observation.

Lemma 7.13 For alln > 1, let o € C;™™ and let m be the number of
valleys in o. Then there exist at most 21 different ways to obtain o as
described in Construction 7.9.

Proof. By Lemma 7.11 it follows that ¢ belongs to Copyt1 U Copto. Let
i1 < 19 < -+ < i9;y be the 2m positions in which the elements of the set
[2m] appear in 0. If m € Cyyy, 1 is a permutation from which o is obtained as
described in Construction 7.9 then m = [0(i1),0(2), . .., 0(i2m)], and hence
7 is uniquely determined by o. If Iy, Is, ..., Iom+1, lom+o is a partition of
the set [2m+ 1, n] into either 2m+1 or 2m+ 2 nonempty sets (we allow only
the set oy, 42 to be empty), then [I{,IQ\‘] =lo(1),0(2),...,0(i1 — 1)]. Let
j, 1 < j <y —1 be the position such that o(j) > o(i) forall 1 <i <i; — 1.
If o(j) € I then I1 = {0(1),0(2),...,0(j)} and I = {o(j +1),0(j +
2),...,0(i1 — 1)], and if o(j) € Iy then I = {o(1),0(2),...,0(j — 1)} and
Iy ={o(j),0(j +1),...,0(iz1 — 1)]. Hence, there are at most two ways to
determine the sets I and I from . Similarly, there are at most two ways
to determine each of the pair of sets Io;41, [2i+2, where 1 < i <m — 1, and
at most two ways to determine the sets Iomi1, Iomt2, where Io,, 1o may be
an empty set.

Thus, there exist at most 2™*! different ways to obtain ¢ as described
in Construction 7.9.

O

For two positive integers £, r, where r < £, the number of partitions of
¢ elements into r nonempty sets is denoted by S(¢,r) and is known as the
Stirling number of the second kind.

Lemma 7.14 For all n > 1, the cardinality of the code Cy°?™ satisfies
3]

comi =3 b5 )7,

(NJE]

r

n—2
)

size of Com+1 U Comt2. There are r!S(n — 2m,r) choices for the partition

Proof. For every m, 0 < m < we compute a lower bound on the
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I, Is, ..., I, where r = 2m+1 or r = 2m + 2, and there are m!- 2™ choices
for the permutation 7 € Cay,,1. The expression

[2m + DIS(n —2m,2m + 1) 4+ (2m + 2)!S(n — 2m, 2m + 2)]m!2™

counts codewords in Copyt1 U Comyo and by Lemma 7.13, each codeword in
Com+1 U Comt2 is counted at most 2m+1 times. Hence, the size of Com+1 U
Com+2 is at least
!
[(2m + DIS(n — 2m, 2m + 1) + (2m + 2)1S(n — 2m, 2m + 2)]%.
By Lemma 7.11 it follows that the sets Cop+1UCom42 and Copyr 41 UCo 12
are disjoint if m’ # m, and therefore

D e (R L
=1

O
In order to show that C(0) = 1, we will need to use the following lower
bound on the Stirling numbers of the second kind, which is taken from [67].

Lemma 7.15 For 1 <r </,

S,r) > (7“2 +r+ 2)7“87“1 —1.

N

Finally, the next theorem, which is a direct result of Lemma 7.14 and
a lower bound on the Stirling numbers of the second kind, highlights the
result of this section.

Theorem 7.16 For all0 <e<1, 5(6) =
Proof. Clearly C(0) < 1. We will show that

. log | By, 1]
im ——————

>1,
n—oo  logn!

by proving that for every 0 < § < %,

~ log| B
G(0) = lim 28 1Bnal

n—oo  logn!

>1-4.
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Let 6 be such that 0 < § < % and let 7 = [én]. From Lemma 7.14 it
follows that

1 r—1
|Bp1| > 5?"!5(71 —rr) { 5 J!,
and by Lemma 7.15 and by the Stirling approximation, n! ~ v/27mn (%)n,
4
> <5"> (on)n(1=20)+ <2” : (5n)" 207 (2¢)= 5"

It follows that

1 o | n(1-26)+1 671_*1 !
|Bp1| > — " { 5 J [(ﬁﬂ (om) 5 |

log | B ] n(1-30) (9¢)~ 5"
i (08Bl oy log(On)" TEVRe)TE 0
n—oo  logn! n—00 log n™ 2

This shows that C'(0) > 1 and consequently C(e) = 1, for all 0 < ¢ < 1.

7.3 The Capacity of Error-Correcting Constrained
Codes

The two-neighbor constraint and the asymmetric two-neighbor constraint
were proposed to combat errors that are caused by the inter-cell interference
in flash memory cells. However, constrained codes should also be restricted
to have error-correction capabilities, which is the topic of this section. A
similar problem for the one-neighbor constraint was studied in [70].

For two permutations o,m € S,, the inversion distance, denoted by
dr(o, ), between o and 7 is the Kendall’s 7 distance between their inverses,
i.e.,

di(o,m) =dg (e, 1),

Recall that dx (0!, 77!) can be expressed as

di(o,m) = dr (o™, 7)) = |{(,§) : (i) < o (j), 7(i) > m(j)}].

Even though this distance was studied before, see e.g. [21], we are not
aware of any formal name for this metric and thus call it here the inversion
distance. In this section we study the capacity of the constraints in this
paper combined with a requirement of a minimum inversion distance.
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Remark 7.1 We study the inversion distance and not the Kendall’s 7 one
since, according to our representation of the cells ranking in a permuta-
tion, this metric fits better with the error behavior in flash memory cells.
The motivation in studying codes in the Kendall’s T metric originated from
the observation that cells with adjacent levels may interchange their rank-
ings [42]. Therefore, codes in the Kendall’s T metric should be invoked over
the inverses of the permutations. However, in order to study these codes
with constrained codes, one should take the inversion distance applied for

the permutations.

Let E(n,k,d) be the maximum size of a code in A, ; with minimum
inversion distance d. For 0 < e; < 1 and 0 < e3 < 2, let &k = [n!] and
d = [n®?], and define the capacity of two-neighbor k-constrained codes with
minimum inversion distance d by

log E(n, k,d
0(61,62) = lim M

n—o00 logn!

We will compute this capacity in terms of ¢; and ez by following some
of the methods used in [5] and later in [71]. We distinguish between three
cases:

1. OSGQSlaHdOSQSL
2. 1<ea<1l+4+e,and 0<¢e <1,
3.1+ <ea<2and 0<¢ <1.

We will find upper and lower bounds on the size of E(n,k,d) in each case
and use these bounds in order to compute the capacity of these codes.
For a permutation o € S, the sphere of radius t centered at o is the set

Si(n,t,o) ={mr €S, : dx(o,m) <t}.

The size of the sphere S;(n,o,r) does not depend on o and thus we denote
it by sz(n,r). For o € A, 1, the sphere in A, ;, of radius r centered at o is
defined by

SI(Anvk,a,r)d:ef{ﬂ €A, : di(o,m) <r}.

A code in A, ; with minimum inversion distance d can be constructed
by a greedy approach which leads to the following Gilbert-Varshamov type
of lower bound.
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Lemma 7.17 For everyl <k <n,1<d< (g), the following lower bound
on E(n,k,d) holds
‘An,k|

Enk,d) > ————.
(n,k,d) 2 si(n,d —1)
The next theorem is a combination of results from [5], [54], and [57].

Theorem 7.18 Letr = O(n?), where 0 < § < 2. Then there exist constants
c1 and co such that

We are now in a position to compute the capacity C/(e1,€2) for the first
case.

Theorem 7.19 For 0 < ej,es <1, Cler,e2) = 2 + 4.

Proof. Since E(n, k,d) C A, it follows that

log E(n, k,d) < log | Ay, k|
logn! ~—  logn!

)

and hence from Corollary 7.8, C(e1,€2) < C(e1) = % + 4.
By Lemma 7.17 and Theorem 7.18 there exists a constant ¢ such that
log E(n, k,d) S log |Ap k| loge™
logn! ~  logn! logn!

Then, C(e1,€2) > C(e1) = 3 + &, and thus, C(e1, €2) = 5 + .
O
Before proceeding to the second case, let us introduce some more tools
that we will use in solving this case. Let H,, = {1,2,...,n}". Recall that for
x,y € H,, the Manhattan distance between x and y, dy/(x,y), is defined
as

n
def
du(x,y)= E |z — i
=1

The next lemma was proved in [21].

Lemma 7.20 For every o,m € S,

1
§dM(Ua 71') < d](ga 77) < dM(O-¢ 77)'
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The definition of the two-neighbor k-constraint can be trivially extended
to H,. A vector x € H, satisfies the two-neighbor k-constraint if either
|z; — 1] < kor |z —a;| <k, forall 2 <i<n—1. Let A, be the set
of all elements of H,, that satisfy the two-neighbor k-constraint.

For a subset S C H,, and x € S, the Manhattan sphere in S of radius r
centered at x is defined by

SM(S,x,r)dg{y €S dylxy) <r}

Combining the previous results along with the sphere packing upper
bound and Gilbert-Varshamov lower bound provides us with the following
lemma.

Lemma 7.21 For every 1 <k <n, 1<d < (}),

‘An,k’

E(n,k,d) < — — .
mlnXGAnyk{SM (An,ka X, L%J )|}

and

E(n,k,d) > : .
( ) maxxe A, , {1Sm (Ank, X, 2d — 1)[}

Proof. From Lemma 7.20 it follows that every code in A, ; with mini-
mum inversion distance d is also a code in A, ; with minimum Manhattan
distance d. Hence, by the sphere packing bound for codes in A, ; the fol-
lowing upper bound holds

|An,k‘

E(n, k,d) < — SaIe
mlnxeAnyk{’SM(An,ka X, L%J )‘}

From Lemma 7.20 it follows that every code in A,, ;, with minimum Man-
hattan distance 2d is also a code in A, with minimum inversion distance
d. Hence,

‘An k|
E(n, k,d) > : .
( ) maxxeAnykﬂSM(An’k,x, 2d — 1)}
and since
0 {18as (A, 24 = I} < max {[Sas(Ayio x,24 = D
we get

‘An k’
E(n,k,d) > : .
( ) maxxe A, , {[Sm (Ank, %, 2d — 1)[}
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In order to apply the upper bound from Lemma 7.21, we state in the
next lemma a lower bound on the size of a Manhattan ball in A, .

Lemma 7.22 Let k = [n°] and r = [n‘ﬁ, where 0 < e < 1,0 < § < 2.
Then there exists a constant ¢ such that

_ n
<n521) A<di<l+e<2
in{Sn(Ank, x,7)|} > 3
Xgﬁ% M (An e X, 7)[} = <n5‘1+€)2,1+e§5<2

C

Proof. Let x € A,j. We will show a construction of a subset of
Sar(Ay g, x,7) that verifies the lower bound stated in the lemma. Let
m = [n/2] and let

m
Dl = {(y17y2>"'7ym) : Zyz =
i=1

1=

n—
r
D2 = {(ZlaZQa”'aan) : Z i = 170 <z < k}
i=1

For every y € D1, let w € H, be the following vector. For every 1 < i <

T2i—1+ ¥Yi, T2i—1 <M,
Woi—1 =
T2i—1 — Yi, T2i—1 > M.

Since x € A, i, for every 1 <i < n—m, |z2; —x2i—1| < k or |z2;41 — 2| < k,
and accordingly the even entries in w are defined to be

Toi + Woi—1 — Toi—1, |T2 — x2i—1| < K,
wo; =

Toi + W2it1 — T2it1, |T2 — T2i—1| > k.

According to the construction of the vector w we get that w € A, and
du(x,w) < 3, that is, w € Bas(Ap i, x, 20).

Similarly, for every z € Dy, we define u € H, as follows. For every
1 <i<n—m,if |wy; —we;—1| < k then

wo; — 2, 0 < wo —woi—1 < k,wy >k
2, 0 < w9 —woi—1 < k,wy <k
U=
wo; + 25, —k <wo —wai—1 < 0,wy <n—Fk

n—2zi, —k<wy— w1 <0,wy>n—k,
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and if |w2¢ — UJ21;1| > k then

wo; — 2, 0 < wo —woipr < k,we >k
" 2, 0 < w9 —waip1 < k,woy <k
2=
woi + 2i, —k <wo — w1 <0,wy <n—k

n—=zi, —k<wy—wyp1 <0,wy >n—k.

Lastly, for every 1 < ¢ < m, we set ug;—1 = wg;—1. It can be readily verified
that u belongs to Sp/(Ank,%,7) and that y,z are reconstructible from x
and u. Therefore,

|SM(-An,kaXa T)| > ‘D1| : |D2|

For any three positive integers i, k, 7 we define Q; 7.7 to be the set

Qﬁ,,]::f = ’{(ylay27"'ayﬁ) € Zﬁ : Zyl = f70 S Yi S %}‘

i=1
According to the last definition, we get that |D;| = Qum,m—k,z and |Do| =
Qn-m,k,z- In [71] the authors proved that if k = O(7f) and 7 = O(n%),
where 1+ € > 5, then i
(R+7)"

Since € < 1 it follows that m — k = ©(n), and since § < 2 we get

n5—1
>
= (")
If 1 <6 <1+ €< 2 we have that
( )2><n5_1>n7
- 2

d—1\ "
|SM(An,k,x,t)|:(”2 > .

V|3

~—
w[3

|D1| > (5

o3[

~—~
03|
~—

S
N

—
I3 | 4+
~—

|Dy| >

o3[

Therefore,

If 1 + € <6 < 2 then since 2k = ©(n'™) = O(r), there exist a constant
c such that {%W < r where n is sufficiently large, and therefore

5 e\ fracn2
e )2
C C
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Therefore,

Su(A n6—1+e 5
n ) 7t Z .
B (nsot)] > ("5 )

We are ready to prove the capacity for the second case.

Theorem 7.23 For0<e; <1l andl <e <1+¢€,

3 €
Cley, €)= B + 51 — €.

Proof. Let k = [n“] and d = [n?]. By Lemma 7.17 and Theorem 7.18
it follows that there exists a constant ¢ such that

log E(n, k,d) S log |Ap k| B log ¢"nle2—1n

logn! ~  logn! log n!
Therefore,
1 € 3 €
C(€1>€2>25+51+1—62:§ 51—62-

Similarly, by Lemmas 7.21 and 7.22 it follows that

negfl n
log E(n, k,d) < log [ Ank| log< 2 )
logn! —  logn! log n!

and hence,

Od
For the last case, where 1 + €1 < €5 < 2,0 < ¢; < 1 we will need one
more lemma.

Lemma 7.24 Let k = [n] and r = [n°], where 0 < e <1 and1 <4 < 2.
Then, there exists a constant c such that

max {|Sar(An i, x,7)|} < 071793
XGAnyk ’

Proof. Let x € A, ., and m = [%W For any y € Syr(An g, %, ), define
the vectors (u,b) € {0,1,...,n—1}" x {0,1}™ such that > ;" u; <r, and
(z,¢) €{0,1,2,...,k}" ™ x {0,1,2,3}" "™ as follows. For 1 <1i <m,

i-1 — 22i-1,0), 0 < y2i—1 — 221,
(ui,b-):{(‘w 1 — 22i-1,0) Y2i-1 — T2i-1

(2i—1 — Y2i-1,1), Y2i—1 — T25—1 < 0.
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For 1 <i<mn—m,if |ys; — y2i—1| < k then

(y2i — ¥2i-1,0), 0 <y —yo2i—1 <k,
(zi,¢i) =
(y2i—1 — y2i, 1), —k < wy2i —y2i—1 <O0.

Otherwise, if |y2; — y2i—1| > k then

(2, ¢1) = (y2i — Y2i41,2), 0 < yoi — y2it1 <k,
1y 1) —
(y2i+1 — ¥2i,3), —k < yoi —y2ir1 < 0.

Note that y is reconstructible from (u,b), (z,c) and x, hence the map-
ping y — ((u, b), (z,c)) is an injection. Hence, the size of Sys(A; x,x, 1) is
at most the number of different choices of ((u,b), (z,c)) and therefore

[2]+r+2
r

Sar(Anpx,7)] < 23“( >(4(k 1),

We will show that there exists a constant b such that

(Pzﬂ +r+2> < b3

r

n

By the Stirling approximation, n! ~ v/27n (E)n, we have

<
— n+4 — "
T T (n;ll) 2
nt4 n+bd +5 ntb .
27z 2 (B 41) 2
2r <
n+4 —
n 2
o n;;S n25+7,
1 n+5
—1\n»
np0—1)3 ( o +1> <
n+>5

2
b0

for some constants by, bs.
2
Since ¢ > 1 it follows that %+HT+5 = O(n) and therefore there exists
a constant b such that

<m +r+ 2> < P13

r
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Finally, we have that there exists a constant ¢ such that

Sa (Ap g, %, 7)| < 193505

We are ready to compute the capacity for the last case.

Theorem 7.25 If 1+¢€; <€ <2 and 0<¢; <1, then

Cler,e2) =1— %2

Proof. Let k = [n“] and d = [n®]. For 1 + € < ez < 2, it follows from
Lemmas 7.21 and 7.24 that

log E(n, k,d) 5, log [Angl log(c"n(2—1+e)3)

log n! —  logn! log n!
Thus,
1 ¢ 1 e ¢ €2
C >- 4ty 2 g 2
(61,62)_2+2+2 7 3 5

It follows from Lemmas 7.21 and 7.22 that

log E(n, k, d) < log [An x| log (2~ 1+
log n! = logn! Tog 1

and therefore

1 €1 €e+e —1 €9
<-4+--"—=1-—=.
C(er,e2) < 2—1— 5 2 >

We conclude that if 1 4 €; < e <2 then C(ey,€2) =1 — F.
O
For conclusion, Theorems 7.19, 7.23, and 7.25 are summarized in the

following corollary.

Corollary 7.26 Let 0 < e <1 and 0 < ey < 2. Then

3+% 0<e <1,
Cle,e) =43 +9 —6, 1<e<1l+e,
1*%2, 146 <eg <2,

Let E(n,k,d) be the maximum size of a code in B, (the set of all
permutations in S, that satisfy the asymmetric two neighbor k-constraint)
with minimum inversion distance d. For 0 < ¢; < 1,0 < e <2, k = [n%]
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and d = [n], the capacity and asymmetric two neighbor constrained code
with minimum inversion distance d is defined by

- log E
Cler,er) = lim BEMK D)

n—00 logn!

Let E(n,d) be the maximum size of a code in S,, with minimum inversion
distance d. For 0 < § < 2, and d = [n‘ﬂ, the capacity of error-correcting
codes in S, with minimum inversion distance d by

Corr(6) = lim M‘

n—oo  logn!

Barg and Mazumdar [5] prove the following
Theorem 7.27 Let 0 < § < 2. Then

1, 0<s<1,
2.6, 15<2.

Cerr (5) = {

Following the same technique used in [5] we have

Theorem 7.28 Let 0<¢1 <1 and 0 < ey =<2. Then

C(El, 62) = C’err(EQ)

Proof. Since every code in B, j, with minimum inversion distance d is also
a code in S, with minimum inversion distance d it follows that E(n, k,d) <
E(n,d) and therefore, C(e1, €3) < Cepr(€2).

We have the following lower bound on E(n, k,d), which is a Gilbert-
Varshamov type of lower bound.

r- |Bn k:|
Enk,d) > —————.
(n,k,d) 2 sr(n,d —1)
Hence,
- log E
Cler, e2) = lim log B(n, k, d)
n—00 log n!

log |B 1 d—1 ~
> fim 98Bkl gy logsr(nd =) sy
n—oo  logn! n—00 log n! n—00 logn!

By Theorem 7.18 we have that if 0 < e5 < 1 then there exist some
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cin

constant ¢; such that sy(n,d — 1) < e“™ and therefore,

Cler,e2) > Cler) = 1 = Copr(ea).

By Theorem 7.18 it also follows that if 1 < ez < 2 then there exist some
constant ¢z such that sy(n,d — 1) < (can2~!)n and therefore,

C’(el,eg) > C’(el) —(e2—1) =2 — €9 = Cepr(€2).

We conclude that é(e, €2) = Cerp(€2) for all 0 < e <1 and 0 < e < 2.
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Appendix A

In Section 5.1 we proved Theorem 5.2 that states that a perfect single-
error-correcting code in S, with the Kendall’s 7-metric does not exist if
n > 4 is a prime and for n = 4. The proof of Theorem 5.2 was based on
a certain linear equations system, where the existence of a perfect single-
error-correcting code in S, implies the existence of a solution to the linear
equation system over the integers, and thus, by showing the non existence
of such a solution we derive the non existence of the perfect single-error-
correcting-code. By using similar techniques we prove the nonexistence of
perfect single-error-correcting codes in S,, for n € {6,8,9,10}. For every
such n we will describe the corresponding linear equations system and use a
computer to show that this linear equations system does not have a solution
over the integers.

= 6: We denote by Dg the set of all vectors v € {1,2,3}° in which each
of the elements 1,2,3 appears twice. For every v € Dg we define
Sy to be the set of all permutations in Sg, such that the elements 1
and 2 appear in the positions in which 1 appears in v, the elements
3 and 4 appear in the positions in which 2 appears in v, and the
elements 5 and 6 appear in the positions in which 3 appears in v.

Let zy = |C N Sy|, where C is a perfect single error-correcting code
in S and let x = (Tv,, Tvy, ..., Tv,,), Wwhere m = |Dg| = %}2, By

considering how elements of S, are covered, for each v € Dg, we
obtain a linear equations system of the form Ax = 8- 1, where A is a
square matrix of order m, which we solve by a computer. The kernel
of A is an one dimensional vector space which is spanned by a vector
y € {0,—1,1}°, that has both negative and positive entries. Every
solution for this system is of the form % -1+ o« -y and therefore, the
system does not have a solution in which all entries are integers, a
contradiction.

= 8: We denote by Dg the set of all vectors v € {1,2,3,4}® in which each
of the elements 1 and 2 appears three times and each of the elements
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3 and 4 appears once. For every v € Dg we define Sy to be the set
of all permutations in Sg, such that the elements 1,2, and 3 appear in
the positions in which 1 appears in v, the elements 4,5, and 6 appear
in the positions in which 2 appears in v, and the element 7 appears
in the position of 3 in v, and the element 8 appears in the position of
4 in v. Let zy = [C N Sy|, where C is a perfect single error-correcting
code in Sg and let x = (Ty,, Tvy, ..., Tv,,), Where m = |Dg| = 3%
By considering how elements of Sy are covered, for each v € Dg, we
obtain a linear equations system of the form Ax = 361, where A is a
square matrix of order m, which we solve by a computer. The system
36

has a unique solution < - 1, and since this solution has non integers

entries, we get a contradiction.

: We denote by Dy the set of all vectors v € {1,2,3}" in which each

of the elements 1 appears five times and each of the elements 2 and
3 appears twice. For every v € Dg we define Sy to be the set of all
permutations in Sg, such that the elements 1,2, 3,4, and 5 appear in
the positions in which 1 appears in v, the elements 6 and 7 appear in
the positions in which 2 appears in v, and the elements 8 and 9 appear
in the positions in which 3 in v. Let 2y = |C N Sy|, where C is a per-
fect single error-correcting code in Sy and let x = (2v,, Tvy, - .-, Tv,,),
5,2—:2, By considering how elements of S5 are cov-
ered, for each v € Dy, we obtain a linear equations system of the form

where m = |Dyg| =

Ax = 480 - 1, where A is a square matrix of order m, which we solve

by a computer. The system has a unique solution % -1, and since

this solution has non integers entries, we get a contradiction.

: We denote by Dyg the set of all vectors v € {1,2,3}!? in which each

of the elements 1 and 2 appears four times and the element 3 appears
once. For every v € Djg we define Sy, to be the set of all permutations
in Sy, such that the elements 1, 2,3, and 4 appear in the positions in
which 1 appears in v, the elements 5, 6, 7, and 8 appear in the positions
in which 2 appears in v, and the elements 9 and 10 appear in the
positions in which 3 appearsin v. Let z, = |[CNSy |, where C is a perfect

single error-correcting code in Sip and let x = (2v,, Tvy,s-- -, Tv,,),
! . .
where m = |Dyg| = ﬁo,‘z,. By considering how elements of Sy are

covered, for each v € Dqy, we obtain a linear equations system of the

form Ax = 1152 -1, where A is a square matrix of order m, which we

solve by a computer. The system has a unique solution %82 -1, and

since this solution has non integers entries, we get a contradiction.
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Appendix B

In Section 5.3 the cyclic Kendall’'s 7-distance between two permutations
o, € S, was proposed. This distance is given by the minimum number of
c-adjacent transpositions required to change ¢ into w. Recall that given a
permutation o € Sy, a c-adjacent transposition is either an adjacent trans-
position or the exchange of the elements o(1) and o(n). In this appendix
an algorithm that calculate the cyclic Kendall’'s-7-weight of a permutation
o € Sy, wy(0), is presented. The running time of the algorithm is O(n?).

As mentioned in Section 5.3, it is more convenient to consider positions
and elements of permutations in .5, as residues modulo n. Henceforth,
throughout this appendix, both positions and elements of permutations in
Sy, are taken from the set [0,n — 1] ={0,1,...,n — 1}, and for every ¢ € Z,
o(f) = o(£ ( mod n)). Under this notations, (n—1,n)oc = (n—1,0)o0 is the
permutation obtained from o by the exchange of the elements o (0) and o(n—
1). By abuse of notation, the set {a( mod n),a+1( mod n),...,b( mod n)}
is denoted by [a,b]. Next, some definitions and notations that are required
for the algorithm are given.

Given a permutation o, we assign for every i € [0,n — 1], a nonnegative
integer dist, (i), and a sign, sign,(i) € {0,+, —}, defined by

disty (i) = min{i — o~ 1(i)( mod n),n — (i — o ~1(3))( mod n)},

and

0, o(i)=1i.
signg (1) = S +, o(i) # i, and dy(i) =i — o~ (i)( mod n). .
—, otherwise.

i.e., disty(7) is the minimum number of c-adjacent transpositions re-
quired to move the element ¢ into the ith position in the permutation o, and
signey (i) is the direction in which ¢ is moved to its position. If sign, (i) = +
then i can be moved clockwise to the ith position in o by dist, (i) c-adjacent
transpositions. Similarly, if sign, (i) = — then i can be moved counterclock-
wise to the ith position in o by dist, (i) c-adjacent transpositions.

For example, if o = [4,3,6,1,2,5,0] then dist,(0) = 1 and sign,(0) = +,
disty(6) = 3 and sign(6) = —, dist,(5) = 0 and signy(5) = 0.

Note, that if signg(i) = — then dist, (i) < |%51]| and if signe(i) = +
then dist, (i) < [%].

108



Lemma B.1 For every o € S,,

n—1
Z signy(i)disty (i) = 0( mod n).
=0

Proof.

n—1
> signg(i)dist,(i) = > dist(i)— Y disty(i)
=0

i€ [0,n — 1], i€ [0,n—1],
signg (i) € {0, +} signe (i) = —
= > i—o i) — Y (n—(i—o7'(4)
i€ [0,n—1], i€ [0,n —1],
signg (i) € {0, +} signe (i) = —
n—1 n—1 n—1
EZi—a_l(z’) ( mod n) EZ’L’—ZZ’ ( mod n) =0 ( mod n).
i=0 i=0 i=0

Lemma B.1 implies that r,, defined by

Z?:_Ol signg (i)dist (i)
Te = n ’

is an integer. Let sign(r,) be the sign of r,, i.e., sign(ry) = 0 if r, = 0,
sign(ry) = + if 7, > 0, and sign(r,) = — if 7, < 0.

Lemma B.2 For every o € S, such that r, # 0, there exist at least |2r|

elements i € [0,n — 1], for which signy(i) = sign(ry).

Proof. Assume to the contrary that there exist at most |2r,| —1 elements
i € [0,n — 1], for which sign, (i) = sign(ry). If sign(r,) = — then

S sign, (i)dist, (i) N
n

n n
)5 zran—|—§ > ron.

(2r, +1

Similarly, if sign(ry) = +, then

Yois signo(i)dists (i) _ @0 1) = ron - < rom.
n 2 2
]
Let M C [0,n — 1] be a set of |r,| elements such that for every i € M,
signe (i) = sign(ry) and for every j € [0,n — 1] \ M, for which sign,(j) =
sign(ry), we have that dist,(j) < dist,(i). Lemma B.2 implies that such a
set exists. Any such set, M, is called a balancing set for o.
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Given a balancing set M for o, we assign for every i € [0,n — 1], a
nonnegative integer ds (i), and a sign, sy »(i) € {0,+, —}, defined by

, n —disty(i), i€ M.
Mo (1) = . . : ’
dist, (i), otherwise.

and,
, —signgy (1), 1€ M.
SM,G(Z) = . . . :
signy (i),  otherwise.
For example, if 0 = [4,3,6,1,2,5,0] then

6
reT =Y signg(i)disty(i) =1-2-24+2-3+0—-3=—T7
=0

and 7, = —1. The set M = {6} is a set of size one and for every j € [0, 5]
such that sign,(j) = —, dist,(j) < dist,(6) = 3. Hence, M is a balancing
set for o, dyr,(6) = 4, and sy7,(6) = 4. Note that M = {4} is another
balancing set for o.

Lemma B.3

n—1
> suo(i)dro (i) = 0.
=0

Proof.

n—1
> smo(i)duo(i) = D signg(i)disty (i)=Y signg(i)(n—dists(i)).
=0

i€[0,n—1\M ieM
n—1
= —Tren+ Z signg (i)disty (i) = —rn +rn = 0.
i=0

O
Let Nuv,6.0s Nvo+, and Ny — be a partition of the elements in [0, n—1]
into three classes according to their sign, sps g, i.e.,

Nuvoo=1{i : sme(®) =0}, Nuyoy={i : snme(i) =+},

and
Nuo—={i : sme(i) =—}.

For every i € [0,n — 1], define
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17 1€ NM,O’,-i-? .7 S NM,O’,-i— UNMO’,07 [a_l(j)7j] C [O—_I(i)ai]'
fro(isj) = Q1 i€ Nayg—y € Ny, [5,07 ()] C [1,071()].

0, otherwise

fme (i, j) =1 implies that if ¢, j are moved to their positions in o in di-
rections spzx (i), sar0(j), respectively, by using das o (i) +daro(j) c-adjacent
transpositions, then one of these transpositions must exchange the elements
i and j.

Lemma B.4 Let i€ [0,n — 1], and let
I ={j € Nuos \{i} : i€ [o7'(j). 41},

I ={j€Nyuo_\{i} : icljo” ()}

Then |Il| = |IQ|
Proof.
Assume assume without loss of generality that sy (i) # —. Observe

that I3 Uy is the set of all elements j € [0,n— 1], such that in order to move
J to its position in the direction sy ,(j) using exactly dar(j) c-adjacent
transpositions, j must exchange positions with o(i). For every j € [0,n — 1]
define

d(j) =

s n—due(j), j€hUI,
dme(J), otherwise

and
. —smo(d), jehUl.
5(J) = , S
sme(j),  otherwise.

Let # = [o(i + 1),0(i + 2),...,0(n — 1),0(0),0(1),...,0(i)], and let
p=1[i+1,i+2,...,n—101,...,4. For every j € [0,n — 1], j # i, if
Jj is moved to its position in the direction §(j), then j does not exchange
positions with o (i), therefore, d(j) = p~(j) — n~1(j) if 5(j) € {0,+} and
d(j) = ==1(5) — p~1(4) if 5(j) = —

—_

S5 = Y o) ) - Y ) - )
0

J, 820 J, 8<0

<
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n—1 n—1

=> ') =) G =0
j=0

§=0
On the other hand,

n—1
S50 =D —(n—dye() + Y n—dua(G)+
j=0

Jjeh jEI2
n—1

> si0(7)drr o () = 1L = 0|0+ sare(f)dare ().
J€[0,n—1)\(I1UI2) =0

By Lemma B.3 it follows that Z?:_ol smo(j)dre(j) = 0, and therefore,
n]I2| — n\h] = O, i.e., ‘11’ = ’I2|
O
Finally, let

n—1ln—1
WM,oc = Z dM,a(i)"i_ZZfM,a(iaj)’
ieNAf,or,Jr =0 7=0

Lemma B.5 Let 0 € S, such that ro # 0. Let M, be a balancing set for
o, and assume that there exist a € M and b € [0,n — 1] \ M such that
signg(a) = signy(b) and dist,(a) = dist,(b). Let M = (M \ {a}) U {b}.
Then wyr,e = Wyr -

Proof.
Note, first that Ny o~ o) = (N ,o,—sign(r,) \1@})U{b}. By Lemma B.3
it follows that

> dueli) = > Ao ().

ieNIM,o’,-&- iENM,U,fsign(ro-)
Therefore,
n—1ln—1
WM,oc = 5 dM,a(i) + § E fM,U(iyj)a
7"ej\/vM,cr,7sign(rg) i=0 j=0
and similarly,
n—1ln—1
wie= Y A D +Y D i),
ieN]\;I,o,fsign(ro-) i=0 ]:0
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Since dp,0 (1) = dy; (i) for every i € [0,n—1]\{a, b} and since dpr,,(a) =
dyr o, (b), it follows that

> Ao (i) = > o ().

ieN]\/[,o‘,—sign(ra) lGNJ\;

1,0,—sign(rg)

Next, it is proved that

n—1n—1 n—1ln—1
D2 Fuolid) =33 fir o)
=0 j=0 =0 j=0

Clearly, for every i,j € [0,n — 1]\ {a,b}, faro(i,5) = fi7 5 (4, 7). Moreover,
disty(a) = disty(b) < dist,(i), for all i € M \ {a}, which implies that
dyro(a) > dao(d), dy (b)) > dy (5), for all j € [0,n — 1]. It also implies
that dy ,(a) > dyy (7). for all j € Ny oo and day o (b) > dare(j), for
all j € NM,cr,sign(rg)‘ Therefore, fMjg(j, a) =0, fM,O’<j7 b) =0, fM,U(j»a) =
0, and fu(j,b) =0, for all j € [0,n — 1]. Hence, it is enough to show that

n—1 n—1
ZfM,J(a7j) + fM,U<b7j) = Z f]\?[VU(avj) + f]\?[p(baj)v
j=0 Jj=0

or equivalently,

n—1 n—1
D Fo(ad) = Firg(a:3) =D Fir o (0:5) = Faro(b, ). (B.1)
j=0 j=0
Let
Li={j € Nugi\{a} : a€o(5).4]},
and
I ={j € Nao,- \{a} : a€ljo (5]}
By Lemma B.4, [[;| = |I2|. Since dpy(a) is maximal, it follows that

there are three types of elements in Ny, _sign(r,) \ 1a}: The first type
is j such that fa,(a,j) = 1. If sign(r,) = — then this j is such that
[0=Y(5),4] C [07(a),a] and if sign(r,) = + then this j is such that
[j,071(4)] C [a,07 (a)]. The second type is 7, such that c~1(j) € [0~ (a), a]
and j € [a,07(a)]. If sign(ry) = — then these are exactly the elements of
11, otherwise, let x be the number of such elements. The third type is j such
that 0=1(j) € [a,07(a)] and j € [071(a), a]. If sign(ry) = + then these are
exactly the elements of Is, otherwise, let « be the number of such elements.
Note, that since dps »(a) is maximal, if sign(r,) = — then z counts the num-

113



ber of elements j € [0,n — 1] such that o=1(j) € [a,07(a)], snm.0(j) = +,
and fars(a,j) = 0. There are |I3| + Z?:_ol fir..(a,j) elements j such that

o~ 1(j) € [a,07 (a)] and spr4(j) = —. Therefore,
n—1
v=n—dyo(a) =Y fi.(a) = || (B.2)
§=0

Similarly, if sign(r,) = + then = counts the number of elements j € [0,n—1]

such that o=1(j) € [07(a),a], smo(j) = —, and faro(a,j) = 0. There
are |I1| + Z?:_ol fi7.(a,j) elements j such that o='(j) € [07%(a),a] and
smo(j) = +, and since |I;| = |I2], it follows that in any case, z satisfies

equation (B.2). Thus,

n—1 n—1
‘NM,a,fsign(rg)‘ 1= Z fM,U(aaj)—i_‘[l‘—i_n_dM,J(a) _Z fMp(a?j)_ |IQ‘
=0 =0

_Zchra] ZfMgzla )+n_dM0'()

It follows that,

n— n—1
ZfM,U(aaj) - ZfM7o’(a7j) = |NM,U,—sign(ra)| —1—n+ dM,cr(a)‘
i—0 =0

The same arguments are applied to derive that

,1 n
> Firo®:0) =D to(0:5) = Ny o _igney| = 1 = 1+ djg (0.
— -

Since |NZ\;[,a,fsign(rg)| = |NM,cr,—sign(r(,)| and deg(a) = de(b), it fol-
lows that equation (B.1) holds, which completes the proof of the lemma.

O

Corollary B.6 The value of wy» does not depend on the choice of the
balancing set M.

Proof. Let M and M be two balancing sets for o, ie., signg(i) =
sign(ry), for every i € M U M, disty(j) < dzstg() for every i € M,
j €10,n—1)]\M, and dist,(j) < dist,(i),for every i € M,je [O,n—l]\M. In
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particular, for every a € M\ M and for every b € M\ M, dist,(a) < disty(b)
and dist,(b) < dists(a), hence, dist,(a) = dist,(b). Moreover, since M and
M are both sets of size |ry| it follows that |[M\ M| = [M\ M|. Let M\ M =
{ar, s, ac}, M\ M = {b1,ba,.... b}, and let My = (M \ {a1}) U {br}.
For every 2 <t </, let My = (My—1 \ {a:}) U {b:}. Note, that M, = M. By
Lemma B.5, it follows that wyr s = W 0 = ... = Wag,0 = Wy
O
Corollary B.6 states that the value of wp;, does not depend on the
choice of the balancing set M. Each permutation o € S,, is assigned with a
non-negative integer w,, where w, = wys, for some balancing set for o, M,
and this assignment is well defined. In what follows, it will be proved that
wy = wy (o). To this end, it is proved that for every o, 7w € Sy, dy(o,7) =1
then w, = w,+1. Let 0,7 € S,, such that d,(o,7) =1, i.e., 7 = ({,{+1)o0,
where 0(¢) = a, and 0(¢+1) = b. In order to show that w, = w, £1 we will
show the existence of a balancing set for o, M, and a balancing set for 7, M,
such that sy7, (i) = s, (i), for every i € [0,n— 1] (with exception for i = a
if spro(a) =0 or sMﬂ(jz') = 0 and for ¢ = b if sp74(b) = 0 or s _(b) = 0).
This will simplify the computation of d; (i) and f; _(4,7), in terms of
dm,o (i) and far,(7), respectively, for every’i €0,n— 1] The balancing set
for 7, M, will depend on sign,(a), signg(b), dist,(a), dists(b), and whether
or not a,b € M. In order to find such balancing sets for ¢ and =, it is
required to compute r, in terms of r,. This is done by simply computing
disty(a), distz(b), sign.(a), and sign.(b), in terms of dist,(a), disty(b),
signy(a), and signy(b), respectively, and substitute these values in

n—1
Tal = Z signg(i)dist, (7).
=0
disty(a) — 1, signg(a) = +.
disty(a) + 1, signg(a) = 0.
o = - d
disty(a) = < disty(a) + 1, signa(a) o (B.3)
disty(a) < | 25|
o = - d
n — (disty(a) + 1), signa(a) o
disty(a) = | 25|
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+, signy(a) = + and dist,(a) > 1
0, signes(a) =+ and disty(a) = 1.
signz(a) = —, signy(a) = 0. ‘ (B.4)
—  signe(a) = — and dists(a) < LRT_IJ
+, signe(a) = — and dist,(a) = | 25|

dista(b) -1, signa(b) - —
disty(b) + 1, signg(b) =
igny(b) = d
disty(b) = { dist,(b) + 1, signg(b) =+ an (B.5)
dist,(b) < |%].
igny(b) = d
(disty(b) + 1), 1me(®) =+ an
dist,(b) = |%].
—, signy(b) = — and dist,(b) > 1.
0, signey(b) =— and dist,(b) = 1.
signz(b) = ¢ +, signg(b) = : (B.6)
+  signe(b) =+ and dist,(b) < | %] .
—, signg(b) = + and dist,(b) = | 5] .
The values of r; in terms of r, are summarized in Table 7.1.
signe(a) . szgng( ) = - szgng( ) =—
signeg(b) signo(a) € {0, +} disty(a) < |52 | disty( ol
signy € {0,—} To T rg +1
Signo(b) =+
dist,(b) < | 2] o "o ro 1
signg(b) = +
dist,(b) = | 2] ro—1 ro—1 i

Table 7.1: Values of r, in terms of r,

It is proved that for every o,m € Sy, dg(o,7) = 1 then wy = w, £ 1
by proving the following nine lemmas. The first lemma refers to the simple
case where sign,(a) = 0 and signy(b) = 0.

Lemma B.7 Let o,m € Sy, where m = ({,{+ 1) oo, 0(f) = a, and o({ +
1) = b. Assume that disty(a) = 0, and dist,(b) = 0, i.e., £ = a, and
b=/4+1(modn). Then wy = w, + 1.
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Proof.

Let M be a balancing set for . As shown in Table 7.1, r, = r,. More-
over, dist;(a) =1, dist;(b) = 1, and for every i € M, dist;(i) = disty,(i) >
1. Therefore, M is also a balancing set for 7w. Since a,b ¢ M it follows
that dyr-(a) = dya(b) = 1, spyx(a) = —, and sy (b) = +. For every
i €[0,n—1]\ {a,b} we have that dy (i) = dyo(2) and spr (i) = sar,0(2).
By definition,

n—1ln—1
we =Y dya(i)+ > > fualisg),
i€ENM x,+ i=0 j=0

and far (4, 7) = fme(is ), for every i € [0,n — 1], j € [0,n — 1] \ {a}. By
Lemma B.4 it follows that

n—1 n—1
ZfM,U(jva) = ‘{.7 € NM,U,— Tac []7 071(])]}‘ = ZfMJr(.jv CL).
j=0 Jj=0

Note, that Nasx+ = Naro+ U {b}. Therefore,

n—1n—1

we= > duo(i)+ > Y faro(i, ) + dare(b) = we + 1.

i€NM.o i=0 j=0

O

Lemma B.8 Leto,m € S, wherem = ({,{+1)oo, 0(¢) = a, and o ({+1) =
b, and let M be a balancing set for o. If syprq(a) = + and dist,(b) =0, i.e.,
b=/0+1( modn), then wy = w, — 1.

Proof. We distinguish between two cases.

Case 1: a € M. In that case r, < 0 and signs(a) = —. If disty(a) < |25
then rr = r,. Since dist;(a) = dist,(a) + 1, it follows that M is also
a balancing set for 7 and that dy-(a) = dys(a) — 1, du(b) = 1,
smr(a) =+, and spr(b) = +. For every i € [0,n—1]\ {a, b} we have

that das (i) = dpro (i) and spr (7)) = syr,0(2). By definition,

n—1n—1
Wyr = Z dM77r(Z)+ZZfM,7T(Z7])7
1E€ENNM =, + =0 5=0

and farr(4,J) = fmo(i,7), for every i € [0,n—1], j € [0,n— 1], where
(i,7) # (a,b). Since b € [07Y(a),a] it follows that fis(a,b) = 1 and
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Case 2:

fvx(a,b) = 0. Note, that Ny »+ = Naso+ U {b}. Therefore,

n—1ln—1
we= Y duoli) =1+ > faro(ing) = L+ dux(b) = wy — 1.
ieNA{’O-’+ =0 5=0

If disty(a) = |“5*| then 7 = 7, + 1 and M \ {a} is a balancing
set for m. The same arguments that were used to the case where

disty(a) < L”TAJ show that w,; = w, — 1.

a ¢ M. In that case sign,(a) € {0,+}, r= = rys, and M is also a
balancing set for . The same arguments that were used to prove case
1 show that w, = w, — 1.

O

Lemma B.9 Leto,nm € S, where m = ({,{+1)oo, 0({) = a, and o ({+1) =
b, and let M be a balancing set for o. If disty(a) =0, i.e., £ = a, and if
sMe(b) = —, then wy = wy — 1.

Proof. The case disty(a) = 0 and spr(b) = — is symmetric to the case
sy (a) =+ and dist,(b) = 0 that was stated in Lemma B.8.

O

Lemma B.10 Let o,m € S,, where 1 = ({,{ + 1) oo, o({) = a, and
ol +1) = b, an let M be a balancing set for o. If syro(a) = + and
sMe(b) = — then wy = w, — 1.

Proof. We distinguish between three cases.

Case 1:

= —. If dist,(a) < |25
+ 1, it follows that M is
also a balancing set for 7 and that dy ~(a) = dye(a) — 1, dy (b)) =
dve(b) — 1, spx(a) = +, and sy (b)) = —. For every ¢ € [0,n —
1]\ {a, b} we have that dps (i) = dy (%) and spy(7) = sy (7). By
definition,

~—

a € M. In that case r, < 0 and sign,(a

~—

then r; = r,. Since distz(a) = dist,(a

n—1ln—1
Wy = Z dM,ﬂ(i)+ZZfM,ﬂ(i)j)7
€Nt =0 j—=0

and farx(i,J) = fme(i,j), for every i € [0,n —1], j € [0,n — 1] \ {b}.
If dist,(b) > 1 then far(4,0) = faro(i,b). Otherwise, if dist,(b) =1
then by Lemma B.4 it follows that
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Case 2:

Case 3:

n—1 n—1
D frux(isb) = i € Nar— = b€ [m O =D faro (G b):
j=0 3=0

In any of these cases it follows that

n—1n—1 n—1n—1
ZZfM,W(Za]) = ZZfM,U(Z7])
=0 7=0 =0 5=0

Note, that Nasz + = Nu o+ and therefore wy, = w, — 1. If dist,(a) =
| 252 | then rr = r,+1 and M\ {a} is a balancing set for 7. The same
arguments that were used to the case where dist,(a) < VLT_IJ show

that w, = w, — 1.
b € M. This case is symmetric to case 1.

a,b ¢ M. In that case signy(a) = +, signs(b) = —, rr = 15, and M
is also a balancing set for 7. The same arguments that were used to
prove case 1 show that w,; = w, — 1.

O

Lemma B.11 Let o,m € S, where 1 = ({,{ + 1)o o, o(f) = a, and
ol +1) = b, an let M be a balancing set for o. If syro(a) = + and
sMo(b) =+ then wy = w, £ 1.

Proof. We distinguish between four cases:

Case 1:

Case 2:

b € M and there exists a ¢ € [0,n— 1]\ M, where sign,(c) = sign,(b),
such that M = (M \ {b}) U {c} is a balancing set for ¢. In this case
wr = w, — 1. Indeed, since b € M it follows that sign,(b) = —.
Note, that ¢ # a because otherwise, a ¢ M and sign,(a) = + #
signy(b), and it follows that a does not belong to any balancing set
for 0. Since M is a balancing set for o, b o4 M, ¢ = qa, it follows that
Sx10(@) = sme(a) =+ and sy; (b) = —. By Lemma B.10 it follows
that w, = w, — 1.

Every balancing set for o contains b. In this case w,; = w,+1. Indeed,
since every balancing set for o contains b it follows that for every
i € M, such that sign,(i) = sign,(b) = —, we have that dist,(i) <
disty(b). If a ¢ M or a € M and dist,(a) < |%51] then rr = r, and
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M = M is a balancing set for 7. If a € M and dist,(a) = | 252 then
M = M \ {a} is a balancing set for w. Following the same arguments
used in the proofs of the previous Lemmas to compute d MT((Z) and
Jir.(,7), for every i,j € [0,n — 1], it can be readily verified that
Wr = Wy + 1.

Case 3: b ¢ M and there exists a ¢ € M such that M = (M \ {c}) U {b}
is a balancing set for ¢. In this case it is shown that w, = w, — 1.
Since b ¢ M it follows that sign,(b) = +. Note, that ¢ # a because
otherwise, a € M, sign,(a) = — # signy(b), and it follows that b
does not belong to any balancing set for . Since M is a balancing set
for o, b € M, and ¢ # a, it follows that s;; (a) = sy(a) = + and
$y1.,(0) = —. By Lemma B.10 it follows that Wy = Wy — 1.

Case 4: Every balancing set for ¢ does not contain b. In that case it is shown
that w; = w, + 1. Since b ¢ M it follows that sign,(b) = +. Assume
first that dist,(b) < |2]. If a ¢ M or a € M and dist,(a) < |5 ]
then r, = r, and M = M is a balancing set for 7. If a € M and
disty(a) = |25%| then M = M\ {a} is a balancing set for 7. For
disty(b) = | 2|, we have that M = M U {b} is a balancing set for m,
unless @ € M and dist,(a) = | "5 |, in that case M = (M \ {a}) U {b}
is a balancing set for 7. Following the same arguments used in the
proofs of the previous Lemmas to compute d ;. () and fita (i,7), for

every i,j € [0,n — 1], it can be readily verified that w, = w, + 1.

O

Lemma B.12 Let o,m € S, where 1 = ({,{ + 1) oo, o({) = a, and

ol +1) = b, and let M be a balancing set for o. If spq(a) = — and
SMe(b) = — then wy = wy, £ 1.
Proof. The case sy o(a) = — and spr,(b) = — is symmetric to the case

sme(a) =+ and sp-(b) = + that was stated in LemmaB.11.
O

The following Lemma is derived by a similar arguments to those that
were used in the proofs of Lemmas B.8, B.10, and B.11.

Lemma B.13 Let o,m € S,, where 1 = ({,{ + 1) oo, o({) = a, and
ol +1) = b, an let M be a balancing set for o. If dist,(a) = 0, i.e.,
¢ =a, and if spr(b) = + then wy = wy £ 1.
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Lemma B.14 Let o,m € S,, where 1 = ({,{ + 1) oo, o(f) = a, and
ol +1) = b, an let M be a balancing set for o. If syro(a) = — and
disty(b) =0 i.e., b=+ 1 ( mod n), then wy = wy £+ 1.

Proof. The case dist,(a) = — and dist,(b) = 0 is symmetric to the case
disty(a) = 0 and s,(b) = + that was stated in LemmaB.13.
O

Lemma B.15 Let o,m € S,, where 1 = ({,{ + 1) oo, o({) = a, and
ol +1) = b, an let M be a balancing set for o. If syq(a) = — and
sMme(b) =+ then wy = wy, £ 1.

Proof.
If there exists a balancing set for o, M, such that s Nola) = + or
547 o) = — then from Lemmas B.10, B.11, and B.12 it follows that w, =

we £ 1. Otherwise, assume without loss of generality that r, < 0. This
implies that every balancing set for ¢ does not contain a and therefore,
signg(a) = — and disty(a) < |25 ]. Then either every balancing set for o
contains b or every balancing set for o does not contain b. Assume first that
every balancing set for o contains b. In that case sign,(b) = — and for every
c € [0,n— 1]\ M, where sign,(c) = —, we have that dist,(c) < dist,(b). In
particular, 1 < disty(a) < dist,(b). It follows that M = M is a balancing
set, for o.

For the case where every balancing set for o does not contain b, we have
that sign,(b) = +. If disty(b) < |%] then M = M is a balancing set for
o. Otherwise, if disty(b) = %], then M = M U {b} is balancing set for
o. Following the same arguments used in the previous Lemmas to compute
dyr (i) and fy; (i, j) for every i,j € [0,n — 1], it can be readily verified
that wy = ws + 1.

O

Corollary B.16 For every o,m € Sy, di(o,7) =1 then wy = w, £ 1.

Proof. Follows from Lemmas B.7, B.8, B.9, B.10, B.11, B.13, B.14, B.12,

and B.15.
O

Theorem B.17 For every o € S, wy = wk(0).

Proof. Let 0 € S, and let w = w,. The theorem is proved by induction
on w. For the basis of the induction we have to show that w = 0 if and only
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if o is the identity permutation of .S,, €. Clearly, w. = 0. Moreover, w, = 0
implies that dist,(i) = 0, for every i € [0,n — 1], and therefore o = e.
The induction hypothesis states that for every m € Sy, if w; < w then
wr = Wy (7). Assume that w > 0 and let M be a balancing set for o. Since
w > 0 it follows that o # . Hence, there must exist a, b € [0,n—1] such that
sme(a) =+ and sy (b) = —. In particular, there must exist a € [0,n — 1]
such that sps(a) = 4+ and sprep # +, where b = o(07!(a) + 1). Then by
Lemmas B.8 and B.10, it follows that for 7 = (¢, {+1)oo, w, = w—1. By the
induction hypothesis w; = wy(7) and from d,(o,7) = 1, we conclude that
wg (o) < w. By Corollary B.16 and since w. = 0, it follows that w < wy (o),
and therefore w, = w, (o).

O

Lemma 5.14 states that the minimum cyclic Kendall’s 7-distance of an
equivalence class {m € S,, : (0,m) € E} is n — 1. Recall that (o,7) € F if
o is a cyclic shift of 7. This lemma is proved by using the algorithm for the
computation of the cyclic Kendall’s 7-weight.

Proof of Lemma 5.14. Since the cyclic Kendall’'s 7-metric is right in-
variant, it is sufficient to prove that the cyclic Kendall’'s 7-weight of ev-
ery element, %, in the equivalence class of the identity permutation, e,
where §' # ¢, is at least n — 1. These elements are of the form 6 =
[i,i+1,...,n—1,0,...,i — 1], i € [1,n — 1]. For every j € [0,n — 1],
distgi(j) = min{i,n — i}, signg:(j) = + if 1 <i < | %], and signgi(j) = — if
L%J <1 <n—1. Assume without loss of generality that 1 <i < L%J Then

n—1
Tin = Z signgi (j)distg:(j) = in.
§=0

Hence, rpi = i. The set M = [0,i — 1] is a balancing set for 6°. For every
j S M, dM’gi = n—i, and SM,Qi = —. For everyj S [O,n—l]\M, dMﬂz(.]) =1
and s)/4i(j) = +. For every j,k € [0,n — 1], far0i(j, k) = 0. It follows that

wy(0Y) = i(n — 1),
and indeed, i(n — i) > n — 1, for every 1 < i < n — 1. Thus, the cyclic

Kendall’s 7 of #, for all i € [1,n — 1], is at least n — 1.
O
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